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Abstract
Motivation: Coiled-coil domains (CCD) are widespread in all organisms and perform several crucial functions. Given their relevance, the compu-
tational detection of CCD is very important for protein functional annotation. State-of-the-art prediction methods include the precise identification
of CCD boundaries, the annotation of the typical heptad repeat pattern along the coiled-coil helices as well as the prediction of the oligomerization
state.

Results: In this article, we describe CoCoNat, a novel method for predicting coiled-coil helix boundaries, residue-level register annotation, and
oligomerization state. Our method encodes sequences with the combination of two state-of-the-art protein language models and implements a
three-step deep learning procedure concatenated with a Grammatical-Restrained Hidden Conditional Random Field for CCD identification and re-
finement. A final neural network predicts the oligomerization state. When tested on a blind test set routinely adopted, CoCoNat obtains a perfor-
mance superior to the current state-of-the-art both for residue-level and segment-level CCD. CoCoNat significantly outperforms the most recent
state-of-the-art methods on register annotation and prediction of oligomerization states.

Availability and implementation: CoCoNat web server is available at https://coconat.biocomp.unibo.it. Standalone version is available on
GitHub at https://github.com/BolognaBiocomp/coconat.

1 Introduction

Coiled-coil domains (CCD) in proteins are structural motifs
where a-helices pack together in an arrangement called knobs
into holes (Crick 1952, 1953a, b). Since the first crystallographic
observation in the structure of influenza virus hemagglutinin
(Wilson et al. 1981), CCDs have been resolved in several proteins
through all the kingdoms of life (Truebestein and Leonard 2016).
CCDs are present, among others, in structural proteins, transcrip-
tion factors, and enzymes (Truebestein and Leonard 2016, Lupas
and Bassler 2017). CCDs act as molecular spacers, influence the
organelle organization, constrain the distance of residues involved
in binding and catalytic sites, mediate membrane fusion, and are
involved in signal transduction and solute transport.

Canonical CCDs include the interaction of two or more
a-helices, wound around each other and forming a super-
coiled bundle. Each helix is characterized by the repetition of
a seven-residue motif (heptad repeat) whose positions are re-
ferred to as registers and are labeled as abcdefg. Positions a
and d are routinely occupied by hydrophobic residues and
mediate the interaction between different helices in the do-
main. As a result of the formation of the supercoil bundle, the
effective periodicity of a-helices in CCDs changes from 3.6 to
3.5 residues per turn (Lupas and Gruber 2005, Lupas et al.
2017, Szczepaniak et al. 2020). This implies that residues in

the same register lie on the same side of the helix surface.
Therefore, the hydrophobic nature of residues in registers a
and d confers a peculiar amphipathic character to the a-helix.
In CCDs, a-helices interact with each other through their hy-
drophobic face (Lupas and Gruber 2005). CCDs can contain
helices characterized by non-canonical repeats, longer than
seven residues, i.e. hendecades, pentadecades, and nonade-
cades (Lupas and Gruber 2005, Szczepaniak et al. 2020). This
article does not take into consideration these cases.

CCDs are classified according to the number and orienta-
tion of the involved a-helices, i.e. by their oligomerization
state. CCDs based on the orientation of helices are classified
as parallel or antiparallel and based on the number of helices
as dimers, trimers, and tetramers.

CCDs are routinely annotated starting from the protein 3D
structure, adopting specialized software such as SOCKET
(Walshaw and Woolfson 2001) and SamCC-Turbo
(Szczepaniak et al. 2020). Annotations performed with the
two methods are collected in the CCþ database (http://coiled
coils.chm.bris.ac.uk/ccplus/search/, Testa et al. 2009) and in
the CCdb database (https://lbs.cent.uw.edu.pl/ccdb), respec-
tively. Semi-manual annotations are also available in the
SCOPe database (Fox et al. 2014).

The relevance of CCDs in protein annotation requires the
development of computational methods for predicting the
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presence and localization of CCDs (including registers), and
their oligomerization state, starting from the protein se-
quence. Over the years, several methods have been proposed,
addressing the different tasks of CCD prediction. Boundaries
of a-helices involved in CCDs can be predicted with COILS
(Lupas et al. 1991), PCOILS (Gruber et al. 2005), MARCOIL
(Delorenzi and Speed 2002), Multicoil2 (Trigg et al. 2011),
CCHMM_PROF (Bartoli et al. 2009), DeepCoil (Ludwiczak
et al. 2019), and CoCoPRED (Feng et al. 2022).The oligo-
meric state is predicted with PrOCoil (Mahrenholz et al.
2011), LOGICOIL (Vincent et al. 2013), and CoCoPRED
(Feng et al. 2022). To date, methods predicting the registers
along the heptad are MARCOIL (Delorenzi and Speed 2002),
Multicoil2 (Trigg et al. 2011), DeepCoil2 (Ludwiczak et al.
2019), and CoCoPRED (Feng et al. 2022).

Recently protein language models improved sequence
encoding procedures. Here we introduce CoCoNat which, for
the first time, adopts a sequence encoding based on the com-
bination of two state-of-the-art protein language models,
ProtT5 (Elnaggar et al. 2021) and ESM2 (Lin et al. 2023) and
based on deep-learning computes: (i) the coiled-coil helix
boundaries; (ii) the residue-level register annotation, and (iii)
the CCD oligomerization state.

We trained CoCoNat on a dataset comprising 2198 pro-
teins containing CCDs and 9062 proteins without CCD (neg-
ative examples). When tested on a blind test set including 400
CCD and 318 non-CCD proteins, CoCoNat scores with a
performance that is superior to the current state-of-the-art
both for residue-level and segment-level CCD detection.
Moreover, CoCoNat significantly outperforms other meth-
ods, on both register annotation and prediction of CCD oligo-
merization state.

2 Materials and methods
2.1 Datasets

CoCoNat is trained and tested on the same datasets adopted
in CoCoPRED (Feng et al. 2022). Numbers are summarized
in Table 1 and all datasets are available at the CoCoNat web-
site (https://coconat.biocomp.unibo.it). Additional statistics
on the oligomeric state classification of coiled-coil helices in
the training and testing sets are reported in Supplementary
Fig. 1.

2.1.1 Training dataset
The positive training dataset contains 2191 proteins out of
the 2337 included in CoCoPRED and deriving from 30,227
CCD-containing proteins annotated with SOCKET (Walshaw
and Woolfson 2001) in the CCþ database (Testa et al. 2009).

Briefly, proteins included in the positive training set of
CoCoPRED have been selected with the following criteria: (i)
protein structure resolution < 4 Å, (ii) protein length between
25 and 700 residues, (iii) length of CCD helices � 8 residues;
(iv) absence of non-canonical (i.e. non-heptad based) CCDs;
(v) CCD oligomeric state classified as parallel or antiparallel
dimer, trimer, and tetramer; (vi) sequence pairwise identity

lower than 30% with respect to proteins in the testing set (see
below); and (vii) internal pairwise sequence identity lower
than 50%.

Since CoCoNat relies on full length proteins for the compu-
tation of sequence embeddings, we applied further filters to
the CoCoPRED positive training dataset, removing: (i) pro-
teins not mapped into UniProt; (ii) synthetic and fusion pro-
teins; and (iii) proteins whose structure coverage with respect
to the UniProt sequence is lower than 70%. After this screen-
ing, the positive dataset includes 2191 proteins with 4342
coiled-coil helices, whose length ranges from 8 to 145 resi-
dues. The number of coiled-coil helices per protein ranges
from 1 to 19.

The negative training set of CoCoNat includes 9040 pro-
teins. This derives from the 9358 proteins of the negative set
of CoCoPRED that was obtained from the negative set of
DeepCoil (Ludwiczak et al. 2019) after the exclusion of pro-
teins with a sequence identity> 30% with respect to the blind
test set (see Section 2.1.2) and with a sequence identity> 50%
with respect to the positive training set. We filtered out pro-
teins not mapped into UniProt.

Proteins in the training set (both positive and negative
examples) were split into 10 subsets for 10-fold cross-
validation. To reduce the redundancy among cross-validation
sets, proteins sharing more than 25% sequence identity at
50% coverage are clustered in the same set. Cross-validation
sets were used to set all the hyperparameters.

2.1.2 Blind test dataset
To test and benchmark CoCoNat with other available meth-
ods, we adopted the 718 proteins included in the CoCoPRED
test set. The CoCoPRED set shares less than 30% sequence
identity with proteins in the training sets of CCHMM_PROF
(Bartoli et al. 2009), MARCOIL (Delorenzi and Speed 2002),
Multicoil2 (Trigg et al. 2011), CoCoPRED (Feng et al. 2022),
and DeepCoil2 (Ludwiczak et al. 2019).

Since coiled-coil annotation for this dataset was not avail-
able from the CoCoPRED website, we ran SOCKET in house
on the structure of the main biological assembly of each PDB
included in the dataset. By this, 400 proteins are annotated as
containing CCD while 318 do not contain any coiled-coil seg-
ment. Overall, the 400 positive proteins contain 863 coiled-
coil helices (Table 1).

2.2 Protein encoding

CoCoNat makes use of residue embeddings obtained with
large-scale protein language models (pLMs) to represent pro-
teins in training and testing sets. Specifically, we adopted two
state-of-the-art pLMs: ProtT5 (Elnaggar et al. 2021) and
ESM2 (Lin et al. 2023), generating, for each residue in the
protein sequence, 1024 and 1280 features, respectively. The
ESM2 model has been released in several versions, based on
different transformer architectures with a varying number of
cascading layers. In order to limit the resources required to
compute the representations and having an embedding dimen-
sion comparable to that provided by ProtT5, we adopted the
intermediate model, providing representations of 1280 com-
ponents and comprising 33 transformer layers with 650M of
parameters. Residue-level representations are then
concatenated together, leading to vectors of 2304 dimensions
for each residue in the sequences. The concatenation of
embeddings obtained with different pLMs has been shown to

Table 1. Training and testing set of CoCoNat.

Positive proteins Helices in CCDs Negative proteins

Training set 2191 4342 9040
Blind test set 400 863 318

2 Madeo et al.
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improve the performance in previous works (Manfredi et al.
2022, 2023).

2.3 CoCoNat architecture

CoCoNat is organized as a three-step method combining a
deep learning approach, a probabilistic graphical model, and
a single-layer neural network (NN) in a cascading way. The
three different steps of the model are trained independently
from each other. The first two steps are collectively devised
for detecting coiled-coil helix boundaries and the residue-level
annotation of registers within each predicted helix. The third
step predicts the CCD oligomerization state (Fig. 1). In the
following sections, each step is briefly described.

2.3.1 Deep learning architecture
The first step (Fig. 1) is based on a convolutional layer
(LeCun et al. 1989) followed by a long short-term memory
(LSTM) layer (Hochreiter and Schmidhuber 1997). The con-
volutional layer captures local dependencies of the input data.
This layer, adopting a 15 residue long sliding window, takes
as input the protein, where each residue is represented with a
2304-feature vector. By applying 40 different filters, the layer
outputs the same protein with residues encoded with

40-feature vectors. This mapping is provided as input to a
LSTM layer including 128 output neurons, which captures
long-range dependencies. Finally, we apply a standard feed-
forward network (with 64 hidden neurons) with 8 output
neurons (one for each possible coiled-coil registers, a–b–c–d–
e–f–g, plus one, i, for non-CCD residues), endowed with a sig-
moid activation function. The output gives the per-residue
probability of each register or none.

In order to reduce overfitting, we introduce dropout layers
between convolutional, LSTM, and the feed-forward network
with rate fixed to 0.25. The architecture was trained with a
gradient descent of the Kullback–Leibler divergence error
function with the Adam optimization algorithm (Kingma and
Ba 2017). The Kullback–Leibler loss was chosen since it well-
fits with models providing probability distributions in output,
as in our case. The best model was determined using the early
stopping technique of 10 epochs in which the validation error
did not decrease.

2.3.2 Refining the prediction with Grammatical-Restrained
Hidden Conditional Random Field (second step)
The second step (Fig. 1) takes in input the probabilites com-
puted by step 1. Grammatical-Restrained Hidden Conditional

Figure 1. Workflow of the predictive model of CoCoNat, comprising three steps. The step 1maps each residue, encoded with a 2304-dimensional vector

(the concatenation of ProtT5 and ESM2 embeddings) into an eight-dimensional vector representing the probability distribution over the labels (a–g

registers for coiled-coil helices and i for non-CCD portions). It combines in cascade (i) a convolutional layer that computes a 40-dimensional representation

for each position in the sequence, based on a sliding window of 15 contiguous residues, (ii) an LSTM layer that analyzes the whole sequence and

provides a 128-dimensional representation for each position, and (iii) a fully connected feed-forward NN that, residue by residue, provides the 8-

dimensional mapping. The step 2 consists of a GRHCRF that casts the grammar of CCDs in the topology of the connections among 20 different states.

Each sequence is generated by a path that starts from the BEGIN state and can either enter the self-looping i0 state, which models the N-terminal non-

CCD portion of the protein, or the first eight-state block (1a–1b–1c–1d–1e–1f–1g–1H), which models the first CCD domain. Labels a–g of the states in the

block correspond to registers and state H accommodates non-regular transitions. Residues after the first coiled-coil helix are modeled by the i1 state (non-

CCD) and, in case, by a second CCD block (2a–2b–2c–2d–2e–2f–2g–2H), analogous to the first one. All states, but 1H and 2H, can make transition to the

END state, terminating the path. GRHCRF provides the annotation of coiled-coil helix boundaries and of registers by computing the optimal a posteriori

Viterbi path, given the probabilities computed in the step 1. The step 3 provides the prediction of the oligomeric state, based on the annotation computed

in step 2 and on the 2304-dimensional embedding. For each predicted coiled-coil helix, embeddings labeled with registers a and d are separately averaged

and fed into a feed-forward NN that computes the probability distribution over the four possible classes (parallel and antiparallel dimer, trimer, and

tetramer). The three steps of the architecture are trained separately.

CoCoNat: deep learning-based coiled-coil prediction 3
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Random Field (GRHCRF) is a discriminative probabilistic
model (Fariselli et al. 2009, Madeo et al. 2021), and it allows
to introduce the regular grammar of the CDD registers. In the
prediction phase, a posterior-Viterbi dynamic-programming
algorithm computes the most probable path along the model,
satisfying the grammatical constraints.

In our model, the grammar has two identical blocks for
CCD prediction, two states (i0 and i1 in Fig. 1, step 2) with a
self-loop modeling the non-CCD regions, one BEGIN and one
END states. In each CCD block, seven states model the regis-
ter sequence, and one further state (H, 1, and 2) accommo-
dates non-regular transitions (i.e. transitions escaping the
regular heptad repeat pattern, abcdefg). The first GRHCRF
block models the first coiled-coil helix and the second one
models all the others coiled-coil helices, when present, in the
protein sequence.

The GRHCRF output defines the precise identification of
CCD boundaries and annotates the typical heptad repeat pat-
tern along the coiled-coil helices.

2.3.3 Prediction of the oligomerization state
The prediction of the CCD oligomerization state adopts a
simple feed-forward NN with a single hidden layer, compris-
ing 128 neurons, and four output units corresponding to the
four possible oligomerization states: parallel and antiparallel
dimers, trimers, and tetramers.

The input of this network is built based on a well-known
biophysical feature: the oligomeric state of canonical CCD is
largely determined by the nature of hydrophobic residues in
the heptad repeat pattern, namely, residues labeled with regis-
ters a and d (Woolfson 2023; Li et al. 2016). Based on this ob-
servation, for a given coiled-coil helix, the network input is
obtained concatenating the average embedding vectors of a
and d predicted positions.

More formally, given a coiled-coil helix of length l, with an
embedding matrix E of dimension l � 2304 (as derived from
the concatenation of two pLM embeddings, ProtT5 and
ESM2), the following two mean vectors are computed:

ea ¼
1

Na

X

r¼a

Er (1)

ed ¼
1

Nd

X

r¼d

Er (2)

where Na and Nd are the number of positions labeled with
registers a and d, respectively. The input vector for the net-
work is then obtained concatenating ea and ed:

x ¼ ea � ed (3)

where �½ � denotes the vector concatenation operator.

2.3.4 Model training and selection procedure
The whole CoCoNat architecture was trained with three inde-
pendent training procedures for steps 1, 2, and 3.

The deep-learning architecture of step 1 was optimized us-
ing 10-fold cross-validation and a grid search to select the
main model hyperparameters. Specifically, we selected the
best number of convolutional filters (testing values in the set
10, 20, 40, 80, 160), the optimal LSTM hidden output size

(testing values in the set 32, 64, 128, 256), and the optimal
number of hidden neurons in the final feed-forward network
(testing values in the set 12, 32, 64, 128, 256). The optimal
configuration was chosen as the one maximizing the cross-
validation F1 score at residue level (see next section), and in-
clude 40 convolutional filters, 128 units for the LSTM size
and 64 neurons in the hidden layer of the final feed-forward
network.

For step 2, the hyperparameters of the GRHCRF include
the r2 used for L2 regularization and the number of training
iterations (Fariselli et al. 2009). These were optimized in
cross-validation and grid search testing various combinations
(r2 in the set 0.0001, 0.001, 0.05, 0.1 and iterations in the set
10, 20, 40, 100). The optimal values are r2¼ 0.05 and 40
iterations.

Finally, step 3 architecture only required to optimize the
number of hidden neurons. Again, we tested different values
(16, 32, 64, 128, 256) and selected the optimal one as those
maximizing the average MCC across the four oligomeric
states. The best value is 128.

Steps 1 and 3 architectures are implemented in PyTorch
(https://pytorch.org/). The GRHCRF is implemented using the
biocrf package (Fariselli et al. 2009).

2.4 Scoring performance

To evaluate the performance of our method in recognizing
coiled-coil helices, we adopted residue- and segment-based
measures.

The residue-based scores include precision (PRER), recall
(RECR), and F1-score (F1R).

PRER ¼
TPR

TPR þ FPR
(4)

RECR ¼
TPR

TPR þ FNR
(5)

F1R ¼
2� PRER � RECR

PRER þ RECR
(6)

where TPR, FPR, and FNR are true positive, false positive, and
false negative coiled-coiled residues, respectively.

Analogously, the segment-based scores include precision
(PRES), recall (RECS), and F1-score (F1S):

PRES ¼
TPS

TPS þ FPS
(7)

RECS ¼
TPS

TPS þ FNS
(8)

F1S ¼
2� PRES � RECS

PRES þ RECS
(9)

In this case, TPS, FPS, and FNS are computed for the coiled-
coil helices. Prediction is considered correct (TPS) only if the
overlap between predicted and observed segments is at least
equal to the half-length of the longest segment.

4 Madeo et al.
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Following Feng et al. (2022), we used two segment overlap
(SOV) measures, one taking as reference observed residues
(SOVo) and one taking as reference predicted residues
(SOVp) (Zemla et al. 1999).

We computed the precision-recall (PR) curve and the rela-
tive area under the curve (PR-AUC), by plotting the two
measures at varying thresholds of coiled-coil probabilities as
obtained from the GRHCRF posterior probability values.

For the register and oligomeric state prediction tasks, we
reported class-level MCC values:

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p (10)

3 Results
3.1 Visualizing ProtT5 and ESM2 embeddings with

t-SNE

For evaluating whether the two language models capture
coiled-coil-related features in their representations, we
adopted t-SNE (van der Maaten and Hinton 2008) to project
raw embedding vectors obtained with ProtT5 and ESM2 in
two dimensions.

First, we wanted to assess if the raw embeddings can distin-
guish the different register features. To this aim, we projected
all representations of coiled-coil residues in the training set,
and then we colored projected points by the heptad repeat
register they are annotated with, distinguishing two classes:
hydrophobic register positions (a and d) and polar positions
(b, c, e, f, and g). Results are shown in Supplementary Fig.
2A. From the projections, even if a clear separation is missing,
it is evident that the two models can capture the hydrophobic/
polar register difference to a good extent. Among the two
models, ProtT5 seems to provide a slightly better separation.

Second, to investigate if the embedding can capture the rela-
tion between hydrophobic registers and oligomeric state, we
projected all representations of hydrophobic register positions
in the training set (a and d), and then we colored projected
points according to the oligomeric state of the corresponding
helix. Resulting t-SNE projections are shown in
Supplementary Fig. 2B. In this case, the separation is less evi-
dent, even if some clusters are visible (mostly in ProtT5 pro-
jections) for parallel dimers and trimers. Possibly, more t-SNE
dimensions are needed to achieve a better separation.

Overall, these experiments suggest that information is al-
ready present in the raw embeddings. However, a specific
transfer learning architecture, processing the whole sequence,
and further exploiting the local and global sequence context is
needed to better capture coiled-coil features.

3.2 Cross-validation results

We performed 10-fold cross-validation experiments to evalu-
ate the contribution from the two protein language models.
We independently trained three different identical models
adopting as input: (i) ProtT5, (ii) ESM2, and (iii) both encod-
ings combined in a single vector. Results are reported in
Table 2. The overall prediction achieved with each one of the
two language models is similar (F1R and F1S scores equals
0.44, 0.34, and 0.46, 0.37 with ProtT5 and ESM2, respec-
tively). However, combining the two embeddings into a single
vector leads to better performances, raising both precision
and recall values, and achieving F1R and F1S values of 0.52

and 0.41, respectively. This suggests that the two models are
somewhat complementary. We analyzed and compared
residue-level true positive predictions obtained with inputs
based on the two pLMs. We find that the two models individ-
ually trained with ProtT5 and ESM2 share 25 373 correctly
predicted residues, and that 4166 and 8341 coiled-coil resi-
dues are correctly and uniquely identified, respectively. This
finding highlights the complementarity of the two models.
These results agree with previous works in which the combi-
nation of embeddings from different pLMs has been proven
effective also for other prediction tasks (Manfredi et al. 2022,
2023). All results presented in this manuscript are obtained
using the combination of the two input embeddings.

3.3 Prediction of coiled coils on the blind test set

CoCoNat is benchmarked on the same blind test set against
available methods. In Table 3, we report results for the predic-
tion of coiled-coil helices. Tested methods include:
MARCOIL (Delorenzi and Speed 2002), CCHMM_prof
(Bartoli et al. 2009), Multicoil2 (Trigg et al. 2011),
DeepCoil2 (Ludwiczak et al. 2019), and CoCoPRED (Feng
et al. 2022). All the methods were run in house using the re-
spective available standalone versions. Since DeepCoil2 does
not provide a classification but rather a probability value, we
report results obtained by applying two different probability
thresholds set to 0.2 and 0.5, respectively.

CoCoNat, which adopts encodings based on ProT5 and
ESM2, outperforms the state-of-the-art, showing (with re-
spect to the second top performing method in the benchmark)
an improvement in the per-residue precision value (0.55),
with a slight loss in recall (0.53), which is reflected in the
higher value of the F1-score (0.54). The per-segment scores of
CoCoNat confirm this trend. Moreover, CoCoNat performs
with the highest SOVp and the third highest SOVo (see
Section 2.4 for definition).

For sake of assessing the significance of the differences ob-
served in data reported in Table 3, we performed a boostrap-
ping procedure and a two-sample Welch’s t-test. Specifically,
from the blind test set results, we randomly selected 100 sam-
ples of 300 sequences and evaluated all the methods using res-
idue- and segment-level scoring measures. Then, average
performances of CoCoNat were compared for statistical sig-
nificance with average scores of other tools. All the differences
observed in this experiment reflect those reported in Table 3
and are all significant at 0.0001 significance threshold.
Results are reported in Supplementary Table 1.

3.4 Prediction of coiled-coil registers

We compared CoCoNat with other tools in the task of anno-
tating heptad repeat registers. To this aim, we used the blind
test of 400 proteins endowed with CCDs. Results of all

Table 2. Prediction of coiled-coil helices with CoCoNat adopting different

embeddings.a

Input PRER RECR F1R PRAUC PRES RECS F1S

ProtT5 0.42 0.46 0.44 0.38 0.32 0.36 0.34
ESM2 0.50 0.50 0.46 0.41 0.47 0.32 0.37
ProtT5þESM2 0.51 0.47 0.49 0.47 0.38 0.37 0.37

a CoCoNat architecture is depicted in Fig. 1. The training set is described
in Table 1. Results are obtained adopting a 10-fold cross-validation. For
details, see Section 2. Subscript R: per residue; subscript S: per CC helix
segment. Variability across cross-validation sets is lower than 1% for all
scores.
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methods were generated using the respective standalone ver-
sions (Table 4).

For all the register labels a–g, CoCoNat MCC values indi-
cate an improvement ranging from 16% to 19% with respect
to the second best-performing method, CoCoPRED.

Remarkably, CoCoNat MCC values are quite similar
across all the seven different register labels, suggesting that
the register is routinely predicted in the correct regular config-
uration, from label a to g. This highlights that the GRHCRF
grammar is properly capturing transition constraints among
the different registers within the coiled-coil segments.

3.5 Prediction of the CCD oligomerization state

We finally compared CoCoNat, LOGICOIL (Vincent et al.
2013) CoCoPRED (Feng et al. 2022) on the task of predicting
CCD oligomerization state. Again, we used the blind test set
of 400 proteins as benchmark. The three methods are com-
pared assuming an oracle predictor for the identification of
CCD segments (i.e. we classify real CCD segments into the
four oligomerization classes). In Table 5, we report a compar-
ison of the three approaches in terms of per-class MCCs.

Looking at the MCC values, CoCoNat significantly over-
passes CoCoPRED and LOGICOIL, providing predictions
that are overall higher and more balanced across the four olig-
omerization state classes. Remarkably, CoCoNat outperforms
other tools also on less abundant classes, i.e. trimers and
tetramers.

3.6 CoCoNat availability and analysis of running time

We release CoCoNat as both web server and standalone ver-
sion. The web server is available at https://coconat.biocomp.
unibo.it. The server provides a user-friendly web interface,
allowing the user to choose between two modes of use of the
tool: (i) analysis and visualization of coiled-coil prediction
results for a single input sequence; (ii) submission of a batch
job allowing prediction of coiled-coils and download of
results (in TSV and JSON formats) for up to 500 sequences
per job. Additionally, for single-sequence mode, we also pro-
vide the possibility of uploading a pre-determined set of
coiled-coil segments, restricting the prediction to the oligo-
meric state only. The web application is implemented using
Django (version 4.0.4), Bootstrap (version 5.3.0), JQuery
(version 3.6.0), and neXtProt FeatureViewer (version 1.3.0-
beta6) for visualization of predicted coiled-coil segments
along the sequence.

The standalone version of CoCoNat is available on GitHub
at https://github.com/BolognaBiocomp/coconat. The stand-
alone tool is implemented in Python as a Docker container-
ized application. This avoids the installation of dependencies
and allows users to quickly install the program in any server
equipped with Docker. Instructions on how to build the
Docker image and run CoCoNat are available on the GitHub
repository.

We performed experiments to evaluate the running time of
CoCoNat in different conditions. All the experiments were
performed on the virtual machine hosting the web server,

Table 4. CoCoNat and the state-of-art methods on the prediction of heptad repeat registers.

Methoda MCC (a) MCC (b) MCC (c) MCC (d) MCC (e) MCC (f) MCC (g)

MARCOIL 0.67 0.67 0.67 0.67 0.66 0.66 0.66
Multicoil2 0.56 0.56 0.57 0.57 0.58 0.58 0.57
DeepCoil2 (th¼0.2) 0.62 0.62
DeepCoil2 (th¼0.5) 0.68 0.68
CoCoPRED 0.65 0.67 0.67 0.66 0.66 0.67 0.65
CoCoNat 0.84 0.84 0.84 0.84 0.83 0.83 0.83

a MARCOIL (Delorenzi and Speed 2002); Multicoil2 (Trigg et al. 2011); DeepCoil2 (Ludwiczak et al. 2019); CoCoPRED (Feng et al. 2022). The blind test
set contains 400 positive proteins. Bold values highlight the highest scores.

Table 3. CoCoNat and the state-of-art methods on the same blind test set.

Methoda PRER RECR F1R PRAUC PRES RECS F1s SOVO SOVP

MARCOIL 0.34 0.26 0.29 0.16 0.24 0.06 0.1 18.15 48.03
CCHMM_prof 0.16 0.6 0.23 0.12 0.25 0.15 43.25 16.32
Multicoil2 0.34 0.13 0.19 0.15 0.19 0.01 0.02 7.40 48.86
DeepCoil2 (th¼0.2) 0.39 0.6 0.48 0.36 0.42 0.49 0.45 59.83 50.93
DeepCoil2 (th¼0.5) 0.51 0.33 0.4 0.36 0.53 0.2 0.29 31.17 66.64
CoCoPRED 0.43 0.54 0.48 0.45 0.38 0.46 0.41 57.64 51.17
CoCoNat 0.55 0.53 0.54 0.46 0.57 0.43 0.49 54.35 66.93

a MARCOIL (Delorenzi and Speed 2002), CCHMM_prof (Bartoli et al. 2009), Multicoil2 (Trigg et al. 2011), DeepCoil2 (Ludwiczak et al. 2019),
CoCoPRED (Feng et al. 2022). Subscript R: per residue; subscript S: per CC helix segment. The blind test set contains 400 positive and 318 negative proteins.
Bold values highlight the highest scores.

Table 5. CoCoNat and the state-of-art methods on the prediction of oligomerization states.

Methoda MCC (parallel dimer) MCC (antiparallel dimer) MCC (trimer) MCC (tetramer)

LOGICOIL 0.12 0.07 0.01 0.01
CoCoPRED 0.37 0.21 0.14 0.18
CoCoNat 0.66 0.70 0.50 0.46

a LOGICOIL (Vincent et al. 2013); CoCoPRED (Feng et al. 2022). The blind test set contains 400 positive proteins. Bold values highlight the highest
scores.
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equipped with AMD EPYC 7301 12-Core Processor, 48G
RAM. No GPU is available on this machine.

First, we analyzed the impact of the protein sequence length
on the running time. To this aim, we randomly selected differ-
ent sets of 100 sequences with lengths of increasing size. Fifty
samples are generated for each length bin. CoCoNat has been
then executed on each sample, evaluating its running time.
Results are shown in Supplementary Fig. 3A. The running
time scales linearly with the length of the sequences, ranging
from 200 s (for 100 sequences) when protein length is 50–100
residues to 1400 s when length is 600/700 residues.

Second, we analyzed how the number of sequences in the
dataset impacts on the running time. Again, random samples
of sequences were generated, varying from 10, 20, 40, 80,
160, 320, and 500. The length of sequences was set between
100 and 200 residues for all samples. Results are reported in
Supplementary Fig. 3B. The time required for the datasets in-
cluding 10, 20, and 40 sequences is almost identical. This is
due to the overhead required to load the two pLMs for encod-
ing, which dominates the overall running time when the num-
ber of sequences is low. For dataset sizes including more than
40 sequences, the running time scales almost linearly from
100 to 1400 s.

In general, the CoCoNat running time is always low if com-
pared to the time required by other tools based on multiple-
sequence alignment inputs, such as CoCoPRED. For instance,
to predict coiled-coil helices, including registers and oligo-
meric state, on 100 sequences of length comprised between
100 and 200 residues, the CoCoNat average running time is
330 s (5.5 min), which is lower than the time required by
CoCoPRED, requiring about 2.5 h.

4 Conclusion

In this article, we described CoCoNat, a novel method based
on protein language model embeddings and deep learning for
detection of coiled-coiled helices at residue level, prediction of
coiled-coil heptad repeat registers, and oligomerization state.

Training and testing were performed on datasets derived
from literature. When compared with other state-of-the-art
tools, CoCoNat reports performance that are significantly
better than those obtained by other approaches tested, in par-
ticular when considering register and oligomerization state
prediction.

In this work, we also proved the relevance of adopting pro-
tein residue representations derived from large-scale protein
language models such as ProtT5 (Elnaggar et al. 2021) and
ESM2 (Lin et al. 2023) for this specific task. Moreover, we
further confirmed that the combination of different language
models provides better performance, suggesting that different
models obtained with different architectures and data give
complementary representations.

Supplementary data

Supplementary data are available at Bioinformatics online.
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