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A B S T R A C T   

Ocean sprawl and climate change exacerbate coastal erosion and flooding, resulting in habitat loss and 
decreasing biodiversity. To counteract these threats, different coastal defence tools have been developed, with an 
increasing emphasis on nature-based solutions. However, tracking the impacts of these interventions on marine 
benthic organisms requires appropriate sampling designs and timely investigation methods due to the dynamic 
nature of coastal environments. Environmental DNA metabarcoding is a promising, non-invasive, and quick 
technique to monitor community changes. Here, environmental DNA COI-based metabarcoding data from 
sediment and bottom water samples were used to characterize benthic communities at three sites along the 
Emilia-Romagna coast differing in the topology of coastal defence actions (from no defences to groynes and low- 
crested barriers) and to evaluate the effectiveness of the two sampling matrices in detecting local biodiversity. 
The findings revealed significant differences in the structure of the benthic communities depending on site, 
sample type (i.e., sediment versus bottom water), and their interaction. The three sites differ in abiotic char-
acteristic affecting the community composition. Lido di Dante and Riccione showed higher species diversity due 
to the new type of substrata provided by the hard defence structure, while Foce del Bevano showed the presence 
of species typical of low impacted areas. Bottom water, hosting more traces of pelagic and nektonic species, 
showed significantly different species composition compared to sediment samples, suggesting the need to 
consider both matrices in coastal monitoring.   

1. Introduction 

Coastal urbanization is one of the most visible consequences of 
human activities related to the direct and indirect use of marine re-
sources. This urban sprawl has a significant impact on coastal ecosys-
tems by increasing habitat fragmentation and loss, as well as decreasing 
biodiversity, which has negative effects on ecosystem functions and 
services (Firth et al., 2020). This exacerbates the effect of coastal erosion 
and flooding caused by climate change (Van Rijn, 2011), raising the 
need to adopt artificial hard (e.g., breakwaters, seawalls), soft (e.g., 
beach nourishment) and nature-based (wetland and seagrass bed 
restoration) solutions for coastal defence (Firth et al., 2020; 

Temmerman et al., 2013). 
Emilia-Romagna region (Italy) is a perfect example of this: its rapid 

coastal urbanisation has resulted in an increase in economic sectors and 
touristic activities, enhancing the value of the area (Perini et al., 2017). 
With the aim to preserve this crucial socio-economic value, a variety of 
structures designed to contrast the effect of erosion and subsidence and 
to stabilise the beach were implemented (Bacchiocchi and Airoldi, 
2003). A variety of hard coastal defence structures have been built since 
the 1950s (e.g., submerged or semi-submerged breakwaters, continuous 
or semicontinuous structures parallel to the shoreline, seawalls, and 
groynes; Liberatore, 1992) and now cover 75 out of 130 km of regional 
coastline (Vecchi et al., 2020). These artificial structures have an impact 
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on the native environment and on benthic communities (Bertasi et al., 
2007; D’Alessandro et al., 2021). Hard structures are colonised by few 
dominant species, such as the mussels Mytilus galloprovincialis Lamarck 
1819, and facilitate non-indigenous species, like the Pacific oysters 
Magallana gigas (Thunberg, 1793), the ascidian Styela plicata (Lesueur, 
1823) and several invasive seaweeds (Airoldi et al., 2015). Moreover, 
they result in low genetic diversity compared to natural rocky bottoms 
(Fauvelot et al., 2009). To avoid the negative impacts caused by hard 
coastal defence structures and to foster more sustainable governance, 
Emilia-Romagna’s coastal management adopted soft solutions, such as 
beach nourishment (Colosio et al., 2007; Vecchi et al., 2020). However, 
also these interventions affect the benthic communities (GESAMP/U-
NESCO 1994; Speybroeck et al., 2006; Targusi et al., 2019). They, 
indeed, may cause a change in the communities structure (in terms of 
decreasing species richness and abundance), leading to dominance of 
few bivalves such as Chamelea gallina (Linnaeus, 1758), Donax semi-
striatus Poli, 1795 and Lentidium mediterraneum (O. G. Costa, 1830; 
Colosio et al., 2007). 

Species identification in the field or laboratory has traditionally been 
used to characterize the structure of benthic communities to assess 
environmental disturbances (Dauer et al., 2000; Ponti et al., 2012). 
These methods are time-consuming and requires skilled taxonomic 
knowledge. In recent years, environmental DNA (eDNA; Ficetola et al., 
2008) has emerged as a promising tool for environmental quality 
assessment (Compson et al., 2020). This technique relies on DNA 
extraction from various matrices (e.g., air, water, sediments and soil, 
faeces, and stomach contents). eDNA analysis combined with meta-
barcoding can provide a snapshot of the species richness in a sample 
(Taberlet et al., 2018). However, despite the rapid growth of eDNA 
metabarcoding studies, no consistent approaches or standardised 
methodologies for characterizing benthic communities exist (Holman 
et al., 2019; Pawlowski et al., 2020). The use of diverse environmental 
matrices (such as bottom water and sediment) may affect the outcomes 
of the analyses, and few recent studies have combined data from the 
various environmental matrices (Holman et al., 2019; Koziol et al., 
2019). Bottom water, for example, maybe a better choice than sediments 
for assessing benthic communities because it allows for a simpler and 
less damaging sample process, but DNA in water degrades faster than in 
sediments (Torti et al., 2015). On the other hand, bottom water samples 
may contain more traces of pelagic and nektonic species (Koziol et al., 
2019) giving complementary results to the sediment matrix. 

In this work, a mitochondrial cytochrome oxidase subunit 1 (COI) 
metabarcoding technique based on eDNA from bottom water and sedi-
ments was used to characterize the eukaryotic communities in three sites 
along the Emilia-Romagna coast. The aims are to demonstrate the 
applicability of eDNA metabarcoding to analyse the differences in 
community composition and structure among study sites characterised 
by different coastal defence interventions, and the effectiveness of 
combining the results of the two types of eDNA matrices to better 
describe the diversity of coastal benthic communities. Finally, we parsed 
the eDNA metabarcoding dataset to identify species with high com-
mercial and ecological value in the area, whose fate is usually given 
more consideration in coastal management policies. Moreover, these 
eDNA data provide the first marine baseline metabarcoding reference 
dataset for the Emilia-Romagna coasts, which allows to monitor changes 
in community structure over space and time and to support better 
coastal management. 

2. Materials and methods 

2.1. Study area 

The Emilia-Romagna coast (Italy) stretches for over 130 km along 
the Adriatic Sea from Po di Goro (province of Ferrara) to Cattolica 
(province of Rimini). Except for artificial habitats, the coastline is 
characterised by sandy, gently sloping beaches (Airoldi et al., 2016). The 

coast is almost totally urbanised, supporting a wide range of economic 
activities such as methane gas extraction, industries (flour, ceramics, 
animal feed, fertilizer), tourist and commercial ports, mussels farms, and 
aquaculture facilities (Airoldi et al., 2016; Martinelli et al., 2011). In a 
social context, the so-called “Riviera Romagnola” is a valuable, eco-
nomic asset (it has one of Europe’s largest tourism businesses) as well as 
a social gathering place due to the region’s recreational activities 
(Rodella et al., 2020). 

Three sampling study sites were chosen along the coast: Riccione, 
Foce del Bevano, and Lido di Dante. The three sites were chosen due to 
their varying levels of impact and coastal defence structures (SM.1). The 
most natural site is Foce del Bevano, a protected coastal area sur-
rounding the Bevano River mouth, without urbanization and with 
strictly limited access, while Riccione is the most urbanised one sur-
rounded by hotels and bathing establishments, subject for many years to 
beach nourishment and installation of coastal defence works, including 
a submerged sandbag barrier, periodical recharged (Martinelli et al., 
2011), and, more recently, experimental submerged concrete walls with 
horizontal openings (Romagnoli et al., 2021). Lido di Dante represents 
intermediate urbanisation conditions between the other two sites, 
however it is affected by high subsidence, also due to the extraction of 
natural gas, which is why the beach in front of the village and camping 
has been protected since the 1980s by groynes and low-crested barriers, 
recently extend southward (Zanuttigh et al., 2005; Stanghellini et al., 
2022). 

The surveys were conducted in the summer of 2020 because some 
benthic organisms are typically abundant in communities up to 2 m deep 
and are often found in sediments even during periods following spring 
beach nourishment (Targusi et al., 2019). The sampling was carried out 
from the coastline down to 5 m depth in a pre-determined area with 
different dimensions for each site according to local bathymetry: 173, 
000 m2 in Riccione, 980,000 m2 in Foce del Bevano, and 168,000 m2 in 
Lido di Dante (SM.1, Figure SM.1). The sampling areas correspond to the 
“active coastal zone” of the beach (Archetti et al., 2016), and they are 
mainly characterized by fine to very fine sand with medium particle size 
reduction towards the open sea and variable mud content depending by 
local sedimentary regimes. QGIS software (QGIS Association, 2020) was 
used to plan and randomly distribute a different number of sampling 
points to allow an adequate mapping of each area: 10 points were 
sampled at Riccione, 25 at Foce del Bevano, and 20 at Lido di Dante. At 
each sampling point, the distance from the coast and depth were 
measured (SM.1, Table SM.1). 

2.2. Environmental DNA sampling 

At each site, two types of samples, bottom water and sediment, were 
manually taken by scuba divers. The only exception was in Foce del 
Bevano, where bottom water was sampled at only 15 of 25 sediment 
sampling points (SM.1, Table SM.1). Bottom water samples were gath-
ered using 500 mL Nalgene bottles at the sediment-water interface. 
Sediment samples were collected immediately after water samples from 
the first centimetre of the sea bottom using 10 mL falcon tubes. To avoid 
contamination, bottles and tubes were previously sterilised with 70% 
ethanol alcohol (EtOH) and filled with deionised water. Subsequently, 
both types of samples were maintained for no more than 6 h in a field 
mini fridge full of ice (dark and low-temperature conditions) to avoid 
eDNA denaturation and algae growth (Laramie et al., 2015). 

Bottom water samples were held in a 4 ◦C dark room immediately 
after each sampling day, while sediment samples were stored at − 20 ◦C. 

After less than 12 h, bottom water samples were filtered using 0.22 
μm sterile cellulose filters (one for each sample), collected in β-ray 
sterilised tubes, and frozen at − 20 ◦C until the eDNA extraction pro-
cedure (Hinlo et al., 2017). 
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2.3. Environmental DNA extraction 

All laboratory workflow was performed in sterile conditions thanks 
to self-protection instruments (lab coat, mask, and gloves) and a steri-
lised work area (70% EtOH and 10% bleach). 

Bottom water DNA extraction was performed through an overnight 
digest in Proteinase K and lysis buffer at 56 ◦C in a shaking incubator. 
After digestion, samples were processed using the DNneasy® Blood & 
Tissue kit (Qiagen, Hilden, Germany) following the manufacturer’s 
protocol and according to Spens et al. (2017) (SM.2.1). 

Sediment extraction was performed on 500 mg of each sediment 
sample using the NucleoSpin® Soil Kit (Macherey-Nagel, Germany) 
according to the manufacturer’s protocol. 

DNA concentrations were quantified using the dsDNA BR Assay Kit 
(Thermofisher Scientific, Massachusetts, USA) and a Qubit 2.0 Fluo-
rometer (Invitrogen, ThermoFisher Scientific Inc, USA). Samples with 
low DNA yield were concentrated using the NucleoSpin® Gel and PCR 
Clean-up kit (Macherey-Nagel, Germany) according to the manufac-
turer’s protocol in a final elution volume of 30 μl. 

2.4. Primer selection and library preparation 

Custom metabarcoding primers, adapted from Leray et al. (2013), 
were used to amplify a 313 bp portion of the cytochrome c oxidase 
subunit I gene’s standard DNA barcoding region following the meta-
barcoding protocol described in Thomasdotter et al., (2023) and Mugnai 
et al. (2023b) (primer sequences available upon request). Sequencing 
libraries were prepared using a two-step PCR protocol outlined in Corse 
et al. (2017) and described in SM.2.2. 

The target amplicon was normalised according to its fluorescence 
using the Qubit dsDNA Broad-range Assay Kit. These normalised sam-
ples were pooled at an equimolar concentration and sent to 
Genomix4life (Salerno, Italy) for quantification using KAPA Library 
Quantification Kit and sequencing on the Illumina MiSeq platform 
(Illumina, CA, USA) using v2 chemistry (2x250 bp paired-end). 

Negative and positive controls were added to the sequencing library. 
The negative control consisted of RNAse-free water; while the positive 
control was DNA extracted from a ready “mock community” (available 
upon request to Dubut V., but see also Thomasdotter et al., 2023 and 
Mugnai et al. (2023b) containing a set of well-characterised sequences of 
continental species. 

2.5. Bioinformatic analysis 

FastQC (Andrews, 2010) was used to assess reads quality after Illu-
mina sequencing. The reads were then processed using programs 
implemented in the OBITools software (Boyer et al., 2016). The “Illu-
minapairedend” was used to assemble forward and reverse reads and 
trim those with quality Phred values of 30 or less. The “Ngsfilter” script 
was used to remove primer sequences during the demultiplexed step and 
“Obigrep” was used to remove any sequences that were longer than 320 
bp and shorter than 300 bp. “Obiuniq” allowed to dereplicate into 
unique sequences, and the “uchime_denovo” algorithm implemented in 
VSEARCH (Rognes et al., 2016) was used to trim all sequences that had 
one or multiple “N” as base pairs, chimeras and/or sequences that 
appeared less than 10 times in the dataset. Because COI is prone to 
sequencing errors (i.e., random points) which can result in a high pro-
portion of singletons, we chose to cluster the dataset rather than 
denoising it to avoid an excessively reduced dataset (Wangensteen et al., 
2018). 

The SWARM algorithm (Mahé et al., 2014) clustered sequences at 
97% similarity and a Molecular Operational Taxonomic Unit (MOTU) 
count table was generated. 

The taxonomic assignment was done using the Ribosomal Database 
Project (RDP) naïve Bayesian Classifier (Wang et al., 2007) with two 
different COI reference databases: the COI classifier Database (Porter 

and Hajibabaei, 2018) and the Barcode of Life project public database 
(iBOL). 

To find the best fitting hit, different thresholds (98%: species level, 
95%: genus level, 90%: family level, 85%: order level, <85%: class level) 
were applied for each taxonomic level. 

Bacteria, Archaea, and any other organisms of terrestrial origin were 
removed from the resulting MOTU table. The open-source R (RStudio 
Team, 2020) package “decontam” was used to remove MOTUs related to 
positive and negative controls (Davis et al., 2018). 

Finally, the dataset was refined by removing MOTUs that had not 
been assigned to marine eukaryotes and had fewer than 4 reads across 
all samples. 

2.6. Statistical analysis 

MOTU count data were processed and graphically represented using 
R V4.1.0 (RStudio Team, 2020). Rarefaction to 1,000 reads (the mini-
mum number of reads per sample) (McKnight et al., 2019; Weiss et al., 
2017) was chosen as the normalization method, using the function 
Rarefy in the Vegan R package (Dixon, 2003). Sediment sample LD-03, 
with less than 1,000 reads, was excluded from the following analysis. 

A differential abundance analysis was performed using the DEseq2 R 
package (Love et al., 2014) with MOTUs collapsed to the main taxa level 
(Phylum and Class) (P = 0.05), to have an overview of the different 
distribution among samples. 

All the following statistical analyses were performed at the MOTU 
level. To test possible differences in alpha diversity (MOTUs richness, 
loge Shannon and Pielou’s indexes) between sediment and bottom water 
samples and among sites, univariate permutational analysis of variance 
(PERMANOVA, α = 0.05; Anderson et al., 2008) was performed using 
Euclidean distance matrices on untransformed data and following a 
two-way design that included two fixed factors: Site (Si) with three 
levels (Foce del Bevano, Riccione, and Lido di Dante) and Sample Type 
(Sa) with two levels (bottom water and sediment). 

Two-way crossed multivariate PERMANOVA, based on the Bray- 
Curtis similarity matrix on 4th root transformed data, was used to test 
significant differences in community structure (α = 0.05, 9999 permu-
tations) among Sites, between Sample Type, and their interactions. 

Principal Coordinates Analysis (PCO) was used to visualize the 
changes in eukaryotic communities. 

Post-hoc pair-wise tests were performed for all significant PERMA-
NOVA results. 

A similarity percentage analysis (SIMPER, Clarke, 1993) was used to 
find the MOTUs that contribute the most to the differentiation between 
Sites, Sample Type, and their interactions. A shade plot to visualize the 
results was also generated. 

Univariate and multivariate analyses were performed using PRIMER 
v7 with the PERMANOVA + add-on package (Clarke and Gorley, 2015). 

Finally, we compared the distribution and abundance of several 
ecologically and commercially important species, chosen from the 
MOTUs assigned to species level. 

3. Results 

3.1. Data exploration 

Illumina sequencing produced a total of 8,730,993 paired-end reads 
that considerably decreased after their merging and quality filtering. 
Merged reads were 8,710,989; after size selection, 2,665,818 reads 
remained, distributed across 14,000 MOTUs. A total of 1,091,732 reads, 
equal to 6,866 MOTUs, were erased from the dataset after the taxonomic 
assignment. The R “decontam” package left 1,539,462 reads, equal to 
7,086 MOTUs. 2,920 MOTUs with fewer than four reads were removed 
from the final dataset, corresponding to 7,850 reads. The final MOTUs 
table consisted of 1,531,612 reads per 4,166 MOTUs (Table SM.3.1). 
The MOTU table is available at Zenodo (https://doi.org/10.5281/zenod 
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o.8077927). 
We got fewer reads in the bottom water samples (682,248) than in 

the sediment samples (849,364) but a higher number of MOTUs (3,857 
vs 3,012) and reads per sample (19,412.80 ± 147.94 s d. vs. 18,874.76 
± 231.76 s.d.). Riccione had the lowest number of MOTUs (4,307), but 
Lido di Dante had the lowest number of reads (221,445, Table SM.3.2). 

The comparison of taxonomic compositions of the samples (Deseq 
analysis), in terms of number of reads among the different MOTUs 
(Fig. 1), showed that the relative abundance of 18 of the 29 main taxa 
found in the dataset changed significantly across Sample Type 
(Table SM.4.1, Figure SM.4.1). Annelida, Bryozoa, Chlorophyta, Chor-
data, Echinodermata, Haptophyta, Ochrophyta, Porifera, Rhodophyta, 

and Rotifera were more present in bottom water samples than in sedi-
ment samples (P < 0.05); on the other hand, in the sediment samples 
Amoebozoa, Arthropoda, Bacillariophyta, Gastrotricha, Hetero-
kontophyta, Nematoda, Pyrrophycophyta, and Phoronida had a higher 
abundance in terms of reads (P < 0.05). The abundance of Bryophyta, 
Chaetognatha, Cnidaria, Ctenophora, Cryptophyta, Magnoliophyta, 
Mollusca, Nemertea, Platyhelminthes, Sipuncula and Zygomycota did 
not differ by Sample Type (P > 0.05). 

The main taxa were also differently distributed across Site (Fig. 1). 
Bacillariophyta, Cryptophyta, Echinodermata, and Rotifera dominated 
Foce del Bevano; while Bryozoa, Chordata, Porifera and Rodophyta 
were abundant in Riccione and Heterokontophyta in Lido di Dante. The 

Fig. 1. MOTU relative abundances collapsed at the main taxon level (Phylum and Class), as detected in bottom water and sediment samples (A) and Foce del Bevano, 
Lido di Dante and Riccione samples (B) by COI metabarcoding. 
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relative abundance of Annelida, Cnidaria, and Mollusca was higher in 
Lido di Dante and Riccione, while Gastrotricha was most abundant in 
Lido di Dante and Foce del Bevano (P < 0.05, Table SM.4.2, 
Figure SM.4.2). Amoebozoa, Arthropoda, Chaetognatha, Chlorophyta, 
Haptophyta, Magnoliophyta, Nematoda, Nemertea, Ochrophyta, Phor-
onida, Pyrrophycophyta, Platyhelminthes, Sipuncula, and Zygomycota 
abundance did not differ among sites (P > 0.05, Table SM.4.2, 
Figure SM.4.2). 

Furthermore, whereas some MOTUs were present in both matrices, 
others were exclusive to sediment or bottom water samples (Fig. 2). 

3.2. MOTUs richness and community structure 

The total number of MOTUs varied by Site and Sample Type. Bottom 
water samples from Riccione had the highest number of MOTUs (1,032) 
followed by sediment samples from Lido di Dante (987), while sediment 
samples from Riccione had the lowest number of MOTUs (608). 

The two-way PERMANOVAs analyses detected, for all the α-diversity 
metrics, a significant effect of the interaction between Site and Sample 
Type (Table SM.5.1). Pairwise test for the interaction (Si × Sa) showed 
higher significant values of MOTUs richness, Shannon and Pielou’s 
indices in bottom water samples at Foce del Bevano and Riccione than in 
sediment samples, conversely at Lido di Dante the MOTUs values for all 
the indexes were significantly higher in sediment samples than in bot-
tom water ones (Table SM.5.1, Fig. 3). In the sediment samples, all the 
indices at Lido di Dante were significantly higher than at Riccione and 
Foce del Bevano. Conversely, in the bottom water sample, all the indexes 
were higher at Riccione than in the other two sites (Table SM.5.1, 
Fig. 3). 

The two-way multivariate PERMANOVAs analyses evidenced that 
the structure of the communities was significantly affected by Site, 
Sample Type, and their interaction (Table 1). 

The PCO plot of the benthic community structure supported the 
PERMANOVA results revealed a clear separation between Sites and 
Sample Types, as well as their interaction (Fig. 4). 

Owing to the significant differences in Site × Sample Type interac-
tion, SIMPER analysis at the main taxa level was performed between 
Sample Types at each Site and between Sites in each Sample Type. 
SIMPER analysis revealed a high similarity within both Sample Types at 
each Site (Average similaritywater > 84%, Average similaritysediment >

86%). SIMPER analysis revealed that the average dissimilarity from 

bottom water and sediment samples (Sample Type group) across the 
three sites was higher in Riccione (27.26%) caused mostly by Annelida 
(13.32%), Rhodopyta (13.32%) and Chordata (12.41%). The highest 
dissimilarity was indeed observed between Foce del Bevano and Lido di 
Dante in sediment samples (28.65%) mostly caused by Nematoda 
(14.45%) followed by Mollusca (13.03%). In bottom water samples, the 
highest dissimilarity was between Foce del Bevano, and Riccione 
(22.3%) caused first of all by Annelida (14.48%) (Fig. 5, Table SM.6.1). 

3.3. Focus on species of ecological and commercial interest 

Among the MOTUs that were possible to taxonomically assigned at 
the species level, some warrant special consideration because of their 
ecological role or commercial value. Each consideration was done on the 
total amount of reads found in the dataset (SM.7). 

The wedge clam Donax trunculus Linnaeus, 1758 and the polychaeta 
Owenia fusiformis Delle Chiaje, 1844 were observed in high abundance in 
the samples of Foce del Bevano. O. fusiformis was found mostly in 
sediment samples (63 reads compared to the 4 found in bottom water) 
while the number of reads belonging to D. trunculus was higher in bot-
tom water samples (13) than in the sediment ones (9) (SM.7). 

The mussel Mytilus galloprovincialis Lamarck, 1819 and the barnacle 
Balanus trigonus Darwin, 1854 were dominant in Riccione bottom water 
samples (43 and 46 reads respectively), such as the ascidian Styela pli-
cata (Lesueur, 1823) with 65 reads. S. plicata was also abundant (46 
reads) at Lido di Dante and, with a lower abundance (4 reads), at Foce 
del Bevano. The Pacific oyster Magallana gigas (Thunberg, 1793) was not 
recorded at Riccione. 

The striped venus clam Chamelea gallina (Linnaeus, 1758) was 
abundant in Foce del Bevano and it was also found in Lido di Dante and 
Riccione, though not in great abundance. 

Finally, the ctenophore Mnemiopsis sp. (presumably as the invasive 
Mnemiopsis leidyi A. Agassiz, 1865) was only found in the bottom water 
samples at Foce del Bevano; while the marine turtle Caretta caretta 
(Linnaeus, 1758) was found in high abundance at Riccione, especially in 
the bottom water samples (2627 reads), followed by Foce del Bevano 
(605 reads which 592 belonging to bottom water samples) and with low 
abundance in Lido di Dante (15 reads). 

A high abundance of fishes was observed in bottom water samples 
and as expected, most of the detected species were benthonic species 
such as the Actinopterygii Chelon labrosus (Risso, 1827), Mora (Risso, 

Fig. 2. Stacked bar chart representing the proportion of MOTUs, across the 29 main taxa, detected exclusively in sediment (brown), bottom water (blue) or both 
Sample Types (light green). 
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1810), and Mullus barbatus Linnaeus, 1758, but pelagic species, such as 
Engraulis encrasicolus (Linnaeus, 1758) were also found. 

4. Discussion 

Our results confirm that combing environmental DNA and COI 
metabarcoding represents a quick and low-cost method for character-
izing the macrobenthic communities. Moreover, as Holman et al. (2019) 
and Antich et al. (2021) observed, the use of different environmental 
sample types can affect the composition of taxa within communities. In 
fact, we found a significant effect of the Site-Sample Type interaction, 
suggesting that the differences in benthic communities observed be-
tween the two sampled matrices are site-dependent. 

Differences observed at the local scale, enabling to assess differences 
among sites some kilometres away differing in environmental conditions 
and anthropogenic pressures (Holman et al., 2019; Jeunen et al., 2019), 
can support better coastal management, as suggested by Pawlowski et al. 

(2020). The observed differences in the benthic communities among 
sites may be due to the abiotic characteristics of the three sites, which 
are differently affected by river inputs, urbanization, coastal defence 
structures, beach nourishment, and seaside tourism (Abbiati et al., 2019; 
Colosio et al., 2007; Menegon et al., 2023; Vecchi et al., 2020; Zanuttigh 
et al., 2005). The greater number of coastal defence elements present in 
Lido di Dante and the presence of concrete experimental structures at 
Riccione, which brought a new type of substrate, can increase the spe-
cies diversity at the local scale (Martinelli et al., 2011; Sherrard et al., 
2016) providing substrate for sessile species (e.g. the mussels Mytilus 
galloprovincialis) and allow the establishment of hard-bottom non-native 
species, like Styela plicata and Balanus trigonus that were highly abun-
dant at these sites (Airoldi et al., 2015, 2016; Martinelli et al., 2011). On 
the contrary, Foce del Bevano protected area, the most pristine site, has 
shown the lowest taxa diversity but with the presence of some species of 
ecological importance that are typical of low-impacted areas. 

The Pacific oyster Magallana gigas was found at Lido di Dante and 
Foce del Bevano and was already observed on nearby breakwaters and 
on the muddy bottoms inside the Bevano river mouth (Abbiati et al., 
2019). Nevertheless, it was present with a very low number of reads, 
despite it forms extensive beds in both these sites (Zanuttigh et al., 
2005). 

Furthermore, our study has identified some benthic species of high 
commercial and ecological interest that were abundant in single sites, 
evidencing the need for detailed studies on single species. In particular, 
the wedge clam Donax trunculus and the polychaeta Owenia fusiformis, 
usually associated with the striped venus clam Chamelea gallina (Grazioli 
et al., 2022), were observed in a high abundance at Foce del Bevano. 
These species have already been identified quantitatively in the area 
through morphological analysis (Abbiati et al., 2019) supporting the 
idea that this area is suitable for their settlement and reproduction. 

Noteworthy was the case of the striped venus clam Chamelea gallina, 
an important commercial species that nowadays is in decline all along 
the Mediterranean Sea due to the overexploitation (Grazioli et al., 
2022). The species was detected both at Foce del Bevano and Riccione. A 
study focusing on C. gallina could be useful to depict the distribution of 
this species and improve the effectiveness of its conservation. 

The spatial variability in the community structure and species dis-
tribution observed in this work suggest the adoption of site-specific 
coastal defence interventions because species can be impacted and 
respond differently to management interventions (Colosio et al., 2007, 
Bulleri and Chapman, 2010). 

Overall, we found significantly more MOTUs in bottom water sam-
ples than in sediment samples, and the proportion of unique MOTUs 
(MOTUs found only in that sample type) detected in bottom water was 
higher than in the sediments. Benthic and pelagic fishes are better 

Fig. 3. Mean + standard error of A) Species richness B) Shannon index, and C) 
Pielou’s index of the benthic communities in the two Sample types (Sediment 
sample in brown and bottom water sample in blue) at the three study sites. 

Table 1 
Results of the permutational analysis of variance (PERMANOVA) of 4th-root 
transformed abundance data and pair-wise analysis testing for differences in 
community structure of benthic communities between Sample Type and Sites. 
Df = degrees of freedom; MS = mean squares; P (perm) = permutational P 
values; LD = Lido di Dante; RI= Riccione; BE= Foce del Bevano; W = bottom 
water sample; S = sediment sample. Significance level: ***P < 0.001.  

Source df MS Pseudo- 
F 

P 
(perm)  

Unique 
perms 

Site (Si) 2 15771 6.50 0.0001 *** 9820 
Sample Type 

(Sa) 
1 28982 11.94 0.0001 *** 9865 

Si x Sa 2 11058 4.56 0.0001 *** 9804 
Residual 73 2426.9     
Total 78       

Pair-wise test, Si x Sa: Sediment: BE ∕= LD ∕= RI 
Bottom water: BE ∕= LD ∕= RI 
Foce del Bevano: S ∕= W 
Lido di Dante: S ∕= W 
Riccione: S ∕= W  
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represented in bottom water than in sediment samples, probably 
because their vagile nature and their capability to move across a wider 
area (Holman et al., 2019). Bottom water samples also contained a 
higher number of MOTUs of the Phylum Porifera, suggesting that 1) 
wave action and the high human presence may have broken these or-
ganisms into fragments that were suspended in the water column; 
and/or 2) they are present as oocytes and larvae due to their repro-
ductive period that occurred in summer, when the sampling was per-
formed (Di Camillo et al., 2012). The phylum Ctenophora was found 
only in bottom water samples, as Mnemniopsis sp., likely M. leidyi, one of 
the 100 World’s worst invasive alien species according to the Interna-
tional Union for Conservation of Nature (Lowe et al., 2000) and recently 
widespread in the northern Adriatic Sea (Malej et al., 2017). The prev-
alence of certain taxa such as M. leidyi or Bacillariophyta, can be linked 
to their strong seasonality, primarily which is primarily influenced by 
variations in environmental factors, such as temperature, sunlight, and 
nutrient availability, that profoundly influence the growth and repro-
ductive cycles of various organisms (Coma et al., 2000). To have a more 
detailed picture of the benthic communities that characterize the stud-
ied areas a sampling during each season should be performed. 

Our results are in accordance with Holman et al. (2019) who, in 
order to use metabarcoding to characterize the overall communities in 
an area, emphasized the need for an integration of different eDNA 
sample types. However, to perform routinely spatial and temporal 
monitoring to evaluate changes in the benthic communities caused by 
coastal interventions, environmental DNA sampling from sediments can 
be sufficient, reducing the likelihood of detecting species that do not 
truly belong to the sea bottom and that, due to their large size (i.e., 
Caretta caretta), can mask the detection of species more sensitive to 
anthropogenic impacts (Holman et al., 2019). The presence of C. caretta 
is not surprising because the Adriatic Sea represent a well-known 
foraging area for this species (Bertuccio et al., 2019). However, the 
high abundance of sequences related to C. caretta in Riccione samples 
compared to the other two sites can be attributed to the nearby presence 
of the Fondazione Cetacea, a turtle recovery centre that during the 
sampling period freed previously recovered specimens. 

5. Conclusion 

The congruence of the metabarcoding results with those carried out 

Fig. 4. Principal Coordinate Analysis (PCO) plot comparing the structure of benthic communities between samples among Sample Type and Site. S = sediment 
samples; W = bottom water samples; BE= Foce del Bevano; LD = Lido di Dante; RI= Riccione. 

Fig. 5. Shade plot of 4th-root transformed abundance data of main taxa (rows) × sample replicates (columns) matrix of abundances at each Site and Sample Type. S 
= sediment sample; W = bottom water sample; BE= Foce del Bevano; LD = Lido di Dante; RI= Riccione. 
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by morphological identification of the organisms strengthens the call for 
this kind of molecular approach in the assessment and monitoring of 
benthic communities also considering the need to use different envi-
ronmental DNA sample type to have an overall understanding of the 
diversity and structure of the benthic communities and the species in the 
surrounding areas. Nevertheless, taxonomic approaches are still very 
important to implement the barcoding databases and create local ones 
(Mugnai et al., 2023a). 

In conclusion, this is the first molecular assessment of the marine 
biotic assemblages of three sites along the Emilia-Romagna coastline 
that were and are nowadays affected by coastal erosion and human 
disturbances. Being fast and effective in distinguishing local commu-
nities, even using only one type of sample, this approach could be 
included as integrative approach in the monitoring plans for integrated 
coastal zone management, as well as to survey the spread of non- 
indigenous species and the possible effects of climate change (Toimil 
et al., 2020). 
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