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Abstract: In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread
public attention due to their persistence in the environment and detrimental effects on the health
of living organisms, spurring the generation of several transcriptome-centered investigations to
understand the biological basis of their mechanism. In this study, we collected 2144 publicly available
samples from seven distinct animal species to examine the molecular responses to PFAS exposure
and to determine if there are conserved responses. Our comparative transcriptional analysis revealed
that exposure to PFAS is conserved across different tissues, molecules and species. We identified and
reported several genes exhibiting consistent and evolutionarily conserved transcriptional response
to PFASs, such as ESR1, HADHA and ID1, as well as several pathways including lipid metabolism,
immune response and hormone pathways. This study provides the first evidence that distinct PFAS
molecules induce comparable transcriptional changes and affect the same metabolic processes across
inter-species borders. Our findings have significant implications for understanding the impact of
PFAS exposure on living organisms and the environment. We believe that this study offers a novel
perspective on the molecular responses to PFAS exposure and provides a foundation for future
research into developing strategies for mitigating the detrimental effects of these substances in
the ecosystem.

Keywords: PFAS; metabolism; transcriptomics; transcriptome; cross-species correlation

1. Introduction

Per- and polyfluoroalkyl substances (PFASs) are a heterogeneous class of fluorinated
synthetic compounds encompassing a great number of molecules with different struc-
tures [1]. They have gained global notoriety due to their persistence and adverse effects
on living organisms and environmental health [2]. While a compendious definition of
these chemicals is challenging to provide, the Organization of Economic Co-operation and
Development (OECD) recently defined PFAS as molecules containing at least a perfluori-
nated methyl (–CF3) or a perfluorinated methylene group (–CF2–) without any H/Cl/Br/I
attached to it [3]. However, there are several PFAS classifications that are based on di-
verse definitions and include a variable number of molecules. For instance, PubChem’s
classification, based on OECD’s general description, includes more than 6.3 million PFAS
molecules [4], while the United States Environmental Protection Agency’s (EPA) classi-
fication, founded on molecular substructures and a threshold of fluorine percentage [5],
contains 14,735 compounds [6]. Despite the challenges and discrepancies in defining these
substances, the OECD currently recognizes 4730 molecules as bona fide PFASs, which
are further classified based on their carbon chain length and molecular structure, which
determines their unique physicochemical properties and environmental behavior. Short-
chain and long-chain PFASs are distinguished based on their carbon chain length, and
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polymeric and non-polymeric PFASs are differentiated based on the presence or absence
of repeating monomer units in their molecular structure. Moreover, PFASs are commonly
classified based on their legal status as either legacy or emerging PFASs. Emerging PFASs
are compounds such as HFPO-DA or GenX, ADONA, or C6O4, which were introduced
after the ban on perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) produc-
tion, import, and use. These emerging PFASs are characterized by a shorter C-F backbone
and are considered less hazardous than legacy PFASs due to their lower bioaccumulation
potential and toxicity [7].

PFASs have unique chemical properties that fostered their widespread production
and use in a multitude of industrial products since the 1950s [8]. The C–F bond in PFAS
molecules confers high molecular stability but also results in high resistance to degrada-
tion [8]. Additionally, the chemical attributes of amphiphilic and hydrophobic PFASs make
them ideal surfactants and surface protectors, while also making them resistant to high
temperatures. The versatility of PFASs has led to their use in a wide range of products, in-
cluding non-stick pans, firefighting foams (aqueous film-forming foams, AFFF), waterproof
textiles, pesticides, building and construction materials, cleaning products and medical
and personal care products, among many others [2,8].

Despite their widespread use, the potential risks of PFAS exposure to human health
and the environment have become increasingly apparent. PFASs have been found to be
ubiquitously present in the environment, where, thanks to their intrinsic chemical stability,
they can persist for several years owing to their resistance to degradation [2]. Water basins
have been identified as major repositories of PFASs and are capable of transferring these
substances over long distances, making the water ecosystem a crucial gateway for PFAS
entry into the food chain up to humans [9,10]. Numerous studies have focused on specific
PFAS molecules, such as PFOS and PFOA, and have shown that their accumulation can
have detrimental effects on aquatic and terrestrial ecosystems, as well as on animal species
and plants. As a result, limitations on the use of PFOA and PFOS were introduced in some
regions [2,11–14]. Moreover, the presence of PFASs in human biological matrices has been
highlighted in numerous studies, with a global distribution. PFASs have been detected
in serum [15,16], breast milk [17,18], placenta [19,20], hair [21] and semen [22], indicating
widespread exposure in human populations.

The vast majority of physiological and molecular research on PFASs has been directed to-
wards human health, revealing their toxicological effects on biological processes and metabolism.
These negative impacts include reduced fertility, altered gene transcription [12,23–29] and the
promotion of certain types of cancer, such as kidney and liver cancer [30,31]. However, there
are conflicting data on the involvement of PFASs in cancer pathogenesis [30]. Furthermore,
PFASs have been shown to negatively affect the activity of the immune system, particularly in
children, by impairing immune reactions and vaccination responses [23–25]. Lipid metabolism
is also heavily impacted by PFAS exposure, leading to dyslipidemia and increased plasma
levels of cholesterol [32–37].

Numerous studies have demonstrated that PFASs affect multiple species through
detectable molecular mechanisms [38–41]. These compounds can directly interact with
molecules such as the peroxisome proliferator-activated receptor α (PPARα), which medi-
ates PFAS toxicity [42]. Most importantly, PFASs are capable of modifying the transcrip-
tional expression of many genes in humans and other species [12], which has significant
repercussions on the mentioned pathways and diseases.

Despite the vast evidence of transcriptional changes induced by PFASs in multiple
species and despite the presence of numerous quantitative transcriptome-wide studies
measuring gene expression responses to PFAS exposure [38,39,43], a comprehensive and
comparative analysis of the data generated by these studies has yet to be performed. To
address this gap, we propose a rational integration and comparison of transcriptome-wide
studies performed in animal species and cell models, in the form of RNA-Seq or microarray
datasets. Using the opportunities offered by transcriptomics, we aim to elucidate the molec-
ular effects induced by PFASs not only at the single gene level but also across different
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pathways and cell types. Our research provides a comprehensive understanding of the
molecular mechanisms underlying PFAS toxicity that translate across species while acceler-
ating evidence-based policies and treatments to safeguard public and environmental health.

2. Materials and Methods
2.1. Data collection and Processing

We conducted an extensive literature search across databases to identify all transcriptome-
wide quantitative studies focusing on the effects of PFASs on animal samples. A total of
11 transcriptomics datasets were identified, containing publicly available data from 7 dif-
ferent species (Homo sapiens, Mus musculus, Caenorhabditis elegans, Danio rerio, Gadus morhua,
Micropterus salmoides, Pimephales promelas) (Table 1) [38–41,43–49]. Raw data associated
with these studies were retrieved from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/ accessed on 1 December 2022) [50] and the Sequence
Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra accessed on 1 December
2022) [51], both hosted at the National Center for Biotechnology Information (NCBI).

Table 1. Summary of the transcriptomics datasets analyzed in this study. PFOS: perfluorooctane
sulfonic acid. PFOA: perfluorooctanoic acid. PFBS: perfluorobutanesulfonic acid. PFDS: perfluo-
rodecanesulfonic acid. PFBA: perfluorobutanoic acid. PFPeA: perfluoropentanoic acid. PFHxA:
perfluorohexanoic acid. PFHpA: perfluoroheptanoic acid. PFNA: perfluorononanoic acid. PFDA:
perfluorodecanoic acid. PFUnA: perfluoroundecanoic acid. PFTeDA: perfluorotetradecanoic acid.
PFHxS: perfluorohexanesulfonic acid. PFHpS: perfluoroheptanesulfonic acid. PFOSA: perfluo-
rooctanesulfonamide. PAP: polyfluoroalkyl phosphate ester. FtS: fluorotelomer sulfonate. FtOH:
fluorotelomer alcohol. HFPO-DA: hexafluoropropylene oxide-dimer acid. PFDoA: perfluorodode-
canoic acid.

Species Sample
Size Platform PFAS

Compound Concentration Setup Tissue Reference

H. sapiens 607 RNA-seq

PFOS
PFOA
PFBS
PFDS

0.02, 0.1, 0.2, 1,
2, 10, 20, 50,

100 µM
in vitro Primary liver

spheroids
Rowan-Carroll et al.

2021 [38]

H. sapiens 1201 RNA-seq

PFBA
PFPeA PFHxA
PFHpA PFOA

PFNA
PFDA PFUnA
PFTeDA PFBS
PFHxS PFHpS

PFOS
PFDS PFOSA
8:2MonoPAP
6:2MonoPAP

8:2 FtS
6:2 FtS
4:2 FtS

8:2 FtOH
6:2 FtOH
5:3 Acid

Various
concentrations

in the range
0.2–100 µM

in vitro Primary liver
spheroids

Reardon et al.
2021 [44]

H. sapiens 23 RNA-seq PFOS 10 mg/kg in vivo
Prostate

cancer cells
xenograft

Imir et al. 2021 [45]

M. musculus 32 RNA-seq PFOA
GenX

0.05,
0.3 mg/kg

body
weight/day

in vivo Liver Attema et al.
2022 [39]

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra
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Table 1. Cont.

Species Sample
Size Platform PFAS

Compound Concentration Setup Tissue Reference

M. musculus 37 RNA-seq HFPO-DA 0.1, 0.5,
5 mg/kg in vivo Liver Heintz et al. 2022 [46]

M. musculus 18 Microarray PFOS
PFNA

0.0003% of
low-fat diet or
high-fat diet

in vivo Liver Pfohl et al. 2021 [47]

C. elegans 60 RNA-seq HFPO-DA

1.25 × 10−5,
6.25 × 10−5,
3.13 × 10−4,
1.56 × 10−3,
7.81 × 10−3,
1.56 × 10−2,
3.13 × 10−2,
6.25 × 10−2,

0.125, 0.25, 0.5,
1, 2,

4 g/L

in vivo Whole body Feng et al. 2022 [40]

D. rerio 16 RNA-seq PFOSA 12.5 µM in vivo Embryo Dasgupta et al.
2020 [41]

G. morhua 48 RNA-seq
PFOS
PFOA
PFNA

Low, medium,
high, 1×, 20×,

100×
in vitro Ovary Khan et al. 2021 [43]

M. salmoides 72 Microarray PFDA PFUnA
PFDoA PFOS

Different for
each lake and

each PFAS
in vivo Liver and

Testis
Collí-Dulá et al.

2016 [48]

P. promelas 30 Microarray

PFOS
PFBA

PFHxA
PFHpA PFOA

PFNA
PFDA

0.5, 25 µg/L in vivo Liver and
Whole blood

Rodríguez-Jorquera et al.
2019 [49]

Raw sequence data (FASTQ files) from the D. rerio [41] and G. morhua [43] datasets were
downloaded from the SRA database [51] using SRA Toolkit version 3.0.1. These reads were
aligned to the respective reference genomes (zebrafish genome version danRer11/GRCz11
and Atlantic cod genome version gadMor3.0) using the HISAT2 alignment program
version 2.1.0 [52]. The BAM files containing the aligned reads of zebrafish and Atlantic
cod were processed with featureCounts version 2.0.0 [53] to obtain matrices containing the
gene counts for each sample. The other datasets were directly downloaded from the NCBI
GEO database [50] with most of them being in the form of gene counts matrices, while the
Pfohl et al. 2021 dataset [47] was available through CEL files (which are files commonly
produced by Affymetrix DNA microarray image analysis software).

All statistical analyses were conducted in the R statistical software version 4.2.2 and
Bioconductor version 3.16. To generate graphs for this manuscript, we used base R functions
and R packages including ggplot2 version 3.4.1 [54], corrplot version 0.92, corto version 1.2.0 [55]
and ComplexHeatmap version 2.14.0 [56].

RNA-Seq gene-based reads counts were directly loaded into the R environment, while
R package oligo version 1.62.2 was used to import and process CEL files. Microarray data
were normalized using RMA normalization [57]. R package GEOquery version 2.66.0 [58] was
utilized to recover the metadata containing the information about the experimental design.

All sequencing data alignment and gene expression quantification steps were per-
formed on an HPC-dedicated DELL EMC server with an AMD EPYC 7301 32-core processor
and 256 GB of RAM. Microarray normalization, post-normalization statistical analysis and
graphics were carried out on a Windows 10 machine Intel Core i7-10700 CPU with 32 GB of
RAM (manufacturer: LENOVO, Beijing, China).
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2.2. Differential Gene Expression Analysis

To comprehensively assess the transcriptome-wide response to PFASs, we designed
an approach of comparison of 110 total differential gene expression contrasts, using for
each dataset a balanced PFAS-treated vs. control design, with at least three replicates per
group. For RNA-seq data, we used the DESeq2 R package version 1.38.3 [59] on raw read
counts. For microarray data, we implemented the default pipeline of the limma R package
version 3.54.1 [60]. Due to the significantly higher number of contrasts in two H. sapiens
datasets [38,44] than all others (Table 1), we decided to retain only a PFAS concentration
of 20 µM in these two datasets [38,44]. In the case of the P. promelas dataset [48], low-
exposure specimens from Upper Prior Lake were used as PFAS-treated samples. Overall,
the differential gene expression analysis was implemented on 110 separated contrasts,
encompassing all datasets (Table 1). All contrasts yielded more than 10 significantly
(at p ≤ 0.05) differentially expressed genes in response to PFASs (Supplementary Table S1).

For each contrast of the datasets, we generated a gene-by-gene transcriptome-wide
signature, defined by the following formula:

−log10(p) × sign(log(FC))

where p represents the p-value of the differential expression (calculated by limma or DESeq2)
and FC represents the fold change of the differential expression.

In essence, this formula (implemented in several other transcriptomics publications,
such as Alvarez et al., 2016 [61]) assigns a numerical value to each gene that is positive for
significantly up-regulated genes, and negative for significantly down-regulated genes. The
magnitude of the numerical value is proportional to the tested significance of the change.

2.3. Ortholog Prediction

To enable the comparison of gene expression data across different species, we devised
a phylogenetic gene conversion approach to convert all gene signatures to a common
gene identifier.

In order to do so, we performed a direct species-to-human conversion using the DRSC
Integrative Ortholog Prediction Tool (DIOPT) database version 9.0 [62] for all available
species in the database. For species not available in DIOPT, we utilized the R package
orthogene version 1.4.1 [63] to perform the conversion. In instances where species were not
available in either database (specifically, for Micropterus salmoides and Pimephales promelas),
we employed a bidirectional best-hit approach based on BLASTn version 2.12.0+ [64], using
the sequences associated with each microarray probe as a query, and the zebrafish cDNA
version danRer11/GRCz11 as the target database. We then converted the identifiers from
zebrafish to human using DIOPT. All ortholog conversions used in this study are available
in Supplementary Table S2.

The resulting matrix of signatures, based on the most likely human ortholog, contained
110 contrasts (PFAS vs. control) and was used for subsequent analysis (Supplementary Table S3).

2.4. Signature Analysis

To assess the similarities between gene expression signatures, we employed Pearson
correlation, provided by the R basic function cor().

For the pathway enrichment analysis, we retrieved gene sets from KEGG, WikiPath-
ways and Gene Ontology using the Molecular Signatures Database (MSigDB) [65]. We
accessed the database via the R package msigdbr version 7.5.1 and implemented the enrich-
ment analysis on the signatures using the R package fgsea version 1.24.0. This package uses
an algorithm for expedited and parallel gene set enrichment analysis [66].

To integrate the normalized enrichment scores (NES) derived from the pathway
enrichment analysis, we employed Stouffer integration as implemented by the corto R
package version 1.2.0 [55] and as performed before [61]. Z-scores were converted to
p-values, where needed, using the z2p() function from the aforementioned corto pack-
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age [55]. All p-values were corrected using the Benjamini–Hochberg method. All the R
code used to integrate data and generate the figures in this paper is available on Github at
the following address: https://github.com/federicogiorgi/pfas (accessed on 14 June 2023).

2.5. Metabolites Prediction

We employed a correlation-based method to predict metabolites based on gene expres-
sion signatures, as described in Cavicchioli et al., 2022 [67]. Briefly, this method assesses the
correlation structure between metabolites and transcripts measured in the Cancer Cell Line
Encyclopedia metabolomics/transcriptomics dataset [68] and then predicts the metabolite
levels in scenarios where only transcripts are available.

We applied this analysis to 55 PFAS exposure contrasts of three human datasets
included in this study [38,44,45]. Prior to the analysis, RNA-seq gene expression count data
were normalized using variance stabilizing transformation (VST) [69]. We then integrated
the normalized enrichment scores (NESs) generated contrast by contrast (Supplementary
Table S4) using the Stouffer integration method, as implemented by the corto R package [55].
The p-values were corrected using Benjamini–Hochberg method.

3. Results
3.1. Datasets

Using the literature and biological databases, we searched all publicly available
transcriptome-wide PFAS quantitative data, in order to build the most comprehensive
collection available to date. Our search retrieved 2144 samples from 11 datasets and from
7 different species for our analysis. Table 1 provides detailed information about each
dataset, including the overall study design, tested PFAS molecules, number of samples,
and tissues analyzed.

3.2. Correlation Analysis

To assess whether PFASs promote similar responses across species, we extracted tran-
scriptional signatures from each PFAS vs. control contrast (Supplementary Table S3). Our
comparative transcriptional analysis revealed that exposure to different PFAS molecules
determines both intra- and interspecies correlations (Figure 1), indicating that this class
of compounds induces conserved biological responses among species, despite the high
phylogenetic distance between the species analyzed herein. Notably, our analysis demon-
strated a general preponderance of positive correlation, with greater values in intraspecies
comparison (Figures 1 and S1).

Relating to cross-species correlation, our analysis revealed a strong positive correlation
between the transcriptional signatures of H. sapiens and M. musculus, especially when exposed
to the same PFAS molecule (Figures 2A and S2), highlighting the close evolutionary proximity
between the two species. We detected interspecies positive correlations as high as 0.36
(Figure 2A), which is extremely significant (p-value = 1.52 × 10−68, Figure 2B). This similarity
was observed between the liver of wildtype mice [39] and human liver spheroids [38], both
exposed to PFOA, although at different concentrations and exposure times.

https://github.com/federicogiorgi/pfas
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Figure 1. Heatmap displaying the correlation among 110 different PFASs vs. control differential
expression contrasts. The color gradient ranges from blue (denoting negative correlation) to red
(denoting positive correlation), with darker colors indicating higher correlation values. Each col-
ored dot indicates the correlation value between any two contrasts of the final signature matrix
(Supplementary Table S3). The upper bar denotes the tissue of origin of each contrast.
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CYP450 gene family, which is involved in the metabolism of fatty acids, such as 
arachidonic acid. CYP4A11 is highly expressed in the liver and kidney, where it 
synthetizes the 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid [70]. 20-
HETE has been shown to have cardiotoxic and vasoconstrictive activity, and its increased 
synthesis is associated with vascular inflammation and hypertension [71]. Remarkably, 
CYP4A11 up-regulation has been associated with non-alcoholic fatty liver disease 
(NAFLD), since it increases the intracellular production of reactive oxygen species (ROS) 
and pro-inflammatory cytokines [72]. Our result is in line with data showing that 
exposure to PFOA is positively related to NAFLD development [73]. The other up-
regulated genes (Figure 2B) are mainly implicated in lipid metabolism, mitochondrial 
function, and stress response, while down-regulated genes participate in immune 
response and inflammation, thrombosis, and cellular adhesion. 
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(2021) dataset [38] and D. rerio from Dasgupta et al.’s (2020) dataset [41]. Notably, this 
correlation is driven by the down-regulation of various genes encoding different types of 
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In addition to positive correlations, our analysis also highlighted significant negative 
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species (Figures 1 and S1). We hypothesize that exposure to PFAS substances elicits 
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distinct tissues, as similarly observed by Glinos and colleagues [74], where the same 
molecules trigger distinct transcriptional changes as demonstrated for drug-metabolizing 
enzymes [75]. Illustratively, the negative values were most prominently observed in fish 

Figure 2. (A) Correlation plot of M. musculus and H. sapiens exposed to the PFOA molecule [38,39,44].
As an example, the greatest correlation achieved between human and mouse contrasts (0.36) is
highlighted by a black box. (B) Scatterplot showing the correlation among the contrasts of mouse and
human highlighted by a black box in the previous plot. The highlighted genes are the most significant
genes driving the correlation between the two species, defined by significant transcriptional change
(p ≤ 0.001) in response to PFAS exposure in both species.

This correlation between the transcriptional signature of H. sapiens [38] and M. musculus [39]
is driven by genes that are differentially expressed (p-value ≤ 0.001) in both species in
response to PFAS exposure, as highlighted in Figure 2B. Among these genes, CYP4A11
is highly up-regulated in both species and encodes an ω-hydroxylase of the CYP450
gene family, which is involved in the metabolism of fatty acids, such as arachidonic
acid. CYP4A11 is highly expressed in the liver and kidney, where it synthetizes the
20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid [70]. 20-HETE has
been shown to have cardiotoxic and vasoconstrictive activity, and its increased synthesis
is associated with vascular inflammation and hypertension [71]. Remarkably, CYP4A11
up-regulation has been associated with non-alcoholic fatty liver disease (NAFLD), since it in-
creases the intracellular production of reactive oxygen species (ROS) and pro-inflammatory
cytokines [72]. Our result is in line with data showing that exposure to PFOA is posi-
tively related to NAFLD development [73]. The other up-regulated genes (Figure 2B) are
mainly implicated in lipid metabolism, mitochondrial function, and stress response, while
down-regulated genes participate in immune response and inflammation, thrombosis, and
cellular adhesion.

Our analysis also revealed a significant positive correlation (0.22, p-value = 7.89 × 10−20)
between the transcriptional signatures of H. sapiens from Rowan-Carroll et al.’s (2021)
dataset [38] and D. rerio from Dasgupta et al.’s (2020) dataset [41]. Notably, this correlation
is driven by the down-regulation of various genes encoding different types of collagen
(Supplementary Figure S3).

In addition to positive correlations, our analysis also highlighted significant negative
correlations, both between distinct species and between different tissues of the same species
(Figures 1 and S1). We hypothesize that exposure to PFAS substances elicits opposite
responses depending on the tissue analyzed, both within and across different species. These
results might be due to histological differences in gene expression among distinct tissues, as
similarly observed by Glinos and colleagues [74], where the same molecules trigger distinct
transcriptional changes as demonstrated for drug-metabolizing enzymes [75]. Illustratively,
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the negative values were most prominently observed in fish species, where different tissues
of distinct species, such as G. morhua (ovary [43]) and P. promelas (blood [49]), and of the
same species, as in the case of M. salmoides (liver and testis [48]), exhibited moderate but
significant negative correlations (Figures 3 and S4). For instance, the negative correlation of
−0.2 between the blood sample of P. promelas exposed to PFOS at 0.5 µg/L and the ovary
of G. morhua exposed to PFOS at low concentration is particularly significant with a p-value
of 6.99 × 10−49.
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For the Atlantic cod (Gadus morhua) dataset, one concentration for each PFAS molecule was selected.
The full analysis including all concentrations and contrasts is displayed in Supplementary Figure S4.

3.3. Generation of a Cross-Species PFAS Responses

Once it was ascertained that exposure to PFAS molecules induces significantly similar
transcriptional changes across different species, our primary objective was to identify
which genes are most responsible for this transcriptional conservation and therefore define
the molecular basis for this observed conservation. In order to overcome the uneven
representation of species in our signature analysis (Table 1), we performed a weighted
Stouffer integration on the signature matrix, giving equal representation to each species in
our dataset. This approach enabled us to pinpoint the genes that were over- and under-
expressed across all species.
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We successfully identified 3435 genes appearing in at least six species of the seven
species included in our dataset (Figure 4). Our analysis highlights genes that are most con-
sistently up- or down-regulated by PFASs in the dataset. Nine genes (EHHADH, RETSAT,
GCLM, ACOX1, HADHB, ARHGAP27, DECR1, HADHA, and POR, depicted in orange in
Figure 4) are characterized by an elevated and positive integrated signature (≥10 Stouffer
integrated Z-score, corresponding to p-value ≤ 1.6 × 10−23), but also by a high (≥10)
signature standard deviation across our dataset; these nine genes are therefore induced
by PFASs in a strong and conserved way, albeit with heavy fluctuations across contrasts
(see also Supplementary Figure S5), which may indicate outlying contrasts. We then high-
lighted 25 genes significantly up-regulated (≥5 Stouffer integrated Z-score, corresponding
to p-value ≤ 5.8 × 10−7) with lower standard deviation (<10), highlighted in red in Figure 4,
and including acetyl-CoA acetyltransferase 1 (ACAT1), an inhibitor of DNA binding 1 (ID1)
and vascular endothelial growth factor A (VEGFA). Among genes consistently repressed
by PFASs, we found eight genes (FN1, MSMO1, TTR, HMGCR, FMO5, NEB, DPYS, and
COL1A2, indicated in cyan in Figure 4) with strong down-regulation across the dataset
(≤ −10 Stouffer integrated Z-score, corresponding to p-value ≤ 1.6 × 10−23) and high stan-
dard deviation. We also highlighted 23 genes down-regulated at a lower standard deviation
(<10) with ≤ −5 Stouffer integrated Z-score, corresponding to p-value ≤ 5.8 × 10−7, which
include the PFAS-repressed oncogene ESR1, encoding for estrogen receptor.
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indeed show a consistent pattern of activation. It is to be noted, however, that for the data 
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Figure 4. Plot showing the integrated response to PFASs across 110 contrasts. Each point represents
a gene. The x-axis indicates the integrated signature value (obtained by integrating signatures
across the dataset using the Stouffer method). The y-axis indicates the standard deviation of the
signature across the dataset. In red and orange, genes with the highest positive integrated signature
(i.e., conserved PFAS-induced up-regulation across species), in blue and cyan, genes with the highest
negative integrated signature (i.e., conserved PFAS-induced down-regulation across species). Genes
in orange or cyan are also characterized by signature standard deviation above 10, indicating heavier
fluctuations across the dataset (see also Figures 5 and S5).
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Figure 5. Line graph indicating the levels of expression of selected genes in response to PFAS
molecules in different species. Each line is one gene: the genes shown here are the most consistently
up- or down-regulated with low standard deviation, as extracted from the red and blue points of
Figure 4. The x-axis reports all the 110 contrasts analyzed in the integrated dataset, grouped by
species. The y-axis reports the signature for each gene, representing the significance (and sign) of the
gene’s transcriptional response to PFASs. The horizontal lines delimit the p-value thresholds of 0.05.

While useful as a summarization technique, signature integration may hide odd
behaviors in the response to PFASs across different contrasts. In order to investigate this
potential issue, we visualized the signature of each of the 48 genes (25 + 23) up- and
down-regulated by PFASs across the 7 species and 110 contrasts (Figure 5). All prioritized
genes indeed show a consistent pattern of activation. It is to be noted, however, that for the
data deriving from two species, the response to PFASs is almost negligible (C. elegans and
P. promelas). Genes with higher standard deviation (cyan and orange dots in Figure 4) also
showed consistent response to PFASs; however, their scores were heavily dominated by
specific contrasts in M. musculus and H. sapiens (Supplementary Figure S5).

The 65 genes prioritized by our analysis were found to be consistently differentially
expressed not only across different species but also across different tissues. A more detailed
analysis of the signatures shows that the strongest impact of PFASs is observed in the liver
and reproductive system of M. musculus, H. sapiens, G. morhua and M. salmoides, together
with a strong response to PFASs in the embryonal development of D. rerio.

A closer analysis of the genes most affected by PFASs across species (Figures 4 and 5)
shows a noticeable prevalence of certain biological pathways, most notably lipid metabolism
(HADHA, HADHB, ACOX1, ACSL5, FABP3, CRAT, PLA2G6), hormone-associated signal
transduction (NDRG1, ESR1, PIK3R1, SQSTM1, TSC22D3), pyrimidine metabolism (DPYS,
CDA), also with a relevant presence of mitochondrial (CRAT, DECR1, GLUD1, HADHA,
HADHB, PDHB) and peroxisomal (ACOX1, CRAT, ECH1) genes. The presence of so many
genes involved in lipid metabolism confirms previous data demonstrating that this metabolic
process is highly affected by PFAS exposure [32–36]. A peculiar finding here is the USP42
gene, which is down-regulated by PFASs across species (Figure 4). USP42 encodes a deubiq-
uitinating enzyme involved in embryonal testis development and spermatogenesis [76], and
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its presence amongst the most consistently down-regulated genes may provide a molecular
link to the previously observed effects of PFASs on the male reproductive system [77].

3.4. Pathway Enrichment Analysis

In order to perform a more rigorous investigation of the molecular and biological
processes most affected by PFASs, we calculated the pathway enrichment contrast of the
signature matrix (Supplementary Table S3) using the GSEA algorithm [78]. We then inte-
grated the normalized enrichment scores (NES) across the datasets to identify the pathways
that were predominantly up- and down-regulated. We identified 3275 pathways significantly
up- and down-regulated by PFASs across species (integrated p-adjusted ≤ 0.05). In Figure 6,
we show the most significantly up- and down-regulated pathways.
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pathway NES. White cells indicate contrasts with insufficient (<5) pathway genes to reliably calculate
GSEA. The bottom bar indicates the species of each contrast in color code. The p-adjusted on the left
side indicates the integrated p-value of pathway enrichment calculated across species.

As inferred in the previous paragraph, lipid metabolism appears to be amongst the
cellular component most up-regulated in response to PFASs (Figure 6), with the “fatty
acid transporters” WikiPathways gene set characterized by a p-adjusted of 1.79 × 10−17

and the Gene Ontology “lipid import to cell” gene set at p-adjusted = 2.80 × 10−12. As
previously mentioned, PFASs have a significant impact on this metabolic process, for ex-
ample through the induction of dyslipidemia, characterized by elevated total cholesterol
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plasma levels [32–37], and NAFLD [73,79], characterized by fat accumulation in the liver
that leads to impaired organ function. It is important to note that children and adolescents
are equally susceptible to the effects of PFAS exposure on lipid metabolism [80], as studies
have reported that this group is at a higher risk of developing nonalcoholic steatohepatitis
(NASH) and NAFLD [81]. A significant body of research has confirmed this effect of PFAS
on lipid metabolism in human [32–36], mouse [37], and zebrafish [82] with comparable
lipid changes observed across species. Strikingly, among the up-regulated pathways, there
are some that relate to the response to gonadotropins (Gene Ontology “Cellular response
to gonadotropin stimulus”, p-adjusted 7.56 × 10−14) and to FSH (follicle-stimulating hor-
mone, represented by Gene Ontology term “Response to FSH” at p-adjusted 7.56 × 10−14).
These hormones stimulate the development and growth of the ovarian follicles, thereby
affecting fertility [83]. Previous data have shown that PFAS molecules directly influence the
secretion of gonadotropin-releasing hormone (GnRH), in turn promoting the expression of
gonadotropins, depending on the dose and period of exposure [84].

The most significant down-regulated pathway is represented by the Gene Ontology
“Tertiary granule” gene set (adjusted p-value = 7.28 × 10−12). Tertiary granules are secretory
granules of neutrophil cells that contain extracellular-matrix-degrading enzymes and are
implicated in the inflammatory response [85]. This result highlights a possible mechanism
for the immunotoxicity deriving from PFAS exposure [23–25].

In summary, the identified pathways underscore the complex and diverse nature of
PFAS toxicity, with significant implications for lipid metabolism, immune response, and
reproductive function.

3.5. Prediction of Affected Metabolites

As the last step of our analysis, we wanted to test the possibilities provided by a
newly developed algorithm to infer metabolite differential abundance from gene expres-
sion data [67], based on correlation data from the largest (in terms of samples) transcrip-
tomics/metabolomics dataset available to date, the human Cancer Cell Line Encyclopedia
dataset [68]. As the method has been developed and tested only on human data, we decided
to test it on all human contrasts, generating a predicted normalized NES in response to
PFASs for 147 metabolites across all human PFAS vs. control comparisons (Supplementary
Table S4). We then proceeded to integrate all the PFAS-related NESs across contrasts, to
provide a human-specific prediction of metabolite response to PFASs. The top 20 most
significantly up- and down-regulated metabolites are displayed in Figure 7.
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Our analysis shows that exposure to different PFAS compounds stimulates the dysreg-
ulation of different types of lipids (triacylglycerols, phosphatidylcholines and lysophos-
phatidylcholines), amino acids, vitamins and coenzymes. Amongst the most up-regulated
lipids, we found triacylglycerol C52:3, which is predicted to have the highest induction via
PFASs (NES = 16.78, p-adjusted = 1.72 × 10−62). Another compound highly up-regulated
by PFASs is oxidized glutathione, with NES = 11.07 (p-adjusted = 6.95 × 10−28).

In contrast, among the top 10 most down-regulated metabolites, we found 3 amino
acids: lysine (NES = −17.21, p-adjusted = 4.11 × 10−65), glutamate (NES = −11.05,
p-adjusted = 6.95 × 10−28) and serine (NES = −9.65, p-adjusted = 1.12 × 10−21).

4. Discussion

Our comprehensive analysis gathered and compared all currently available quantita-
tive transcriptomics datasets on PFAS response in animals. The resulting data collection is
heterogeneous in terms of species, compounds, concentration, time of exposure, organ and
sequencing technology. However, despite this biological diversity, we detected significant
recurring responses both at the gene and pathway levels, indicating a cross-compound,
cross-tissue and cross-species conservation of transcriptional effects induced by PFASs.

The first important result is that there is detectable and significant cross-species
transcriptomics similarity in the response to PFASs (Figures 1 and S1), with higher similarity
between closer species (Figures 2, 3, S1, S2 and S4). However, some transcriptional effects
induced by PFASs are conserved even in species as distantly related as human and zebrafish
(Supplementary Figure S3).

Our investigation then deepened towards specific genes and pathways underlying this
cross-species conservation. For example, our analysis detected a strongly conserved PFAS-
induced up-regulation of lipid metabolism and transport, as well as gonadotropin and
FSH pathways (Figure 6). All these processes are clearly related to ovarian development,
estrogen production, ovulation and the physiological functioning of the female reproductive
system [86], and this deregulation may provide molecular mechanisms to explain PFAS-
related detrimental effects on fertility [26–29,83] and fetal development [87–91].

Another interesting finding is the conserved down-regulation of another component
of ovarian development, the ESR1 gene (Figures 4 and S6). ESR1 encodes for the estrogen
receptor alpha (ER-α), a nuclear receptor that influences the expression of numerous genes
and physiological processes [92]. By interacting with estrogens, mainly with estradiol (E2),
it affects female fertility being essential for ovulation, cellular proliferation and tissue differ-
entiation [92]. Ovary E2/ER-α axis promotes ovulation, and a lower or absent expression
of ER-α is associated with infertility [92,93]. ER-α is expressed even in kisspeptin neurons,
in which the E2-ER-α interaction inhibits the activity of these neurons and the subsequent
synthesis of gonadotropins in the hypothalamic-pituitary axis [94,95]. A lack of ER-α is
also associated with increased synthesis of gonadotropins [96], which in turn determines
the production of estradiol in the ovary [83]. ESR1 down-regulation is associated with the
up-regulation of response to gonadotropins also in polycystic ovary syndrome, leading to
infertility [96]. Previous studies have already shown reduced ESR1 expression and tran-
scriptional regulatory activity in mice and humans [37,97] in response to PFAS exposure,
giving further validation to our data.

There also appear to be effects of PFASs that go beyond the disruption of reproductive
functionality. For example, our data show the up-regulation of the ID1 gene across species
(Figures 4 and 5). ID1 encodes for an inhibitor of DNA-binding proteins, which regulates
the cell cycle and differentiation. The overexpression of ID1 has been linked to various
types of cancer, including leukemia, breast and pancreatic cancer [98,99]. Epidemiologic
data suggest that PFASs are also associated with certain types of cancer, with some ele-
ments suggesting a pro-oncogenic effect [30]. Notably, elevated exposure to PFOA and
PFOS appears to significantly increase the mortality of individuals affected by liver cancer
and malignant neoplasms of lymphatic and hematopoietic tissues [31]. The finding of a
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conserved up-regulation of ID1 may provide molecular support to the involvement of
PFAS molecules in cancer pathogenesis.

Our integrated pipeline also detected a strongly conserved down-regulation of the
tertiary granule pathway (Figure 6), a component of the immune defense against microor-
ganisms enacted by neutrophil cells [85]. Recent independent findings also suggest that
PFASs affect the function of neutrophils, likely inhibiting the formation of the granules
or the degranulation process [100]. More scientific literature supports the fact that PFAS
exposure impairs immune reactions, antibody production and vaccination responses, par-
ticularly in children exposed to PFASs during prenatal and postnatal periods [23–25]. This
immunotoxicity has been observed not only in humans but also in other animals [23–25] and
can increase the incidence and severity of many pathologies, including COVID-19 [101–103].
In addition, PFAS exposure increases the serum concentration of inflammatory and oxida-
tive stress markers, potentially promoting the development of systemic diseases such as
liver injury and cardiovascular diseases, including atherosclerosis and thromboembolic
events [104–106]. The size and width of our collected PFAS transcriptomics dataset provide
the neutrophil tertiary granule mechanism as a strong molecular candidate behind the
observed toxic effect of PFASs on the immune system.

Our analysis shows that the transcription of genes involved in lipid metabolism is
significantly affected by PFAS exposure, not only in humans but also in other species
(Figures 4–6). This is confirmed by previous studies, where PFAS exposure is associ-
ated with chronic dyslipidemia and increasing in lipid serum levels [32–37]. PFASs also
increase the plasma levels of total cholesterol and triglycerides in a dosage-dependent
manner [32–36]. It is worth noting that dyslipidemic changes are more pronounced in
females than males [35,36] and are also observed in mice [37], as confirmed by our data.
The relationship between dyslipidemia and PFASs has also been found in human children
and adolescents [80], where exposure to these chemicals increases the risk of developing
NASH and NAFLD [81] as well as impairing glucose metabolism [107]. Notably, we found
that CYP4A11, previously associated with NAFLD [72,73], is highly up-regulated in both
humans and mice, possibly indicating a causative role in NASH development due to
PFAS exposure. The impact of PFAS on children is a crucial issue, and it seems that these
chemicals can even be transferred through breastfeeding [17,18], which is of great concern.

Overall, our findings on the conserved pathway response to PFASs agree with the
existing literature, especially concerning the disruption of lipid and energy metabolism [2,12].
While this validates our findings, it must be noted that the conservation of pathways and
genes detected by our analysis is based on an animal-only dataset and, while we took
measures to limit the preponderance of data from certain species (human and mouse), the
available data are currently dominated by mammalians and vertebrates, with only one
representative for invertebrates (C. elegans). If the future will provide more data for more
species from different phylogenetic clades, it will certainly provide a more evolutionarily
balanced overview of the conservation of transcriptional response to PFASs.

Using recent developments in gene expression data mining for metabolite level predic-
tions [67], we could further analyze PFAS exposure through the prediction of their effects on
the metabolome (Figure 7). In particular, the finding that PFAS molecules increase the levels
of different kinds of lipids, mainly triacylglycerols as C52:3 TAG (Figure 7), is supported by
studies in humans showing that PFAS exposure enhances the concentration of triglycerides
and cholesterol in the blood [32–36]. Similarly, mice exposed to PFAS exhibit an increase
in cholesterol and triglycerides in the liver [108]. Another PFAS-induced metabolite is
oxidized glutathione, a thiol compound resulting from the reduction of reactive oxygen
species, xenobiotics and drugs; it plays an important role in protection from oxidative stress
and redox homeostasis maintenance, and its high levels are potentially toxic [109]. This
induction is consistent with the previously shown PFAS-induced increase in glutathione
S-transferase in the liver of Atlantic cod [110], whose increased activity is a marker of
oxidative stress, and with reduced levels of reduced glutathione in human liver cells [111].
Our analysis predicted three amino acids amongst the top 10 metabolites down-regulated
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by PFASs: serine, lysine and glutamate (Figure 7). The down-regulation of serine agrees
with the current literature displaying that serine deficiency is associated with an increase in
lipid accumulation in the liver [112], a mechanism that mimics the impact of exposure to
PFASs [12,47,79,108]. Lysine is an essential metabolite for a healthy pregnancy [113], and
its deficiency is known to be detrimental to embryonal development [114], while glutamate
is essential for embryonal neurogenesis [115]. Another metabolite predicted to be strongly
down-regulated by PFAS is pantothenate (NES = −12.25, p-adjusted = 8.63 × 10−34), a
vitamin required for the synthesis of coenzyme-A (CoA), which is in turn essential for fatty
acid and energetic metabolism [116]. Pantothenate deficiency is associated with enhanced
production of reactive oxygen species and oxidative stress [116], emulating the oxidative
stress stimulated by PFAS exposure [117]. In the water flea Daphnia magna, pantothenate
was experimentally shown to be down-regulated by PFAS exposure [118].

5. Conclusions

Our study constitutes the most extensive cross-species and cross-experiment analysis
of transcriptional response to PFASs to date. With our collected dataset encompassing
7 species, 11 datasets, 110 contrasts and 2144 samples, we have demonstrated significant
conservation of differential expression at both gene and pathway levels. Our analysis
leverages the opportunities provided by contemporary transcriptome-wide quantitative
technology and reveals a general disruption of hormonal synthesis and detection mecha-
nisms, indicating that PFASs affect an ancient and conserved metabolic hormonal network,
which has implications for several components of the ecosystem. While our work focused
on commonalities between PFAS compounds, future studies, both computational and
experimental, and fueled by the generation of more transcriptomics datasets, will certainly
provide greater precision on the specific effects of different PFAS compounds (e.g., PFOS
or PFOA) on specific tissues and organisms. This will allow scientists to identify better
strategies for the prevention and/or mitigation of the molecular effects of PFASs. We
also believe that the identification of the most conserved genetic responders to PFASs will
support future research by providing new molecular venues of investigation for PFAS
effects and also novel multi-species biomarkers, fueling the creation of ecosystem-wide
tests for biological PFAS exposure.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxics11070567/s1. Figure S1: correlation plot displaying
the Pearson correlation coefficient between 110 PFAS vs. control contrasts across 11 datasets and
7 species. The color indicates the correlation coefficient, from the most negative (−1, dark blue)
through no correlation (0, white) to the most positive (+1, dark red). The legend indicates the colors
used to depict the eleven datasets. Figure S2: correlation plot showing the Pearson correlation coeffi-
cient between contrasts derived from M. musculus and H. sapiens datasets. The color indicates the
correlation coefficient, from the most negative (−1, dark blue) through no correlation (0, white) to the
most positive (+1, dark red). The legend indicates the colors used to depict the six datasets. Figure S3:
scatter plot showing the positive correlation between two contrasts of D. rerio and H. sapiens. The
highlighted and labeled genes are significantly (p < 0.05) and concordantly differentially expressed
in response to PFAS exposure in both datasets. Figure S4: correlation plot showing the Pearson
correlation coefficient between contrasts derived from fish species. The color indicates the correlation
coefficient, from the most negative (−1, dark blue) through no correlation (0, white) to the most
positive (+1, dark red). The legend indicates the colors used to depict the four datasets. Figure S5: line
graph indicating the levels of expression of selected genes in response to PFAS molecules in different
species, characterized by absolute integrated signature ≥ 10 and standard deviation ≥ 10. Each
line is one gene: the genes shown here are the most consistently up- or down-regulated with high
standard deviation, as extracted from the orange and cyan points of Figure 4. x-axis reports all the
110 contrasts analyzed in the integrated dataset, grouped by species. y-axis reports the signature for
each gene, representing the significance (and sign) of the gene’s transcriptional response to PFAS. The
horizontal lines delimit the p-value thresholds of 0.05. Figure S6. Line graphs showing the differential
expression of selected genes across PFAS exposure: ACAT1 and UGT2A3 in panel A, and RPL35 and
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ESR1 in panel B. y-axis reports the signature for each gene, representing the significance (and sign)
of the gene’s transcriptional response to PFAS, as −log10(p) × sign(log(FC)). The horizontal lines
delimit the p-value thresholds of 0.05. Table S1: number and symbols of differentially expressed genes
(at p-value ≤ 0.05) in all 110 PFAS versus control contrasts of the dataset. Table S2: table depicting
pairwise inter-species orthologous conversions adopted in the current study. Table S3: table showing
all signature values calculated in the combined dataset, where genes are shown as rows, and contrasts
as columns. Abbreviations of each contrast are shown in the “Legend” Table S4: table showing the
normalized enrichment scores for PFAS vs. control contrasts predicted for metabolites across the
dataset. The contrast abbreviations follow the same Legend of Table S3.
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