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Abstract: Rapid growth of the use of wind energy calls for a more careful representation of wind
speed probability distribution, both for identification and estimation purposes. In particular, a key
point of the above identification and estimation aspects is representing the extreme values of wind
speed probability distributions, which are of great interest both for wind energy applications and
structural tower reliability analysis. The paper reviews the most adopted probability distribution
models and estimation methods. In particular, for reasons which are properly discussed, attention
is focused on the evaluation of an opportune “safety index” related to extreme values of wind
speeds or gusts. This topic has gained increasing attention in recent years in both wind energy
generation assessment and also in risk and structural reliability and safety analysis. With regard to
wind energy generation, there is great sensitivity in the relationship between wind speed extreme
upper quantiles and the corresponding wind energy quantiles. Concerning the risk and reliability
analysis of structures, extreme wind speed value characterization is useful for a proper understanding
of the destructive wind forces that may affect structural tower reliability analysis and, consequently,
the proper choice of the cut off wind speed value; therefore, the above two kinds of analyses are
somewhat related to each other. The focus is on the applications of the Bayesian inference technique
for estimating the above safety index due to its effectiveness and usefulness.

Keywords: Bayesian estimation; extreme wind speeds; safety analysis; peak over threshold; wind
turbines; design and construction; structural reliability

1. Introduction

Wind energy is one of the faster-spreading renewable energy sources (RES) that have
been developed as an effective response to growth and global economic development over
decades [1–3]. This has been led by the continuous penetration of renewables, including
wind turbines, in the electrical power system. However, the penetration of renewable
generation in the electrical grid has raised many questions related to the reliability of
the power system and the viability of wind farms [4,5]. This assessment is essential for
investigating the feasibility, energy costs, and economic benefits of wind farm projects,
which justifies the importance of wind speed probability distributions in this process to
reduce the uncertainty of wind energy estimation [6,7].

Wind turbines are designed to operate at optimum wind speeds. Higher winds lead
to cutting off power generation and, in extremes, lead to structural damage to blades
and towers. Thus, wind energy production strongly depends on wind speed probability
distribution. For these reasons, extreme wind distributions provide information on rare
but critical events applied to wind turbines [8,9].

Extreme value (EV) theory provides a parametric description and modeling of extreme
and rare events, i.e., tails in probability distributions. It is usually used in risk assessment,
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management, and prevention. It has a wide range of applications, e.g., structural engi-
neering, finance, earth science, traffic prediction, and geological engineering, including
hydrology and wind extremes estimation. This is an important statistical theory in engi-
neering and applied science [10]. EV theory has also been introduced as a good fit for the
upper quantiles of wind speeds, which have a small sample size compared to lower wind
speeds [4]. It was introduced by Fisher and Tippet [11], then developed by Gumbel [12].
Subsequently, it was progressively and extensively used to estimate wind extreme values
in many research articles [13–17] and review articles [1,6,10,18,19].

Nonparametric models are also used to estimate wind speed extreme values [20]. Peak
Over Threshold (POT) is considered one of the most common nonparametric methods
whereby large individual events can be included. Probabilistic modeling of POT was
introduced in [21–23] and statistically developed in [24–26], whereby the generalized
Pareto distribution is fit to the extreme values of a variable.

Parameter estimators for parametric models have always been a research topic of
high importance [27]. The aim is to estimate a proper safety index in the absence of large
extreme wind data as an alternative to classical statistical analysis [4]. Indeed, extreme
value models depend on the extrapolation of statistical models beyond the main observed
data [28], while Bayesian analysis provides a method to update beliefs about an unknown
quantity of interest based on the occurrence likelihood, which is a function of parameters
of a given statistical model [29]. However, meaningful prior information is necessary to
improve the quality of the Bayesian analysis, as demonstrated in [28,30].

This review aims to investigate the most used models in the literature to estimate wind
speed extreme values, which impact both wind farm design and construction, as well as the
structural reliability [31–33] and reliability of the electrical power delivered to the power
grid. The structure of the paper is as follows. After the present Introduction, in Section 2,
the paper reviews the extreme value theory and the most adopted models of such theory;
both parametric and nonparametric models are investigated in this review. This paves the
way for the subsequent Sections 3 and 4 on Bayes inference methods for extreme wind
speed; for the sake of brevity, such Bayes inference methods are only exemplified in the
POT framework, but the same methodology can be applied to all other previously reviewed
models. Conclusions are drawn in Section 5, and the basics of some useful probability
distributions used in the framework of extreme wind speed estimation are recalled.

2. Extreme Value Theory

Extreme value theory (EVT) has undergone fast development and has become a mature
and significant probabilistic theory [34]. Extreme values are either very small or very large
values in a given set of random variables. Extreme value theory is successfully used in the
most diverse fields, such as structural reliability, biometrics, finance, insurance, and risk
theory, while its appearance in the field of renewable energy, namely to describe extreme
wind speed (EWS) statistics, is relatively recent [1]. Its statistical aspects have recently
undergone considerable development due to the fact that rare events can have catastrophic
consequences [6]. Some examples are earthquakes and other environmental events, such as
floods, precipitation, and other high-risk, low-probability situations [35].

Let us deal with a sequence set of random variables (X1, X2, . . . , Xn), assumed
as statistically independent and identically distributed (IID), and our interest is in their
extremes [27]:

Wn = min(X1, X2 , . . . , Xn . . .)
Zn = max (X1, X2 , . . . , Xn . . .)

(1)

In this paper, being interested in the peak values of wind speed (WS), our interest is
mainly focused on random variables (RVs) such as Zn.

Being related to values that, by their nature, rarely occur, EVT studies modeling
events have a very small probability of occurrence, and this requires adequate statistical
methods for their inference. That is why the adoption of Bayesian methods in this field has
experienced rapid growth, but it is still not so widespread in the field of renewable energy;
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therefore, an account of such methods will also be illustrated in this review paper. For more
traditional or Maximum Likelihood methods, the reader is referred to authoritative books
such as [36].

There are several methods for modeling extreme values depending on how the sam-
pling process is carried out. Sampling schemes in extreme value modeling can be classified
into time-based and event-based approaches. In the case of a time-based sampling scheme,
a series of observations are blocked into fixed intervals over time, and the block maxima (or
minima) are dealt with as extremes, while in the event-based sampling scheme, the obser-
vations are treated as extremes if a threshold is exceeded. The resulting distributions from
these two sampling schemes, if applied properly, are independent of the true underlying
distribution, typically unknown in practice [13].

Once the sampling strategy is made, the attention of EVT is typically focused on
the limiting behavior of the sequence of maximum values of the given set of RV. A brief
reference is made here to Gumbel’s block methodology, while in the next section, the POT
methodology is illustrated [37].

Assuming that a linear normalization of the sequence of maximum values is possible,
Zn, so that a non-degenerate limit is attainable for the sequence (Zn − bn)/an, with an > 0
and bn ∈ R. Then, according to Gnedenko’s theorem, the RV has a cumulative distribu-
tion function (CDF) of the type of the extreme value distribution (EVD), given—for any
x ∈ R—by:

FEV(x) = exp(−exp(−x)) i f d = 0
FEV(x) = exp

(
−(1 + d x)1/d

)
i f d 6= 0

(2)

and d is the so-called extreme value index, a key parameter in EVT. We then say that F—the
common CDF of random variables (X1, X2, . . . XN)—is in the max-domain of attraction of
EVD in (1) [27].

If d < 0, the right tail is “short”, i.e., sup(x: F(x) < 1), the right endpoint of F, is finite.
This class is called the Weibull class and contains, among others, the Uniform and the
Inverse Burr CDFs.

If d > 0, the right tail is “heavy”, of a negative polynomial type, and F has an infinite
right endpoint. Examples in this class (the so-called “Frechet class”) are the Pareto, Burr,
Student’s, and Log-Gamma CDFs. If d = 0, the right tail is of an exponential type, and the
right endpoint can then be either finite or infinite. This class (the so-called “Gumbel class”)
encompasses the Exponential, Normal, Lognormal, Gamma, and classical Weibull CDFs,
with an infinite right endpoint, but also (less frequently) some models with a finite right
endpoint [35].

In most of the many applications of EVT, the EVD in Equation (2) is often rewritten on
the three domains of attractions as follows:

Weibull:
FW(x; d) = exp

(
−(−x)−1/d

)
(d < 0) (3)

Frechet or “Inverse Weibull” (IW):

FIW(x; d) = exp
(
−x−1/d

)
(d > 0) (4)

Gumbel:
FG(x; d) = exp(− exp(−x)) (d = 0) (5)

It is recalled that such models are suitable when the data consist of a set of maxima.
The CDFs of (2) through (4) will be further discussed when appropriate while illustrat-

ing the various EWS models in Section 3.

3. Extreme Value Models

Wind Power Density (WPD) is the available wind power per square meter of the swept
area of a turbine. It has a cubic function with respect to the wind speed:
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WPD =
P
A

=
1
2

ρϑ3 (6)

where ϑ is the wind speed (m/s), ρ is the air density (kg/m3), P is the total power available
at the area swept by the rotor’s blades (W), A is the area swept by the rotor’s blades
(m2). Equation (6) shows that the p-quantiles of the wind speed are transformed into
p-quantiles of the WPD, especially the upper quantiles (e.g., 0.95 or 0.99), which correspond
to high WPD, hence high wind speed. In this case, the small variations in wind speed
may be translated into great variations in WPD. The latter highlights the importance of the
accurate assessment of wind speeds [4]. Many parametric and nonparametric models for
the estimation of extreme wind speeds can be found in the literature, as follows.

(a) parametric extreme value distribution models:

(I) Gumbel distribution (Type I)

First introduced by Emil Gumbel [12]. This distribution is widely used to model
extreme events.

PDF:

f (x, χ, δ) =
1
δ

exp
(
− (x− χ)

δ
− exp

(
− (x− χ)

δ

))
(7)

where x is the random variable (RV), χ is the location parameter, and δ is the scale parameter
(δ > 0).

CDF:

F(x, χ, δ) = exp
(
−exp

(
− (x− χ)

δ

))
(8)

Gumbel distribution fits extreme wind speeds in many studies. In [6], Gumbel dis-
tribution is the best fit for extreme wind speeds at 143 stations in the USA. However, the
infinite upper tail of the Gumbel distribution seems to be physically unrealistic to delineate
the bounded nature of the peak extreme wind speeds [6].

(II) Inverse Weibull distribution (Fréchet distribution Type II)

This distribution was used by Maurice Fréchet in his paper [38] to fit extreme events.
Two-parameter IW distribution with a scale parameter α and a shape parameter β can be
written as follows:

PDF

f (x, α, β) =
β

α

(α

x

)β+1
exp
(
−
(α

x

)β
)

(9)

CDF

F(x, α, β) = 1− exp
(
−
(α

x

)β
)

(10)

While three-parameter IW distribution with an additional location parameter µ can be
written as follows:

PDF

f (x, α, β, µ) =
β

α

(
α

x− µ

)β+1
exp

(
−
(

α

x− µ

)β
)

(11)

CDF

F(x, α, β, µ) = 1− exp

(
−
(

α

x− µ

)β
)

(12)

Sarkar et al. obtained the best fit to extreme wind speeds when Fréchet distribution is
used [39]. Inverse Weibull distribution is used by Chiodo et al. for extreme wind speed
estimation showing a very good fitting [4].

(III) Weibull Distribution (Type III):
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This distribution was first introduced by Weibull to fit extreme events. Two-parameter
Weibull distribution with a scale parameter α and a shape parameter β can be written as
follows:

PDF

f (x, α, β) =
β

α

( x
α

)β−1
exp
(
−
( x

α

)β
)

(13)

CDF

F(x, α, β) = 1− exp
(
−
( x

α

)β
)

(14)

While three-parameter Weibull distribution with an additional location parameter µ
can be written as follows:

PDF

f (x, α, β, µ) =
β

α

(
x− µ

α

)β−1
exp

(
−
(

x− µ

α

)β
)

(15)

CDF

F(x, α, β, µ) = 1− exp

(
−
(

x− µ

α

)β
)

(16)

Two-parameter Weibull distribution is widely used in various fields, including the
estimation of wind speeds [40]. On the other hand, three-parameter Weibull distribution
showed a high accuracy in estimating low or null wind speeds since the location parameter
shifts the Weibull peak horizontally, which helps to model low wind speeds [41,42]. For
instance, many studies are found in the literature that used two-parameter Weibull distri-
bution to estimate wind energy and characterize wind speed [40,43,44]. However, Weibull
distribution is not applicable for extreme values of wind speed that have little influence
on the parameters of Weibull distribution. Therefore, beyond a certain threshold, other
extreme values distributions must be used [13]. Perrin et al. also showed that the Weibull
distribution generates an incorrect estimation of the tails of the distribution; additionally,
confidence bounds are not provided in this case [13].

(IV) The generalized extreme value distribution

The latter three distributions can be combined in one generalized extreme value (GEV)
distribution which is widely used in the case of extreme events [45]. The CDF of the
generalized value distribution is described as follows:

F(x, α, β, µ) = exp

(
−
(

1 + β

(
x− µ

α

)−1/β
))

(17)

where α > 0 while the tail-length or shape parameter (β) and the location parameter (µ) are
real values. The GEV distribution is versatile, whereby α has a significant impact on the
skewness and the kurtosis [46].

The GEV distribution is a heavy right tail distribution compared to the Weibull distri-
bution [47]. The latter allows estimating extreme wind values above a certain threshold
with higher accuracy. However, the estimation of the threshold of extreme wind speeds
is challenging [48]. In [49], the GEV model is truncated to zero at the left tail to avoid
predicting negative wind speeds [49]. Pinheiro et al. revealed that GEV distribution is
more flexible in fitting extreme wind speeds using Monte Carlo simulations and data sets
of wind speeds in Florida, USA [46].

(V) The generalized Pareto distribution

The generalized Pareto distribution (GPD) is also used in the application of extreme
wind speed estimation. Holmes et al. found that GPD makes use of all relevant data on
extreme wind speeds, not only the annual maxima [50]. Brabson et al. compared GPD to
GEV and found that GPD reduces the uncertainty in the quantile variances. However, the
choice of the threshold becomes more challenging [51].
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PDF:

f (x, α, β) =
1
α

(
1− x− µ

α

) 1−β
β

(18)

CDF

F(x, α, β) = 1−
(

1− β

α
(x− µ)

) 1
β

(19)

where β > 0 when µ < x < µ + α/β and β ≤ 0 when x > µ.

(VI) Gamma Distribution

Gamma distribution is one of the most used distributions in extreme wind speed
modeling. It is used to overcome the constraint at both tails in the Weibull distribution.

PDF:

f (x, α, β) =
αβ

Γ(β)
xβ−1exp(−αx) (20)

where α is the scale parameter and β is the shape parameter.
The main disadvantage of Gamma distribution is that it, as inferred from Section 2 on

extreme value theory, does not process the theoretical properties which make it suitable to
represent extreme values (properties which are instead possessed by the Gumbel, Inverse
Weibull, and other models here illustrated). Therefore, extreme wind speed estimation
using Gamma distribution is challenging compared to other methods [52]. Kiss et al. found
that Gamma distribution provides an adequate and unified description of a wide range of
wind speeds of the ERA-40 database covering 44 years in Europe [42].

(VII) Mixed Distributions:

In some wind climates, it has been found that extremes are drawn from two or more
distributions, making it necessary to consider mixed probability distributions. Mixed
distributions are of two types: the first includes two distributions having the same type but
with different parameters, while the second type includes two different types of extreme
values distributions. According to Raynal et al., the mixed distributions might be formed
as follows [53]:

F(x) = p F1(x) + (1− p) F2(x) (21)

where x is the RV, F1(x), F2(x) the two mixed distributions with their parameters, p is the
association parameter 0 < p < 1. Mixed General Extreme Value (MGEV) distributions
include two GEV distributions F1(x) and F2(x) and can be formed in a similar way as
MGED [54]. Similarly, Escalante et al. applied the Mixed Reverse Weibull (MRW) distribu-
tion [55]. Mixed Gumbel-Reverse Weibull Distribution (G-RW) and Mixed Gumbel-General
Extreme Values Distribution are also discussed in [56]. Rossi et al. used two-component
Extreme Value Distribution [57]. However, it is still challenging to choose the type and the
number of the different distributions to be mixed, as the fitting is significantly affected by
the types of the mixed distributions [58,59], not to mention the complexity of the parameters
estimation process of the mixed distributions, which might lead to overparameterization [1].
Multi-parameter probability distributions, whereby more than three parameters are in-
cluded, have been used to pursue higher fitting accuracy, such as Burr distribution, Johnson
SB distribution, Kappa distribution, and five-parameter Wakeby distribution [1]. The Com-
pound Inverse Rayleigh (CIR) distribution is used by Chiodo et al. in [60] and compared
with two other distributions having the same median, i.e., the Inverse Rayleigh and the
exponential distributions. The results showed that CIR has an 18% greater 0.95-quantile
compared to the Rayleigh distribution. This model showed high efficiency in extreme wind
speed estimation [60].

(b) Nonparametric Distribution Models:
In nonparametric models, no specific assumptions on the data distribution are made a

priori. In this case, there is no bias linked to specific models, and there are no parameters to
estimate. The performance of nonparametric models is better and more robust than that
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of the parametric models, as it is challenging to find a qualified parametric distribution
that describes the actual wind speeds [1]. The Kernel Density Estimator shows a higher
fitting accuracy of wind speeds in [61]. The Maximum Entropy Principle has also been
used in [8,62] for low wind speeds and power density estimation, demonstrating more
accuracy than parametric distributions. Furthermore, the Maximum Entropy Principle is
also used for extreme values estimation in [63].

(c) Peak Over Threshold (POT)
A different approach to the probabilistic modeling of wind speed extreme values is

the stochastic evaluation, which gives origin to the so-called “peak over threshold” (POT)
approach [19,64]. Such a dynamic approach is adopted, in particular, in the framework
of assessing adequate tower safety margins. Towers are constructed to endure for their
operational lifetime, which may last many years. In this case, the designers need to estimate
the extreme values of wind speed (WS), i.e., the maximum wind gust amplitude over a
prefixed time. Hereinafter, wind gust amplitude over a given time will be simply denoted
by “gust”. Let us also denote the stochastic process of WS values over time by S = S(t), and
let z be the threshold that is a sufficiently high value of WS in such a way that every value
of WS higher than z can be considered a gust [65,66]. This value is related to the tower
structure and is typically utilized to define the cut-off value of the WS [67,68]. Then, let
Cz(t) represent the stochastic counting process of the WS values crossing the threshold z,
resulting in the number of peaks over threshold. Introducing mild assumptions, such as
that the mean duration of each gust τk is much smaller than the mean time between the
successive crossings uk, in addition to the assumption that the barrier level is high enough,
the Cz(t) process can be described, as deduced in the extremal processes books [69], by the
well-known Poisson probability law p(k,t) expressing the probability that Cz(t) attains a
given integer value k; such probability law is given by:

P(h, t) ≡ P[Cz(t) = h] = e−λt · (λt)h

h!
= 0, 1, . . . , ∞ (22)

In (22) λ is the mean number of threshold crossings in unit time. The mean (or expected
value) and variance of the process Cz(t) are numerically equal and given by:

E[Cz(t)] = Var[Cz(t)] = λt (23)

Focusing on the amplitude of gust at Tk, which is a random variable, denoted by Gk.
A safety index to characterize the extreme values C = Cz(t) is the maximum gust amplitude
over a given time. Furthermore, it is an obvious index of the damage to the system caused
by the gusts. The latter can be satisfied by associating to the stochastic process Cz(t) and to
the random variables Gk (k = 1, 2, . . . , C(t)), the following stochastic process [70,71]:

M(t) = max[G1, G2, . . . , GC], if C(t) ≥ 0

M(t) = 0, otherwise.
(24)

where (as in the following): C(t) = Cz(t). Let Q(t) be the CDF of M(t) at time t:

Q(t, m) = P[ M(t) < m ] (25)

By assigning a safety level, m*, the following Unsafety Index (UI), U(t)— which is
also a stochastic process—can be consequently defined:

U(t) = 1−Q(t, m*) (26)

Indeed, being Q(t,m*) = P[M(t) < m*], the probability that m* is never exceeded over the
time horizon (0,t), then U(t) is easily shown to express the probability that m* is exceeded
at least once over (0,t), which justifies its name as “Unsafety index”.
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In order to express the above UI in a more compact form, let us notice that for each
value c of C(t)—the relationship becomes:

[max[G1, G2, . . . , Gc] < m∗]
i f and only i f : [(G1 < m∗) ∩ . . . ∩ ( GC < m∗)]

(27)

We assume that the RV Gk are statistically independent and identically distributed
with the common, time-independent, cumulative distribution function ϕ(x):

ϕ(x) = P(Gk ≤ x), ∀ k = 1, 2, . . . . . . n (28)

After trivial manipulations [72], one can obtain the following equation for the function
Q(t,m*) under the Poisson hypothesis for Cz(t):

Q(t, m∗) = exp[−λt(1− ϕ(m∗))] (29)

In the paper, for the sake of estimation, for reasons to be explicit in the following, no
explicit formulation will be adopted to model the parent distribution G(z). The UI is an
Exponential complementary CDF, as shown in the following equation:

U(t) = 1− exp(−λtw) (30)

having defined:
λ = λz = mean gust frequency (i.e., expected number of gust occurrences per unit

time);
w = w (m*) = 1 − ϕ(m*) = P(Gj > m*) = exceedance probability (EP) of the value m* by

any single RV Gj.
It has to be highlighted that the EP depends neither on the index j nor on time. The

function w = w(m∗), i.e., the EP—which is related to the gust CDF—may, of course, assume
various equations. As will be discussed in the sequel, a Bayesian approach appears to be
particularly adequate to develop inference for such a model, as shown in Section 4.

4. On Bayes Inference Methods for Extreme Wind Speed (EWS) and Related Safety
Indices Distribution
4.1. Introduction

The classical, and by far the most adopted, procedure for the estimation of the EWS
statistics is usually based on the likelihood function (LF). However, this procedure is known
to be efficient only for a suitably large amount of data. While this aspect is often not a
serious drawback for the most general WS statistical analysis, it may become so for very
extreme wind speed values, which rarely occur [73].

Moreover, it is a desirable and time-saving requirement that a rapid decision on the
installation of a wind farm can be accomplished even in the presence of a limited amount
of data [37]. Furthermore, on more theoretical grounds, the classical procedure does not
provide the accuracy of the estimated parameters. In the Bayesian approach, the unknown
parameters are considered random variables or uncertain quantities characterized by their
probability distributions, and a priori (or prior) information is used to describe the a priori
distribution of the parameters. The Bayes theorem supplies the parameters’ distribution
conditioned to the observed data [74–77].

Bayesian inference is an efficient tool for utilizing experimental field data (data that
constitute the only source of knowledge referred to in classical statistical inference) and prior
knowledge (which in an engineering environment are always available). By integrating
such sources, it is possible to derive an effective estimation procedure and to include
available information when there is a possible lack of available data [78]. The present
section is particularly devoted to Bayesian inference applications to the (un) safety index’s
estimation in the framework of the POT methodology, which is more complex, being related



Energies 2023, 16, 5456 9 of 20

to stochastic process theory, than the inference on standard EV Distribution of WS. This latter
topic may be deduced from classical books or papers on Bayesian inference [29,65,78–83].

So, the Bayesian estimation method here is focused on the UI in the POT approach.
As previously illustrated, the expression of UI, with respect to the time interval (0,t), is
given by:

U = U(t) = 1− exp(−λtw) (31)

The dependence on t, the time horizon under study, is often omitted since it is a
fixed parameter. Moreover, the complementary function S = S(t) = 1 − U (S is obviously
denoted “Safety Index”, SI) is often used as an alternative of U. In addition, since t is a
fixed parameter, let it be denoted by τ in the following, so that the following uncertain
parameter U is the one to be estimated:

U = U(τ) = 1− exp(−λτw) (32)

So that the SI and the UI, referred to as the interval (0,τ), are expressed as

S = exp(−λw); U = 1− S (33)

In the two following sub-sections, the nonparametric (Section 4.2) and the parametric
approach (Section 4.3) to the above POT methodology are illustrated. Typical numerical
results obtained by the above Bayes approach are only hinted at in this section, referring to
the above papers [4,27,37,60] for numerical details.

Here, it is deemed opportune to give only a brief account of classical statistical es-
timation of the SI parameters, i.e., λ and w (here, lowercase letters are adopted for such
parameters since, in classical statistics, they are regarded as unknown deterministic con-
stants, and not RV as in Bayesian statistics). It is well known that, denoting by ξ ′ the
Maximum Likelihood (ML) estimate of a generic parameter ξ:

- The ML estimate of λ is given on the basis of an available random sample of the time
between gusts: (Tk: k = 1, . . . , n), by:

λ′ = n/
n

∑
j=1

Tj (34)

- The ML estimate of the EP, w, once observed the data:
N = number of gusts in the given interval (0, τ) and:
M = number of exceedances in the same interval,

is simply given by:
w′ = M/N (35)

Such two estimators are consistent, and w’ is also unbiased for w. Of course, given the
invariance of ML estimates, the ML estimate for the SI, S’, is given, in view of (33), by:

S′ = exp
[
−w′λ′

]
(36)

Of course, the merits of the Bayesian estimation method to be illustrated in the next
sub-sections are to be compared with those of such ML estimates for the SI in order to
appreciate their efficiency [37].

4.2. A Bayesian Estimation Method in the Nonparametric Approach

The Bayesian estimation procedure is herein applied for the SI or the UI without
assuming a particular parametric form for the CDF F [77,84]. In the paper [37], a Beta
prior PDF is assigned directly to w in the case in which some prior information is given on
λ(m*): in other words, here, no functional form is assumed for λ, but some prior knowledge
exists on the probability that the WS value m* is surpassed. For the estimation, the “input
data” is a joint prior PDF, denoted as g(w, λ), for the parameters of interest w and λ. It is
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well known that in the Bayesian methodology, the parameters w and λ to be estimated are
considered as RV [35]. Accordingly, they are provided with a PDF which can be integrated
and updated with field data, herein denoted by D, by the reported Bayes’ theorem:

g(w, λ|D) =
g(w, λ)L(D|w, λ)

C
(37)

where L(D|w, λ) represents the Likelihood of the data D conditional to the parameters
(w, λ), that is the PDF or—for discrete observations as the considered case—the “probability
mass” functions; C represents a constant (with respect to the parameter values) given by:

C =
∫ +∞

o

∫ +∞

o
g(w, λ)L(D|w, λ)dwdλ (38)

The best Bayes estimator depends on the choice of the so-called “Loss Function”. By
far, the most adopted Loss Function is the “Square Error Loss Function” (SELF), by which
the best estimator is the one that minimizes the mean square error. The best SELF Bayes
estimator—of a given function ξ = ξ(w, λ)—i.e., the one which minimizes the SELF is
provided by the posterior mean:

ξ◦ = E[ξ|D] =
∫ +∞

o

∫ +∞

o
ξ(w, λ)g(w, λ|D)dwdλ (39)

where ξ◦ is a Bayes estimate of the generic parameter ξ.
For the examined case, we are estimating UI, so that, for a time t, one can write:

U◦= E[U|D] =
∫ +∞

o

∫ +∞

o
(1− exp(−wλ))g(w, λ|D)dwdλ (40)

The Bayes inference discussed in [27] expresses the “conjugate” priors for the RV w
and λ, i.e., the Beta prior PDF (Appendix A) for w and the Gamma prior PDF (Appendix B)
for λ. The two random variables are considered to meet the assumptions of statistical
independence.

In the following, the suffix “0” is used to denote the prior PDF parameters, and the
suffix “1” to denote the posterior PDF parameters. Accordingly, the prior joint PDF g(w, λ)
is expressed by:

g(w, λ) = betapd f (w; r0, s0) · gampd f (λ; n0, δ0) (41)

The values of the parameters (r0, s0, n0, δ0), are deduced from prior information, i.e.,
test plant or experts’ judgments. Data collection is provided by measuring the number
of gusts N(τ), in the time interval (0,τ), and the number of gusts M that exceed the fixed
value m*. When the time interval τ has been fixed, the number of gusts n = N(τ) becomes a
constant, and the RV M becomes a Binomial RV that represents the number of exceedances
in n independent proofs (see Appendix D) [85].

The suitable combination of the prior PDF and the likelihood function, in accordance
with Bayes’ formula, allows verification of the posterior PDF of w and λ are again Beta and
Gamma, respectively, with updated values of the parameters as a function of the measured
values n and m, which represent sufficient statistics for the problem [86]. In this regard, the
following relation is expressed (see Appendix D):

g(w, λ|D) = betapd f (w; r1, s1) · gampd f (λ; n1, δ1) (42)

where:
r1 = r0 + m (43)

s1 = s0 + n−m; (44)
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n1 = n0 + n (45)

δ1 = δ0/(1 + τδ0) (46)

The expression above entails the posterior conditional independence of w and λ, once
the data D are assigned. Moreover, in case the following relation holds among the prior
parameters:

n0 = r0 + s0 (47)

then, the PDF is expressed in a straightforward manner. In such case, the product w λ has
Gamma distribution with parameters (r0, δ0) according to the properties of the Beta and
Gamma distribution [81]. As a consequence, the expression:

V = wλ (48)

is still Gamma distributed with parameters (r0, δ0). Therefore, given that the SI is
expressed by:

S(t) = exp(−wλ) = exp(−V) (49)

the following relation can be inferred:

V = −lnS (50)

Which means that since W has a Gamma PDF, the SI S has a Negative Log Gamma
PDF (Appendix C). Consequently, the prior PDF for S is:

g(s) = nlgampd f (s; no, δ0) (51)

i.e., the prior PDF p(s) is:

g(s) =
1

Γ(r0)δ
r0
0

s(
1

δ0
−1)

(−logs)r0−1, 0 ≤ s ≤ 1 (52)

S is an RV that falls in the range (0,1), as in accordance with the relation (49). In
a similar way used to update the prior PDF g(w, λ) into the posterior PDF g(w, λ|D) ,
by recalling the relationship between (w, λ) and the SI, one obtains, for the Safety Index
SI = Q(t), the following posterior PDF, for the assumed data collection D:

g(s|D) = nlgpd f (s; r1, δ1) (53)

where r1, δ1 are given in (43) and (46), respectively. The procedure allows determining the
Bayes estimate of SI according to the properties of the Negative Log Gamma function:

S0 = E[S|D] =
1

(1 + δ1)
r1

(54)

When the relation (47) is not satisfied, numerical algorithms such as those discussed
in [60] can be assumed. It is useful to note that both the posterior PDF g(s|D) and S◦ are
dependent on time horizon τ, since the SI is a function of τ. As clear from the previous rela-
tions, this dependency is represented by δ1. For the sake of finding evidence of the efficiency
of the Bayesian estimator in addition to the illustration of its performances, numerical
experiments have been carried out using Monte Carlo simulation in [60], particularly
focusing on:

1. Evaluating the Mean Square Error of the Bayes estimator;
2. Comparing Bayesian estimates with the classical ones, particularly with the most used

Maximum Likelihood (ML) estimates.
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Various sample sizes and input data were considered. SI data were produced from the
assumed prior PDF on (w, λ), while:

- Data of the observed number of gusts in a given time interval τ were produced using
a Poisson process of mean frequency λ (which is randomly produced from the prior
PDF) in the interval (0, τ);

- Data of the observed exceedance number m were produced by a Binomial RV with
parameters (n, w), being also w randomly produced using the prior PDF.

As an example taken from [60], the prior data, supposed to be deduced from past
observations in this field and relevant to an extreme WS value m* = 20 m/s, are chosen in
the following way:

- λ has a Gamma PDF with µ = 11.0 and σ = 0.22 (year−1);
- w has a Beta PDF with µ = 0.02 and σ = 0.0275 (w is a unitless parameter, being a

probability).

The choice of the two parameters (n0, δ0) of the prior Gamma PDF, and those (r0, s0)
of the prior Beta PDF are easily obtained by inverting the relations (see Appendices A–F)
between the mean and variance of such priors and the relevant parameters.

For each sample size n, a number of N = 104 replications has been performed in which
the above RV λ and w were generated according to the above PDF, and the Bayes estimate
of S was deduced. In particular, the results for small (n = 1, n = 2, n = 5) or moderate (n = 15,
n = 20, n = 40) sample sizes are reported in the paper in terms of the classical indices [60]:

MSEB: Mean Square Error of the Bayes estimator;
MSEL: Mean Square Error of the ML estimator;
REFF = MSEL/MSEB.
The “REFF” index represents the relative efficiency of the Bayes estimator with respect

to the ML estimator. The Mean Square Errors have been obtained at the end of each
simulation as the averages over the N sampled estimator’s square errors. The numerical
results show that the efficiency of the Bayesian estimation increases when the amount of
data is small. Moreover, the Bayesian estimation performs much better than the classic one,
as shown in the REFF values, when enough data are used.

4.3. A Bayesian Estimation Method in the Parametric Approach

It is recalled that the following Unsafety index (UI), U(τ,m*)—which is a stochastic
process—has been deduced in the POT framework:

U = U(τ, m∗) = 1− e−λτ[1−ϕ(m∗)] (55)

U(τ) expresses the probability that a limit value m* is exceeded at least once over (0,τ)
by part of the EWS process.

In the parametric approach, a parametric form is assumed on the CDF ϕ(x). Here, the
illustration of a Bayes methodology reported in [60] and also some results, is performed
with reference to an Inverse Rayleigh Distribution (IRD) for the above CDF and PDF
reported respectively in (56) and (57):

f (x|a) = 2ax−3e−(
α

x2 ), x > 0 (56)

ϕ(z|a) = e−(
α
z2 ) (57)

In which a is the scale parameter and z is a generic WS value in which the CDF
and the PDF are evaluated. The IRD has been demonstrated to constitute a valid model
to fit EWS values [60] but is here adopted only to show the feasibility of the proposed
Bayesian estimation method. In Figure 1, as one single (for the sake of brevity) indicative
but not exhaustive example, three typical IRD PDF (Figure 1a) and CDF (Figure 1b) curves
corresponding to the analytical expressions of (56) and (57) are shown, characterized by
three different values of the parameter α (50, 100, and 200); it is easily shown [60] that such
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values of α correspond to the following median values (50th percentile) of the WS RV: 8.5,
12, and 17 m/s, respectively.
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Figure 1. Various inverse Rayleigh PDFs (a) and cumulative distribution functions (CDFs) (b) with
three different values of the parameter α.

For the sake of numerical example, Table 1 lists values of the UI that correspond to
various values (ϕ, α), in correspondence of a time horizon of 1 year and a WS threshold
value of 26 m/s. Only a few hints of the classical ML estimation method of the IRD
distribution are illustrated with additional discussion on the identification of the model.
The MLE ϕ′ of the Poisson frequency ϕ was already discussed in a previous section. Then,
consider the MLE of the CDF ϕ (z), which appears in (56) for an IRD model. First, let us
consider the MLE of parameter α of the IRD based on a given sample (X1, X2, . . . XN) of
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observed WS values. By assigning a zero value to the partial derivative of the likelihood
function, the MLE of this parameter is obtained as follows:

α′ =
N

∑N
i=1 x−2

k

(58)

Table 1. Some values of the UI corresponding to nine couples of values (ϕ, α), t = 1 year, and
m* = 26 m/s.

φ (Year−1)
α (m2/s2)

50 100 200

2 0.133 0.240 0.401
4 0.248 0.423 0.641
8 0.435 0.667 0.871

Then, as the MLE is not variant, the MLE of the CDF ϕ(z) that appears in (57) is given

by e−(
α∗
x2 ), so that the ML of the UI is expressed by:

U′ = 1− e−λ′t[1−e
−( α′

m∗2
)
] (59)

Then, let us illustrate a possible Bayes Inference Method proposed in [27] for the
UI, which depends on the IRD Model. The model implies, apart from the use of the
already illustrated Gamma prior PDF for the parameter ϕ, estimating the parameter α in
the expression of the IRD CDF. In this case, two methods were investigated in [27] to set
appropriate prior distributions:

(1) Gamma prior conjugate distribution on α (see Appendix F);
(2) Negative Exponential Beta distribution (NEB) (not conjugate distribution) on α (see

Appendix E). Its advantage is that it implies a Beta distribution on the already in-
troduced parameter w, so showing such similarity with the previous nonparametric
approach.

First, the Gamma prior distribution is discussed here, although briefly (since it is
already reported in the literature on the IRD model). The RV S = 1− e−(

a
z2 ) has a prior PDF

which can be easily assessed in terms of the Negative Log-Gamma (NLG) PDF (Appendix C).
Indeed, since the RV α has a gamma PDF with parameters (ν0, δ0), it can be verified that
also the RV

β =
α

m∗2
(60)

has a prior gamma PDF, with parameters ν and δ expressed by ν = ν0 and δ = δ0/m*2.
Thus, defining the NLG model (Appendix C), U = 1 − S = e−β has an NLG prior PDF,

hereinafter denoted by g(u):

g(u) =
1

Γ(ν)δν
u( 1

δ−1)(−logu)ν−1, 0 ≤ u ≤ 1 (61)

It is worth mentioning that the CDF and other parameters (e.g., quantiles and mo-
ments) are also RV, described by appropriate distributions. In [27], it is deduced that prior
information available in terms of quantiles (e.g., the median value or 0.50-quantile) can be
transformed into prior information on the RV α.

Furthermore, the peculiar method suggested here is that S, an RV that falls in the
range (0,1), is assumed to be a Beta RV, implying a Negative Exponential Beta (NEB) PDF
of the parameter α, as can be seen from Appendix F, since

α = [−log(ϕ)]z2 (62)
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Assuming an NEB prior PDF for α implies that the IRD CDF, i.e., the negative exponen-
tial function of α in (57), has a Beta distribution. The advantages of the latter assumption
have been discussed in the previous section. In this case, the Bayes Method of Inference re-
quires numerical methods which are, as might be expected, very similar to those illustrated
in the nonparametric approach [87]. Also, in the parametric approach described here, the
numerical evidence of the efficiency of the Bayesian estimators has been proved in [27]
by means of large sets of numerical experiments, by means of Monte Carlo simulation
in [4], using both Gamma and NEB priors distribution on α. They were conducted for
various sample sizes and various input data values. Also, in this case, the results were
very satisfactory. In summary, the relative efficiency with respect to the ML estimate—as
measured by REFF—is always greater than 1; in particular, as typically happens [88], it is
much greater for samples with small sizes, whereby the performance of the ML estimates
is definitively better using the Bayes ones.

5. Conclusions

The present review illustrates the modeling and the estimation of the extreme wind
speed (EWS), especially related to safety and structural problems, safety being defined as
the probability that EWS is lower than a prefixed extreme value which might be dangerous
for windfarm structures. The aim is to evaluate both the wind power production and the
structural safety of the installations. This is clearly a basic topic to be addressed both in
the planning and in the operation stage of a wind farm and has been tackled here using
the so-called risk index. Such risk index is deemed to be an important tool in helping
a decision-making procedure for assessing if a wind farm is worth being installed and
whether its operation will be safe or reliable enough in time. Many parametric extreme
wind speeds models have been investigated, including the Weibull, Inverse Weibull, Gener-
alized Extreme Value distribution, and more. Moreover, some hints have been devoted to
nonparametric models, and some details on the POT methodology have been illustrated
in the framework of stochastic process theory. Subsequently, a detailed review has been
presented of the Bayesian methods of wind speed estimation using both the parametric and
nonparametric models in the framework of the POT methodology. The Bayesian method
showed an efficient estimation even when a large dataset was not available, as required by
the classical method. The Bayesian method showed robust estimation with respect to the
prior hypotheses of the PDF. The latter method does not require the estimation of many
parameters as the more traditionally adopted “Generalized Extreme Value” distribution,
but only two parameters.
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Appendix A. The Beta Distribution

Let Y be an RV assuming values in the (0,1) interval. It is said to possess a Beta
Distribution if its PDF, with argument x, with positive parameters (r,s) expressed by:

f (y; r, r) = betapd f (y; rs) =

{
Γ(r + s) yr−1(1−y)s−1

Γ(r)Γ(s) , 0 < y < 1
0 elsewhere
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The mean value and variance of the Beta PDF are given by:

µB =
r

r + s
σ2

B = µ2
B

{
s

r(r + s + 1)

}
Appendix B. The Gamma Distribution

The Gamma PDF with positive parameters v and δ (shape and scale parameter, respec-
tively) is expressed by:

f (x) =
1

δνΓ(ν)
xν−1exp

(
− x

δ

)
where Γ(ν) is the “Euler-Gamma” Function evaluated at ν. The mean value and variance of
the distribution are:

E[X] = νδ Var[X] = νδ2

Appendix C. The Negative Log-Gamma (NLG) Distribution

Let X be a Gamma RV with parameters v and δ (as in Appendix B). If Y = exp(−Y),
then Y is said to possess a Negative-Log Gamma (NLG) distribution, so that the PDF of
this NLG RV is:

f (y) =
1

δνΓ(ν)
y[(

1
δ )−1](−logy)ν−1, 0 ≤ y ≤ 1

with v and δ being the above Gamma PDF parameters.
The NLG mean value and variance, and are, respectively, equal to the following:

µNLG =
1

(1 + δ)ν ; σ2
NLG =

1
(1 + 2δ)ν −

1

(1 + δ)2ν

The kth moment of the NLGD PDF is as follows:

µk = E
[
Yk
]
=

1
(1 + kδ)ν

Appendix D

Assuming that the sampling plan (which produces the observed data from system
operation) consists of the number N(τ) of gusts during a given observation time τ, and
the number M of WS, which exceeds the limit value m*. N(τ) is a Poisson RV with mean
φτ, and—for the assumed independence of the RV, M is—conditional to the observed
number, say n, of Gust Amplitude—a Binomial RV with pr. of “success” (exceedance) w in
n independent proofs.

So the Likelihood Function of the data D, once observed n gusts and m exceedances,
is given by:

L(D|Q, ϕ) = P [(N(τ) = n) ∩ (M = m)] = P[(N(τ) = n)]P(M = m)|N(τ)= n)]

with:

P[N(τ) = n] =exp(−ϕτ) · (ϕτ)n

n!
n = 0, 1, . . . . . . . . . , ∞

P[(M = m)|(N(τ) = n) =
(

n
m

)
wm(1− w)n−r, m ∈ {0, 1, . . . . . . , n}

The above relations are justified by the Poisson hypothesis for the number of gusts,
and the Binomial distribution with parameters (w,m) for the number of exceedances, w
being the probability of a single exceedance.
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Appendix E. The Gamma as a Prior Conjugate Distribution for the IRD Model

Let (x1, x2, . . . , xn) be a random sample generated by an IRD with parameter α. Then,
each PDF related to the generic value xj has the following expression:

f
(

xj
∣∣α) = 2αxj

−3e
−( α

xj
2 )

, xj > 0

Let the prior PDF on α be a gamma PDF with parameters ν0 and δ0:

p(α; ν0, δ0) =
aν0−1

δ0ν0 Γ(ν0)
e−(

a
δ0
)

The likelihood function of the sample, i.e., of the data D = x, is as follows:

L(D|α) =
n

∏
j=1

f j
(
xj
)
=

(2α)n

∏n
j=1 x3

j
e
(−α ∑n

j=1
1

x2
j
)

Therefore, denoting by Π and Σ, the following statistics (functions of the data D)

Π =
n

∏
j=1

x3
j , Σ =

n

∑
j=1

1
x2

j

and denoting by K, an opportune constant, the posterior PDF of α is expressed by the
following equation:

q(α|D) =
K2nαν0+n−1

Γ(ν0)Π
e−α( 1

δ0
+Σ)

Comparing the latter with the expression of a gamma PDF, it is apparent that also the
posterior PDF is a gamma PDF:

q(α|D) = gammapdf(α; ν1, δ1)

with updated parameters: {
ν1 = ν0 + n (Shape parameter)
δ1 = δ0

1+δ0Σ (Scale parameter)

Appendix F. The Negative Exponential Beta (NEB) Distributions

As already reported, an RV Y—assuming values in (0,1)—has a Beta distribution if its
PDF is expressible as follows:

f (y; p, q) = betapd f (y; p, q) =

{
Γ(p + q) yp−1(1−y)q−1

Γ(p)Γ(q) , 0 < y < 1
0 elsewhere

where p and q are positive shape parameters. In particular, if p = q = 1, a uniform distribution
over (0,1) is obtained. The mean value and the variance of the beta distribution are given
by the following:

µ =
p

p + q
; σ2 = µ2 q

p(p + q + 1)

It can be noticed that if Y is a beta (p,q) RV, then the following “complementary beta”
RV X = 1 − Y is a beta (q,p) RV. Let Y be a beta(a,b) RV. The PDF of the transformed
RV X = −log(Y), here denoted as a Negative Exponential Beta (NEB) PDF, by well-known
rules of RV transformations, is as follows:

gk(x) = negebpd f (x; a, b) =
Γ(a + b)
Γ(a)Γ(b)

e−ax(1− e−x)(b−1), 0 < x < ∞
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For another perspective, the RV Y = e−X has a beta(a,b) distribution if and only its
inverse function X =−log(Y) has an NEB (a,b) PDF. The evaluation of the mean and variance
of this model is not easy; however, since X = −log(R) is a decreasing function of Y, one can
calculate the p-quantile of X, Xp, using the q-quantile of Y, where q = 1 − p:

Xp = −logY(1−p)
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