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ABSTRACT
This paper describes a teaching experiment in a Numerical Methods course for
Master of Science students. The experiment uses scientific papers to develop mod-
elling studies in the context of wine fermentation microbial interactions. The course
involves theoretical and laboratory classes that focus on implementing numerical
methods using Matlab for Initial Value Problems and Boundary Value Problems.
The students are asked to formalize the mathematical model and build their own
experiments using the information provided in the papers. Additionally, a param-
eter estimation experiment is organized, which involves generating synthetic data
and computing noisy data to estimate the natural death rate of sensitive yeast. The
results show that data noise significantly affects the parameter estimate and that
scaling the data can help reduce the impact of measurement errors. The presented
results can be used to investigate other possible assignments, such as how the eval-
uation of the Jacobian affects the estimation performance and compare different
optimization algorithms.

KEYWORDS
Numerical solution of ODEs, Parameter estimation, Graduate class assignments,
Mathematical modeling, Fermentation, microbes.

1. Introduction

Mathematics courses at the Master of Science level often involve a combination of the-
oretical and practical components that enable students to apply mathematical princi-
ples to solve real-world problems. For example, in this teaching context, a Numerical
Methods course addresses ordinary and boundary differential problems and students
learn about numerical approaches to solve these problems. The course has theoretical
and laboratory classes focusing on Initial Value Problems (IVPs) and Boundary Value
Problems (BVPs). In the laboratory classes, students learn how to implement numer-
ical methods for IVPs and BVPs using Matlab. Various assignments are employed in
diverse contexts to enhance the practical application of the presented methods. For
example, the proposed teaching experiment uses scientific papers to develop modelling
studies, enriching the course content and providing a context for using numerical meth-
ods. In particular, this work focuses on modelling microbial interactions in the wine
fermentation process. Wine fermentation involves various yeasts, including spoilage
yeasts that can cause significant economic losses by producing negative organoleptic
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changes. The topic is introduced by (Kuchen, Maturano, Gil, Vazquez, & Scaglia,
2022), proposing an improvement to a model discussed in a previous paper (Pommier,
Strehaiano, & Delia, 2005). These articles refer to the seminal work (Ramon-Portugal,
Torija, Mas, & Guillamon, 1997) that describes the kinetic study of yeasts in wine-
making procedures.

Starting from (Kuchen et al., 2022), the assignment requested to formalize the math-
ematical model. This first part needed a minimum analysis of the referenced paper
((Pommier et al., 2005), (Ramon-Portugal et al., 1997)) to set up the mathematical
model and reference parameters used in numerical simulations. Next, students were
asked to use the information provided in these papers to build their own experiments,
which required them to formalize the differential model that constitutes the forward
problem and analyze its solution through variable steps, using Matlab Ordinary Dif-
ferential Equations (ODE) solvers and implementing fixed-step solvers. Finally, the
assignment requested implemening Matlab code to perform a parameter estimation
experiment using a given set of nominal parameters reported in the literature. The
text of the assignment, serving as an illustrative example, can be found in Appendix
A.

Overall, this approach was very satisfactory, providing students with a real-world
application context to apply the numerical methods they had learned in the course.
In addition, using scientific papers as a basis for class assignments makes it possible
to introduce students to the process of scientific inquiry and encourages them to think
critically about applying mathematical principles in solving real-world problems.

The manuscript is organized as follows. In Section 2, we introduce the microbial
interaction model, which serves as the basis for subsequent analysis. Then, in Section 3,
we examine the numerical solution of the forward problem, specifically the initial value
problem. Finally, in Section 4, we comprehensively illustrate the parameter estimation
experiment.

2. Problem description

Wine fermentation involves various yeasts, including spoilage yeasts that can cause
significant economic losses by producing negative organoleptic changes. Sulfur dioxide
(SO2) is commonly used to control these spoilage populations, but it harms human
health. An alternative treatment known as biocontrol involves introducing new yeasts
that produce a toxic protein to kill the sensitive (spoilage) ones. Mathematical models
can predict the behaviour of these killer yeasts (biocontrollers) in different physico-
chemical conditions and provide information on the kinetic parameters involved.

One such model, described in (Pommier et al., 2005), is a system of six ordi-
nary differential equations that allows studying interactions between two yeasts: the
spoilage yeast and the biocontroller, and it is based on the dynamic characteristics
of killer/sensitive yeast mixed cultures described in the seminal work by (Ramon-
Portugal et al., 1997). In this model, the biomass is segregated into four variables: the
viable killer cells Xvk (biocontrollers), the viable sensitive cells Xvs (spoilage yeast),
the cumulative dead killer cells Xdk, and the cumulative dead sensitive cells Xds. The
variable T stands for the toxin concentration in the culture medium, and I represents
an unidentified inhibitor that is common to both killer and sensitive strains. The dy-
namic evolution of each of the six variables of the model is given by the system of
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equations shown below 

Ẋvk = rvk − rdk

Ẋvs = rvs − rds

Ẋdk = rdk

Ẋds = rds

Ṫ = rpT − raT

İ = rI

. (1)

The system’s dynamics are determined by seven reaction rates as shown in (2). These
rates are parameterized by maximum specific growth rates, deceleration parameters,
natural death rates, toxin-caused death rates, specific toxicity of the toxin, general
inhibitor production rate parameter, and toxin production rate parameter.

rvk killer growth rate
rvs sensitive growth rate
rdk killer death rate
rds sensitive death rate
rpT toxin production rate ∝ rvk
raT toxin adhesion rate
rI inibitor rate

. (2)

The seven rates are represented by the following equations:

rvk = µmaxkXvk(1−AkI), rdk = µdkXvk (3)

rvs = µmaxsXvs(1−AsI), rds = µdsXvs +KXvsT (4)

rI = a(rvk + rvs), raT = WXvsT, rpT = αrvk. (5)

These equations depend on the values of several parameters, including the maximum
specific growth rate of the killer/sensitive strains (µmaxk, µmaxs), the killer/sensitive
deceleration parameters (Ak, As), the natural death of killer/sensitive yeast species
(µdk, µds), the toxin-caused death rate (K), the specific toxicity of the toxin (W ),
the general inhibitor production rate parameter (a), and the toxin production rate
parameter (α). The physiochemical reactions of the model are well represented in
Figure 1.

By substituting the expressions of the parameter-dependent rates, we obtain the
standard form of the microbial interaction model shown in (6).

Ẋvk = ((1−Ak)µmaxk − µdk)Xvk

Ẋvs = (−KT + (1−As1I)µmaxs − µds)Xvs

Ẋdk = Xvkµdk

Ẋds = (KT + µds)Xvs

Ṫ = −TWXvs + (1−Ak)Xvkαµmaxk

İ = −a ((−1 +AkI)Xvkµmaxk + (−1 +As1I)Xvsµmaxs)

, (6)
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Figure 1. Reactions between a killer and a sensitive yeast in mixed culture. rTC ≡ −WXvsT in (5), rms ≡
µdsXvs in (4), rmsp ≡ KXvsT in (4).

The initial values are specified as follows:

Xvs(0) = N, Xvk(0) = Nγ, 0 < γ < 1,

where N is the total number of sensitive cells and γ is the ratio between the viable
killer and sensitive strains, and

Xdk(0) = Xds(0) = T (0) = I(0) = 0.

Overall, mathematical models such as this one allow for the prediction of the be-
havior of killer yeasts in wine fermentation and provide insight into the effects of
physicochemical conditions on their interactions with spoilage yeasts. The parameter
γ can be utilized to evaluate the initial quantity of viable killer strains in relation to
the total number of sensitive cells, thereby enabling the monitoring of their impact on
population dynamics.

3. Solution of the forward problem

Choosing a set of nominal parameters as in Table (1) and N = 3 · 106 [cell mL−1], it
is possible to solve (6) numerically and observe the effect of the ratio γ on the viable
sensitive population. Figures 2 and 3 depict the effect of the initial ratio γ = Xvk/Xvs

Table 1. Nominal parameters as in (Pommier et al., 2005).

Parameter Value Parameter Value

µmaxk 0.358 [h−1] µmaxs 0.278 [h−1]
Ak 0.0053 [lg−1] As 0.0098 [lg−1]
µdk 0.0263 [h−1] µds 0.0049 [h−1]
K 0.257 [−] W 0.170 [mL cells−1h−1]
a 1 [−] α 1 [−]

on population dynamics. When the initial viable killer population Xvk(0) is approx-
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imately half the initial sensitive population Xvs(0) (γ = 0.6), the killer population
reaches its maximum after about seven hours, while the sensitive population goes ex-
tinct in about 15 hours (Figure 2(a)). On the other hand, when γ = 0.1, the biocontrol

(a) Viable and Death dynamics. (b) Toxin and Inibitior concentration.

Figure 2. Xvk(0) = Xvs(0) · 0.6 with N = 3 · 106 [cells mL−1]

process is slower, with a peak in the killer population after 15 hours, and the sensitive
population going extinct in about 20 hours (Figure 3(a)). The inhibitor concentration
dynamics show a rapid increase to a constant value, whereas the toxin concentration
has a slower increase when γ is small (Figures 2(b) and 3(b)). The model (6) can be

(a) Viable and Death dynamics. (b) Toxin and Inibitior concentration.

Figure 3. Xvk(0) = Xvs(0) · 0.1 N = 3 · 106 [cells mL−1]

expressed in the classical initial value problem (IVP) form as:{
Ẏ = F (t, Y (t))

Y (0) = Y0,

t ∈ [0, 30]h

Y : R → R6,
(7)

where Y = (Xvk, Xvs, Xdk, Xds, T, I)
⊺.

The stiffness of the problem becomes evident from a posteriori observation of the
computational cost reported in Table 2. Additionally, by computing the eigenvalues
of the Jacobian FY (0, Y0), we observe that the smallest eigenvalue (λmin = −5.1 · 105)

5



(a) Viable killer observations (b) Viable sensitive observations

Figure 4. Example: mt = 10, δ = 10−2 Red circles represent noisy data and blue line is noiseless data.

is significantly smaller than −1 for both γ = 0.1 and γ = 0.6, confirming the IVP
stiffness.

Table 2. Matlab ODE solvers

Method Time Steps Function Evaluations

ode23tb 1237 185
ode15s 1582 367
ode23t 650 187
ode89 2.3299 107 8.4973 105

4. Parameter Estimation Test

The final part of the assignment involves organizing a parameter estimation test to
estimate the natural death rate of sensitive yeast, µds. In this test, synthetic data are
generated by extracting a set of observations from viable killer and sensitive cells, Xvk

and Xvs, which were obtained by solving the forward problem with the set of nominal
parameters shown in Table 1. The following is a summary of the procedure to collect
synthetic measurements:

• Set a reference value of uref ≡ µ∗
ds = 0.0049.

• Solve the forward problem Y ′ = F (t, Y (t)) with parameter u = uref .
• Select mt measurement time values ti and collect the synthetic observation data

into the vector z: z = [Y1(ti), Y2(ti)], i = 1, . . . ,mt.
• Select a value of δ > 0 and a normal random vector η with ∥η∥ = 1.
• Compute noisy data as follows: zδ = z + δη∥z∥

Figures 4 show with red dots the noisy data in the case mt = 10, and noise level of
δ = 10−2.
The parameter µvs is estimated by solving the nonlinear least squares problem shown
in (8).

min
u

1

2
∥φ(u)− zδ∥22 (8)
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Here, φ(u) maps the numerical solution of the differential model (7), with parameter
u, to the mt measurement points.
The quality of the result is evaluated by computing the Parameter Relative Error
(PRE) and the weighted residual norm NRes, shown in (9).

PRE(u) =
∥u− uref∥22
∥uref∥22

, NRes(u) =
∥φ(u)− zδ∥

∥z∥
. (9)

The PRE(u) measures the relative error between the estimated parameter u and the
reference value uref , while NRes(u) measures the residual between the observed noisy
data zδ and the computed estimates φ(u), normalized by the reference data z.

Numerical methods based on gradient descent (Nocedal & Wright, 2006), such as
Gauss-Newton or those implemented by the Matlab function lsqnonlin, require an
initial guess u0 and compute solution updates through the gradient of the objective
function shown in (8):

Ju = G⊺(φ(u)− zδ), G = ∇uφ(u).

Hence, one key point in the solution of the nonlinear optimization problem (8) lies in
the computation of Ju.

In this example, we have one parameter, so G is obtained by aligning the two vectors
g1 and g2 where

g1 =
∂Y1
∂u1

⊺

(ti), g2 =
∂Y2
∂u1

⊺

(ti), i = 1, . . . ,mt.

The evaluation of the components gi can be performed by finite difference schemes or,
more conveniently, by the sensitivity method (Chavent, 2010). In this last case, the
IVP (7) is modified by adding the sensitivity components W ≡ ∂Y

∂u and applying the
chain rule to the IVP problem. This leads to the augmented IVP problem shown in
(10). {

Ẏ = F (Y (t), u)

Ẇ1 = Fu(Y, u) + FY (Y, u)W1

,

{
Y (t0) = Y0
W1(t0) = 0

(10)

Using (10) instead of (7) inside the optimization iteration allows us to update the
parameter estimation very efficiently.
With a solver available, it is possible to analyze several aspects of the parameter esti-
mation process. For example, we can test the estimate’s robustness depending on the
data noise δ and the starting guess u0. Furthermore, we can use data uncertainty to
conveniently scale the data vector zδ.
Let Z denote the given data vector, and ∆Zj denote the uncertainty on its jth com-
ponent, j = 1, . . . ,m. It is convenient to use this uncertainty to define data to be used
in the calibration process as follows:

zj =
1√
m

Zj

∆Zj

In the present setting, where data noise is known, it is possible to use such information
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to scale the data. Therefore, the scaled problem is shown in (11),

min
u

1

2
∥φ(u)− zδscal∥22, (11)

where the scaled data components are

(zδscal)i = zδi /∆Zi, ∆Zi = |z|δηi.

As an example, we present some results in Table 3 with noise levels of δ = 10−3, 10−2

and initial guesses u0 with relative distances to the true reference value of PRE0 =
1, 10. We used both non-scaled data zδ and scaled data zδscal, and the results are shown
in columns 4− 6 and 7− 9, respectively.

The computation cost is evaluated in terms of the number of function evaluations
(nfevals), and we used the trust-region-reflective solver implemented by the Mat-
lab function lsqnonlin to obtain the results shown in Table 3.

Table 3. Parameter estimation test with 10 observation times and Xvk(0)/Xvs(0) = ρ

ρ δ PRE0
No data scaling Data scaling

PRE NRes nfevals PRE NRes nfevals

0.1
0.001 10 8.306 10−2 5.732 10−3 12 2.624 10−2 7.651 10−4 20
0.01 1 7.813 10−1 5.585 10−2 8 2.511 10−2 7.327 10−4 10

0.6
0.001 10 3.798 10−1 4.977 10−3 14 5.065 10−2 3.491 10−4 22
0.01 0.01 3.514 4.940 10−2 14 4.621 10−2 3.184 10−4 6

We make the following observations:

• Data noise significantly affects the parameter estimate and the Parameter Rel-
ative Error (PRE). Inaccurate measurements can lead to inaccurate parameter
estimates and high PRE values. Therefore, it is essential to consider the effect
of noise on the data when performing parameter estimation.

• Scaling the data is a valid strategy to improve the robustness of the estimates,
especially in the presence of high noise. Scaling the data can help reduce the
impact of measurement errors on the parameter estimates, resulting in more
accurate and reliable results. The use of scaled data can improve the robustness
of the optimization algorithm and increase the chances of obtaining accurate
parameter estimates.

• The residual alone does not provide sufficient information about the precision
of the parameter estimates. While the relative residual can indicate the quality
of the fit between the model and the data, it is not a reliable indicator of the
precision of the estimated parameters. This is evident in the fifth column of Table
3, where poorly estimated parameters exhibit similar residual values to better
estimated parameters. Therefore, it is essential to consider other metrics, such
as the Parameter Relative Error, or in the absence of a ground truth, compute
the confidence intervals of the parameter estimates to assess their precision.

Figures 5 and 6 show two examples of data fit obtained by the estimated parameter
with data scaling and initial viable killer/sensitive ratios of ρ = 0.1 (Figure 5) and
ρ = 0.6 (Figure 6) for the case where the noise level is δ = 10−2.
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(a) (b)

Figure 5. Case δ = 10−2, ρ = 0.1. (a) Xvk, Xvs, Xdk, Xds fitted (lines), Xvk, Xvs true (stars) and noisy data

(circles). (b) Fitted T, I.

(a) (b)

Figure 6. Case δ = 10−2, ρ = 0.6. (a) Xvk, Xvs, Xdk, Xds fitted (lines), Xvk, Xvs true (stars) and noisy data

(circles). (b) Fitted T, I.

Estimation of the initial value Expanding on the previous example, we can extend
the methodology to cases where the initial data are unknown and even to scenarios
involving more than one parameter. In this scenario, synthetic measurements z are
obtained by evaluating the viable killer population Y = Xvk at mt + 1 measurement
time values ti, i = 0, . . . ,mt, and adding normalized random noise. In the current
example, we consider the unknown parameters u1 = µvs and u2 = Xvk(0). Therefore,
we have the corresponding sensitivity components:

W1 ≡
∂Y

∂u1
, W2 ≡

∂Y

∂u2
.

This leads us to the following augmented IVP problem:
Ẏ = F (Y (t),u)

Ẇ1 = Fu1
(Y,u) + FY (Y,u)W1

Ẇ2 = FY (Y,u)W2

,

 Y (t0) = [u2, Y0(2), . . . , Y0(6)]
⊺

W1(t0) = 0
W2(t0) = [1, 0, 0, 0, 0, 0]⊺

(12)
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Here, u = [u1, u2]
⊤ and Fu2

(Y,u) = 0 since F does not depend on the initial vector
Y0. With minimal coding effort, it is possible to estimate both µvs and the initial
viable killer population Xvk(0). The estimation procedure was carried out with 10
observation times and unknown parameters µvk and Xvs(0). The data noise level was
set at δ = 0.01 and data scaling was applied. The results of the estimation are presented
in Table 4, which includes the performance measures PRE0, PRE, NRes, and nfevals.
In Figures 7(a) and 7(b), the results are visualized for the case δ = 10−2. The lines
depict the fitted values of Xvk, Xvs, Xdk, Xds, while the stars represent the noisy data
for Xvk. Figure 7(a) corresponds to ρ = 0.1 with an initial PRE0 value of 0.1, and
Figure 7(b) corresponds to ρ = 0.6 with an initial PRE0 value of 0.01.

Table 4. Estimation test with 10 observation times
and unknown parameters µvk, Xvs(0). Data noise δ =

0.01 and data scaling.

ρ PRE0 PRE NRes nfevals

0.1 0.1 8.085 10−2 3.030 10−2 45
0.6 0.01 1.570 10−2 7.796 10−3 45

(a) (b)

Figure 7. Case δ = 10−2. (lines) Xvk, Xvs, Xdk, Xds fitted, (stars)Xvk, Xvs noisy data. (a) ρ = 0.1, PRE0 =
0.1 (b) ρ = 0.6, PRE0 = 0.01.

Parameter Estimation: Uncertainty Analysis The inclusion of synthetic data
with added noise serves as a valuable approach to assess the effectiveness of the model
fitting procedure. However, it is important to acknowledge that computing the parame-
ter relative error (PRE) becomes impractical when fitting models to real experimental
data, as the true parameters are generally unknown. To overcome this limitation,
the Standard Error provides useful information about the quality of the parameter
estimates and enables the computation of confidence intervals (Smith (2013)). The
procedure to evaluate the 95% confidence interval for each parameter is outlined in
(13), where u ∈ Rp represents the vector of estimated parameters (e.g., in the current
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example, p = 2), and R is the residual vector.

(1) σ2 =
1

n− p
R⊺R (Error variance estimate)

(2) Xi,k =
∂Y (ti)

∂uk
(Sensitivity Matrix), i = 1, . . . , n, k = 1, . . . , p

(3) M =
[
X⊤X

]−1
, V = σ2M (Covariance Matrix estimate)

(4) k = 1, . . . , p

(4.1) δk = Mk,k, SE = σ
√

δk, (Standard Error)

(4.2)
[
uk − tn−p,1−α/2SE, uk + tn−p,1−α/2SE

]
(Confidence intervals)

(13)
Here, tn−p,1−α/2 refers to the Student’s t distribution with α = 0.1, obtained using
the Matlab function tinv. It is important to note that the sensitivity matrix X is
obtained by evaluating the components W1 and W2 using the augmented system (12)
when u represents the estimated parameter. The parameter estimates, together with
the confidence intervals, are presented in Table 5. The standard error (SE) indicates
the uncertainty associated with each parameter estimate, and the confidence intervals
provide a range of plausible values within which the true parameter value is likely
to fall. For the first test, with ρ = 0.1, the standard error (SE) associated with u1

Table 5. Parameters estimates (Par), Standard error (SE) and confidence intervals for

the tests in Table 4, with Student’s t distribution tS = t8,0.95

ρ Parameter SE Par − tSSE Par Par + tSSE

0.1 Par = u1, (µvs) 8.209 10−3 −7.757 10−3 7.509 10−3 2.277 10−2

Par = u2, (Yvk(0)) 4.801 104 2.350 105 3.243 105 4.135 105

0.6 Par = u1, (µs) 4.159 10−2 −6.915 10−2 8.191 10−3 8.553 10−2

Par = u2, (Yvk(0)) 1.689 105 1.514 106 1.828 106 2.142 106

is 8.209 10−3, indicating a relatively low level of uncertainty in the estimate. The
confidence interval ranges from−7.757 10−3 to 2.277 10−2 for u1, indicating a relatively
low level of uncertainty in the estimate. For u2, the SE is 4.801 104, indicating a
relatively large uncertainty. The confidence interval spans from 2.350 105 to 4.135 105.
This wide interval suggests that there is substantial uncertainty about the true value
of u2. In the second test, with ρ = 0.6, the SE for u1 is 4.159 10−2, indicating a
relatively higher level of uncertainty compared to the first test, as confirmed by the
larger confidence interval ranging from −6.915 10−2 to 8.553 10−2. For u2, we have a
similar situation as in the case of ρ = 0.1. The SE is 1.689 105, indicating a relatively
large uncertainty. The confidence interval for u2 ranges from 1.514 106 to 2.142 106.
Again, this wide interval indicates considerable uncertainty in the estimate of u2. The
standard errors and confidence intervals provide valuable insights into the uncertainty
associated with the parameter estimates. They allow us to assess the reliability and
range of plausible values for each parameter, providing a measure of confidence in the
estimation results.

Final Remarks In an ideal progression, starting from the initial test with the iden-
tification of a single parameter, one could proceed to include the initial data and
eventually extend to all parameters.
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In the real-world context, the model’s validity is assessed by utilizing the assumed
model and fitting parameters obtained from a specific data set, commonly referred
to as the training data set. Subsequently, the next step involves evaluating how well
these parameters replicate or predict the behavior observed in an independent data
set, known as the test or validation set.

5. Conclusion

The results obtained provide a foundation for various potential assignments. These
include exploring the impact of measurement points on estimation accuracy, evalu-
ating the influence of Jacobian calculation on performance, comparing optimization
algorithms, and addressing uncertainties in nonlinear models. From the students’ per-
spective, engaging with practical scientific papers enhances their understanding of
mathematical concepts and enables the creation of validation test problems. From
the teachers’ viewpoint, although the approach involves higher costs and greater over-
sight, it offers greater satisfaction and promotes meaningful discussions. Students often
propose personal solutions to practical problems and the teacher has to be able to un-
derstand and discuss. In conclusion, assignments based on scientific papers contribute
to students’ preparedness for real-world applications and deepen their comprehension
of the subject matter.

Appendix A. Assignment Text

A.1. Microbial interactions

Papers Kuchen et al. (2022) and Pommier et al. (2005) present advancements in the
mathematical modeling of the fermentation process from grape juice to wine. From
these references, select one of the proposed models and implement it in your Matlab
script, using the provided parameters.

• Discuss the problem of stiffness and evaluate the efficiency of your Matlab ODE
solvers compared to the built-in solvers.

• Generate a dataset using your solver and conduct a parameter estimation ex-
periment by introducing random noise from a normal distribution. Analyze the
accuracy and efficiency of your results.

Disclosure statement

No potential conflict of interest was reported by the author.

References

Chavent, G. (2010). Nonlinear least squares for inverse problems: theoretical foundations and
step-by-step guide for applications. Springer Science & Business Media.

Kuchen, B., Maturano, Y., Gil, R., Vazquez, F., & Scaglia, G. (2022). Kinetics and mathe-
matical model of killer/sensitive interaction under different physicochemical conditions of
must/wine: a study from a biological point of view. Letters in Applied Microbiology , 74 (5),
718–728.

12



Nocedal, J., & Wright, S. (2006). Springer series in operations research and financial engi-
neering. In Numerical optimization. Springer New York.

Pommier, S., Strehaiano, P., & Delia, M.-L. (2005). Modelling the growth dynamics of in-
teracting mixed cultures: a case of amensalism. International journal of food microbiology ,
100 (1-3), 283–293.

Ramon-Portugal, F., Torija, M.-J., Mas, A., & Guillamon, J.-M. (1997). Kinetic study and
mathematical modelling of the killer and sensitive s. cerevisiae strains growing in mixed
culture. Bioprocess Engineering , 17 , 361–366.

Smith, R. C. (2013). Uncertainty quantification: theory, implementation, and applications
(Vol. 12). Siam.

13


