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Abstract

The knowledge of protein–protein interaction sites (PPIs) is crucial for protein functional annotation. Here
we address the problem focusing on the prediction of putative PPIs considering as input protein
sequences. The issue is important given the huge volume of protein sequences compared to experimental
and/or computed structures. Taking advantage of protein language models, recently developed, and Deep
Neural networks, here we describe ISPRED-SEQ, which overpasses state-of-the-art predictors address-
ing the same problem. ISPRED-SEQ is freely available for testing at https://ispredws.biocomp.unibo.it.

� 2023 The Author(s). Published by Elsevier Ltd.
Introduction

Proteins are key players in most biological
processes. Proteins are social entities and interact
with membranes, within themselves or with other
proteins, and/or biomolecules (including nucleic
acids) to accomplish their functions within the cell.
Among all the different features that protein
functional annotation requires, it is also important
to determine the likelihood of protein–protein
interaction. Therefore, effective computational
tools for the prediction of protein–protein
interactions are important to characterize protein
function and to expand interactomes of different
species.1–3

The identification of Protein-Protein Interaction
(PPI) sites, namely protein residues involved in
physical interactions within interacting proteins,
can be addressed using two complementary
approaches. On one hand, different biochemical
and biophysical experimental methods (such as X-
ray crystallography, nuclear magnetic resonance ,
alanine scanning mutagenesis and chemical
cross-linking) can be applied to determine protein–
protein interfaces at the atomic or residue level.4

Although very accurate, the applicability of these
r(s). Published by Elsevier Ltd.
methods to large-scale characterization of PPI is
still hampered by economical and technical issues.
On the other hand, computational methods are

cost-effective solutions to complement
experimental approaches in identifying and
characterizing PPI sites. Docking programs are
the major class of computational tools to study
PPIs [for review, see ref 2]. Very accurate models
can be obtained through docking when the two
interacting partners are known in advance.
However, when the interacting partner/s is/are not

known, machine-learning approaches can compute
PPI sites on unbound protein chains. Historically,
these methods have been relying on several
physicochemical features extracted from protein
sequence and/or structure and they can
discriminate between interacting and non-
interacting residues.2

The most accurate approaches are based on
information extracted from protein 3D structures.
Very informative features include protein solvent
accessibility, protrusion, depth indexes, secondary
structures, B-factors, and general geometrical
features.5

Prediction of PPI sites from protein sequence
alone is still challenging and methods developed
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for this specific task are less performing than those
based on 3D structures. Methods implemented so
far for PPI prediction from protein sequence
include in input evolutionary information,
conservation scores and physical–chemical
properties of amino acids (e.g., hydrophobicity,
polarity, charge and/or conformational
propensities). Additionally, structural features
computed from protein sequence with specific
classifiers, such as predicted solvent accessibility
and secondary structure, are also included with
the aim of filling the scoring gap with structure-
based approaches. Several methods have been
developed in the past and recent years,2 based
mainly on different types of machine learning,
including shallow and deep neural networks.6–15

Recently, protein language models trained on
large volumes of sequence datasets have been
proven to be effective in providing protein/residue
representations that are alternative and
competitive with canonical hand-crafted features
such as evolutionary information and
physicochemical properties.17–20 Representations/
embeddings provided by these models have been
successfully adopted in many prediction tasks.21–25

Here we present ISPRED-SEQ, a novel
webserver based on a deep-learning model to
predict PPI-sites from protein sequence encoded
with an embedding procedure. The method stands
on a deep architecture combining convolutional
blocks and three cascading fully connected layers.
ISPRED-SEQ is trained on a dataset of 6,066
protein chains derived from a dataset available in
literature14. The main novelty of ISPRED-SEQ is
the input generation, obtained using two state-of-
the-art protein language models, ESM1-b17 and
ProtT5.18

We benchmark ISPRED-SEQ on four different
independent test data derived from literature.9,14–
15,26–27 All proteins included in the training dataset
have less than 25% sequence similarity with
sequences in the testing sets, adopting a stringent
homology-reduction procedure. Results show that
ISPRED-SEQ performs at the state-of-the-art,
reporting MCC scores higher than those obtained
by other approaches in all the benchmarks
performed.
The ISPRED-SEQweb server is freely accessible

at https://ispredws.biocomp.unibo.it.

Materials and Methods

Datasets
Training dataset. For training the ISPRED-SEQ
network we used a set of protein chains derived
from a dataset available in literature28 and already
adopted, after some filtering steps, to train the DEL-
PHI method.14 The DELPHI dataset comprises
9,982 protein chain sequences extracted from the
PDB and sharing no more than 25% pairwise
2

sequence identity. Moreover, the sequences in the
training set are also non-redundant (25% identity)
with respect to all the sequences included in the
independent test datasets (see next section). Start-
ing from this set, we further restricted the number of
protein sequences by filtering out all the chains (as
in the correspondent UniProt file) having a coverage
with the associated PDB structure/s less than 80%,
in order to validate PPI annotation on structural
experimental evidence. After this filtering step, we
ended up with 6,066 protein sequences comprising
1,757,296 residues.
Annotation of PPI sites was then retrieved from

the original data available from28 and manually
curated. Starting from the PDB structure of the com-
plex, a residue of a given chain is defined in interac-
tion if the distance between an atom of the residue
and an atom of another residue in a different chain
is below a given distance threshold, which routinely
is set equal to the total sum of the van der Waals’
radii of the two atoms plus 0.5�A28. PPI annotations
are available for the complete UniProt protein
sequences after combining all interaction sites
obtained from multiple protein complexes in which
each protein is represented, adopting SIFTS29 for
the relative mapping of PDB and UniProt.28 Overall,
our dataset comprises 285,751 interaction sites,
corresponding to about 16% of the whole set of
residues.
We split the training dataset into 10 different

subsets for performing the 10-fold cross validation
procedure. Before splitting, we further clustered
the sequences at 25% sequence identity and 40%
alignment coverage using MMseqs2.30 The cross-
validation split was then performed by randomly dis-
tributing complete clusters (instead of individual
sequences) among the different subsets. This step
is required to capture residual local redundancies
between pair of sequences that could have survived
the first redundancy reduction performed during
dataset construction.
Independent test datasets. To evaluate
generalization performance of ISPRED-SEQ and
to compare it with other state-of-the-art
approaches we used four different independent
test sets widely used in literature for comparative
evaluation of tools.9,14–15,26–27 Supplementary
Table 1 provide an overview of all datasets used
in this study.
The first dataset comprises 448 protein chains

used in a review comparing different tools for
protein interaction site prediction from sequence.27

The aim of the authors was to collect data including
not only protein–protein interaction sites, but also
annotations for DNA, RNA and small-ligand binding
sites. For this reason, the dataset was obtained
starting from the BioLip database,31 collecting
nucleic-acid and ligand binding site annotations.
For the set of proteins retrieved fromBioLip, authors
also extracted protein–protein interaction sites by

https://ispredws.biocomp.unibo.it/
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analyzing corresponding protein complexes avail-
able in the PDB. Protein interaction sites are identi-
fied using the same definition adopted for the
training set (see above). Internal redundancy of
the dataset was set to 25% pairwise sequence iden-
tity using the Blastclust tool.32 We refer to this data-
set to as the Dset448.
The second dataset used here is referred to as

the Dset335 and it is a subset of the Dset448
introduced in14 for sake of comparing the methods
DELPHI and DLPred.33 The 335 sequences
included in the dataset are indeed selected such
that they are non-redundant at 25% sequence iden-
tity with the DLPred training set, hence enabling a
fair comparison with this method. We used Dset335
to also include DLPred in our benchmark.
The third and fourth datasets, referred to as

HomoTE and HeteroTE, respectively, were
introduced by Hou and coauthors9,26. Recently,
these sets were also used for evaluating the perfor-
mance of the PIPENN prediction tool.15 HomoTE
and HeteroTE include 479 and 48 protein chains
from homomeric and heteromeric complexes,
respectively. Interface residues are defined in
HomoTE and HeteroTE using a slightly different
definition based on the computation of Accessible
Surface Area (ASA) before and after complex for-
mation: interacting residues are those whose ASA
value undergoes a change upon complex forma-
tion26. Nevertheless, as highlighted in literature,34

this definition provides very similar or equal interac-
tion interfaces as those based on inter-chain
distances.

ISPRED-SEQ implementation

The ISPRED-SEQ general architecture is
depicted in Figure 1. Starting from a protein
sequence, ISPRED-SEQ input is constructed
using two alternative protein language models: i)
ESM1-b17, an encoder-only transformer model
trained on about 27 million sequences from
UniRef5035, and ii) ProtT518, a sequence-to-
sequencemodel derived from the T5 architecture36,
trained on the large Big Fantastic Database (BFD)37

comprising 2.1 billion sequences and fine-tuned on
the UniRef50 database.
For each residue in the input sequence, ESM1-b

and ProtT5 provide embeddings of dimension
1280 and 1024, respectively. These are then
concatenated to form a single vector comprising
2304 components for each residue.
Since ESM1-b can only accept input sequences

of length lower than 1022, all longer sequences
are split into non-overlapping chunks of equal
length. After this step, the sequence embedding is
reconstructed by concatenating all the chunks.
The joint embedding (ESM1-b + ProtT5) is then

processed using a four-layer network. The first
layer is a 1-dimensional convolutional neural
network with 2304 filters (the number of filters is
set as to be equal to the input dimension) and a
3

filter width of 31, corresponding to a window
comprising 31 flanking residues and centered at
each residue position. The positional output of the
convolutional layers is processed by two dense,
fully connected layers with 128 and 32 hidden
units, respectively. The final output consists of a
single unit with a sigmoid activation function. Each
residue is classified as interaction site if the output
value is greater or equal to 0.5, as not in
interaction otherwise.
For sake of assessing the contribution of the input

encoding, we also trained alternative models based
on different types of inputs, including: the sequence
one-hot encoding, providing 20 values per residue,
the position-specific scoring matrix (PSSM),
computed using two runs of HHblits38 against the
UniClust30 database39 and providing 20 values
per residues, ESM1-b embedding only (1280 val-
ues per residue) and ProtT5 embedding only
(1024 values per residue). For all the models
trained, we adopted the same architecture shown
in Figure 1, and changing the number of convolu-
tional filters to be equal to the input dimension (20
for one-hot and PSSMs, 1280 for ESM1-b and
1024 for ProtT5).
Training is performed using minibatches of 64

residues adopting an early stopping procedure
that halts the training after 10 epochs without a
decrease in the validation loss. The loss that we
implemented is a binary cross-entropy and we
adopted an Adam optimizer.40

To fix all the hyperparameters of the model we
performed a grid search using a strict 10-fold
cross validation. After that, we retrained the final
model on the whole training dataset, and we
evaluated it on the different benchmark sets.

Scoring measures

The following measures were used to score
performance of the different methods:

� Accuracy (Q2):

Q2 ¼ TP þ TN

TP þ TN þ FP þ FN
ð1Þ

� Precision:

Precision ¼ TP

TP þ FP
ð2Þ

� Recall:

Recall ¼ TP

TP þ FN
ð3Þ

� F1-score, the harmonic mean of precision and recall:



Figure 1. The ISPRED-SEQ deep network architecture. The input sequence is encoded using the two language
models (ESM1-b[17] and ProtT518), producing a joint embedding of 2304 features. These are processed using a 1D-
Convolutional layer with 2304 filters of size 31. The convolutional output is then processed by two fully connected
Dense layers with 128 and 32 hidden units, respectively. The final output is a single unit with sigmoid activation
function: each residue is classified as Interaction Site when the output value is greater or equal to 0.5, non-interaction
site otherwise (see Materials and Methods for details).
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F1 ¼ 2� Precision � Recall

Precision þ Recall
ð4Þ
� Area Under the Receiver Operating Characteristic
Curve (ROC-AUC).

� Matthews Correlation Coefficient (MCC):
MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞp

ð5Þ
Routinely, the probability value discriminating

between positive and negative predictions is set to
0.5. For benchmarking on blind test sets ISPRED-
SEQ towards other approaches14–15,27, we adopted
a methodological strategy previously described.27

According to this procedure, for each of the different
methods, a method-specific threshold is introduced
to set the number of positive predictions equal to the
number of real positive examples.14–15,27 This pro-
cedure allows comparing different methods on the
same number of predictions.27 AUC values are
however independent of this procedure.
4

Results

ISPRED-SEQ performance

For fine tuning ISPRED-SEQ, we tested the
network architecture using a 10-fold cross-
validation procedure to compare different input
encodings. Specifically, we evaluated five different
models trained on different inputs, including: i) the
sequence one-hot encoding, ii) the sequence
profile, iii) the ESM1-b embedding only, iv) the
ProtT5 embedding only and v) the joint
embedding obtained combining ESM1-b and
ProtT5. Supplementary Table 2 lists the results.
Models incorporating canonical features (one-hot

and sequence profiles) are both outperformed by
embedding-based approaches. MCCs obtained
with embedding-based approaches score with
values above 0.30 and higher that the 0.14 value
obtained with only the sequence profile as input
(Supplementary Table 2). Data are shown in
Supplementary Table 2, obtained adopting a cross
validation procedure. This highlights the
effectiveness of language model representations
in the task of predicting PPI sites. The two
different language models (ESM1-b and ProtT5)
provide similar contributions individually achieving
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comparable MCC scores (0.30 and 0.31,
respectively). When combined, the value of MCC
is 0.34 (adopting a threshold for positive
predictions equal to 0.5), suggesting that the
ESM1-b and ProtT5 are complementary, and their
combination is advantageous for the problem at
hand. This conclusion is further supported by data
shown in Supplementary Table 3, where we can
observe that predictions made using the two
models disagree on roughly 25% of the data (on
14.9% ProtT5 is correct, on 9.3% ESM1-b is
correct).
We compared ISPRED-SEQ with state-of-the-art

tools, including DELPHI14, PIPENN,15 PITHIA16,
SCRIBER11, SSRWF8, CRFPPI41 and LORIS.42

Table 1 shows the results, and Supplementary
Table 4 shows more details regarding the tools
adopted for the comparison.
Performance of all methods, with the exclusion of

ISPRED-SEQ, are extracted from literature14–15.
Specifically, performance on Dset448 and Dset335
for DELPHI, SCRIBER, SSRWF, CRFPPI and
LORIS are derived from14, results of PIPENN in all
datasets are taken from the original reference
paper,15 and results fro PITHIA are taken from.16

All the benchmarked methods provide numerical
prediction scores representing the propensity of
each input residue to be a PPI site. A threshold
must be set to obtain a binary prediction. To
compare ISPRED-SEQ performance with other
Table 1 Comparative benchmark on different independent tes

Method Dataset MCC

ISPRED-SEQ (th = 0.5)� Dset448 0.34

ISPRED-SEQ (th)FP = FN)� Dset448 0.39

PITHIA16 * Dset448 0.32

DELPHI14 † Dset448 0.27

PIPENN15 � Dset448 0.25

SCRIBER11 † Dset448 0.23

SSWRF8 † Dset448 0.18

CRFPPI41 † Dset448 0.15

LORIS42 † Dset448 0.15

ISPRED-SEQ (th = 0.5)� Dset335 0.33

ISPRED-SEQ (th)FP = FN)� Dset335 0.39

PITHIA16 * Dset335 0.30

DELPHI14 † Dset335 0.28

SCRIBER11 † Dset335 0.23

DLPred33 † Dset335 0.21

ISPRED-SEQ (th = 0.5)� Homo_TE 0.42

ISPRED-SEQ (th)FP = FN)� Homo_TE 0.46

PIPENN15 � Homo_TE 0.34

ISPRED-SEQ (th = 0.5)� Hetero_TE 0.20

ISPRED-SEQ (th)FP = FN)� Hetero_TE 0.16

PIPENN15 � Hetero_TE 0.11

* Data taken from.16

† Data taken from.14

� Data taken from.15

� th, threshold value (see Materials and Methods). Performance of a

a prediction threshold that makes equal the numbers of false posi

adopting the same strategy are reported (th) FP = FN) as well a

(th = 0.5).

5

state-of-the-art tools, we adopted the same
strategy described in14–15 and defined in27 by which
binary predictions are obtained using a different
threshold for each method so that the number of
positive predictions (FP + TP) is equal to the num-
ber of real positive examples (TP + FN), or equiva-
lently FP = FN. For our ISPRED-SEQ, performance
measures obtained using this strategy are labelled
as “th)FP = FN” in Table. 1. A direct comparison
with the state-of-the-art methods is therefore possi-
ble. For sake of completeness, we also show
ISPRED-SEQ score obtained using the threshold
of 0.5 on the output prediction score. This threshold
assumes a probability meaning for the output of
ISPRED-SEQ and it is the one adopted in the web
server.
Regardless of the method adopted for choosing

the threshold, Table 1 indicates that ISPRED-SEQ
outperforms all the methods in all the considered
datasets. In the Dset448 (the most recent and
complete dataset released in literature so far27),
ISPRED-SEQ achieves aMCC value of 0.39, seven
percentage points higher than the one obtained by
the second top-performing method, PITHIA.
In the Homo-TE dataset containing homomeric

interfaces, ISPRED-SEQ reaches a MCC value of
0.46, again significantly higher than the one
registered by PIPENN. Performance on the small
Hetero-TE, containing only 48 chains, are lower.
However, also in this case, ISPRED-SEQ
t sets.

F1 Precision Recall Q2 AUC

0.42 0.29 0.78 0.71 0.82

0.47 0.47 0.47 0.86 0.82

0.41 0.41 0.41 0.84 0.78

0.37 0.37 0.37 0.83 0.74

0.39 0.39 0.39 0.79 0.73

0.33 0.33 0.33 0.82 0.72

0.29 0.29 0.29 0.81 0.69

0.27 0.26 0.27 0.81 0.68

0.27 0.26 0.26 0.81 0.66

0.40 0.27 0.77 0.72 0.82

0.46 0.46 0.46 0.87 0.82

0.38 0.38 0.38 0.85 0.76

0.36 0.36 0.36 0.85 0.75

0.32 0.32 0.32 0.84 0.72

0.31 0.31 0.31 0.84 0.72

0.56 0.42 0.83 0.71 0.84

0.58 0.58 0.58 0.81 0.84

0.49 0.49 0.49 0.77 0.77

0.27 0.17 0.68 0.65 0.72

0.24 0.24 0.24 0.86 0.72

0.20 0.20 0.20 0.85 0.66

ll methods different from ISPRED-SEQ are reported considering

tive and false negative predictions.27 Results of ISPRED-SEQ

s those obtained adopting a probability threshold equal to 0.5
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outperforms the other testedmethod (PIPENN) by 5
percentage points, considering the MCC value.
Independently of the procedure adopted for

evaluating the scoring indexes, ISPRED-SEQ
overpasses the performance of all other methods.
This is also evident when considering the AUC
values reported in Table 1, totally independent of
the strategy adopted for the other scoring indexes.
The ISPRED-SEQ web server

ISPRED-SEQ webserver is available at https://
ispredws.biocomp.unibo.it/. The server input
interface accepts a single protein sequence in
Figure 2. The ISPRED-SEQ web server output page.
6

FASTA format with length ranging between 50
and 5000 residues. Upon submission, the user is
redirected to the page where results will be
available after job completion. The page
automatically refreshes every 60s and shows to
the user the current status of the job (queued or
running). The server also provides the user with a
universal job identifier, which can be thereafter
used to retrieve job results. The result page
(Figure 2) provides information about the job,
including i) the identifier, ii) submission and
completion time, iii) protein ID, iv) protein length
and v) counts of positive and negative predictions.
After that, the output of the predictor is shown

https://ispredws.biocomp.unibo.it/
https://ispredws.biocomp.unibo.it/
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using an interactive viewer. This allows to visualize
the whole PPI-site probability profile computed for
each residue during the procedure. The page
highlights in yellow the predicted PPIs along the
sequence. Results are as well summarized in
tabular format (Figure 2).
Conclusions

In this paper we present ISPRED-SEQ, a novel
method for the prediction of PPI sites from
sequence. ISPRED-SEQ novelty is the adoption
of input encodings based on embeddings
generated by two state-of-the-art protein language
models, ESM1-b and ProtT5. In our tests, residue
representations based on embeddings outperform
canonical feature descriptors such as one-hot
encoding and sequence profiles. The scoring
index values, although good, still need
improvement. However, the major bias is due to
the fact that still we do not have a complete
picture of all the possible PPIs in a cell, as
discussed before.1–2

We evaluated ISPRED-SEQ using several
independent datasets released in literature and
compared its performances against recently state-
of-the-art approaches, also based on deep-
learning algorithms. In all the tests performed,
ISPRED-SEQ significantly outperforms top-
scoring methods, reaching MCC scores of 0.39 on
recent benchmark datasets containing more than
300 proteins.
We propose ISPRED-SEQ as a valuable tool for

the characterization of protein interface residues
starting from the protein primary sequence.
We released ISPRED-SEQ as a publicly

accessible web server available at https://
ispredws.biocomp.unibo.it.
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Haunsberger, S.J., Söding, J., (2019). HH-suite3 for fast

remote homology detection and deep protein annotation.

BMC Bioinf. 20, 473. https://doi.org/10.1186/s12859-019-

3019-7.

39. Mirdita, M., von den Driesch, L., Galiez, C., Martin, M.J.,
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