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Nomenclature

E = mean pose error
e = error
q = quaternion
t = relative position

Subscripts

EST = estimated
GT = ground truth
q = quaternion
t = relative position

I. Introduction

V ISION-BASED navigation is a key technology for the next
generation of on-orbit servicing (OOS) and active debris removal

missions. In these scenarios, guidance and control laws shall be fed
with the relative chaser-to-target pose (i.e., position and attitude),
which might be conveniently estimated from monocular images
because these sensors are simple, light, and consume little power.
Traditionally, image processing algorithms are divided into categories
of 1) hand-crafted features [1,2] and 2) deep learning based [3–14].
However, the former are affected by low robustness against typi-
cal space imagery characteristics (such as low signal-to-noise-ratio,
severe, and rapidly varying illumination conditions) and backgrounds.
Neural networks (NNs) could overcome such weaknesses through
proper training but often result in a high computational burden that
is hardly compatible with typical onboard processing power.

In recent years, deep learning has been shown to aid spacecraft

monocular pose estimation at different levels; see, e.g., Refs. [15,16]

for thorough surveys. Sharma et al. [3] addressed the problem as a

classification task by discretizing the pose space. Later, Sharma and

D’Amico [4] proposed a solution based on joint classification and

regression. In this lastwork, SharmaandD’Amicopresented the space-

craft pose estimation dataset (SPEED), providing synthetic and real

high-resolution (1920 × 1200 pixels) images of the Tango spacecraft.
The SPEEDhas been adopted as a benchmark in the first Satellite Pose

Estimation Challenge (SPEC) [17] cohosted by the European Space

Agency and Stanford University’s Space Rendezvous Laboratory

(SLAB). Three out the four top-scoring works adopted a three-stage

approach, leveraging convolutional neural networks (CNNs) to detect

the target on the image first and to regress the locations of some
predefined key points later, which are then fed into off-the-shelf

perspective-n-point solvers [5,6] for pose estimation. On the other

hand, the authors of Ref. [7] proposed an end-to-end CNN based

pipeline that, however, required a huge model to achieve competitive

accuracy. Indeed, submissionswere ranked solely on a pose regression

error, regardless of their computational burden. Only the SLAB base-

line [6] addressed this issue by adopting light networks that, however,

led to a pose estimation error significantly higher than the best one.
Later works addressed the pose estimation accuracy–latency trade-

off. To this aim, Hu et al. [8] proposed a single-stage method

leveraging a three-dimensional (3-D) loss to make pose estimation

less sensitive to scale variations. Wang et al. [9] exploited Trans-

formers for direct key point coordinates retrieval upon a CNN-based

detection step, whereas Piazza et al. [10] adopted a light model for
target detection. Carcagnì et al. [11] revisited the method in Ref. [5]

by replacing the landmarks regression network backbone with a

lighter variant. Similarly, Posso et al. [12] revisited the end-to-end

approach proposed in Ref. [7] in a lightmanner, reaching an accuracy

that was far from the top submissions in the SPEC.
These works have been tested on high-end desktop graphics

processing unit only, and they are not optimized for low-power

embedded devices that typically perform well on limited sets of

operations as a consequence of hardware specialization. Black et al.

[13] contributed remarkably in this respect by developing a light

pipeline that achieves real-time inference on an Intel Joule 570x

board consuming 3.7 W.
In this context, our work focuses on further improving the pose

estimation accuracy–latency tradeoff on low-power devices from

both the software and hardware points of view. First, we propose a

pose estimation pipeline based on NNs optimized for embedded

devices with an architecture that can be scaled to the available

computational power. We investigate optimizations through Tensor-

Flow Lite (TFLite) conversion and quantization. The TFLite is a

machine learning (ML) library for on-device inference, whereas the

quantization consists of converting NNs’ weights to integers, yield-

ing to a significant runtime advantage at deployment.
Second,we investigate high-performingMLcoprocessors for low-

power integer-only inference, namely, Edge Tensor Processing Units

(TPUs), which are gaining the attention of the space community [18].
We thus test our models on a Coral Dev Board Mini equipped with

both a TPU and a 1.5 GHz quadcore Advanced Reduced Instruction

Set Computer Machines CPU.
We evaluate our algorithms on both the SPEED [4] and on a new

dataset developed as part of this work, depicting a spacecraft from the

Constellation of Small Satellites for the Mediterranean Basin Obser-

vation (COSMO), named the COSMO photorealistic dataset (CPD).

Our results show how model optimization and edge processors can

enable subdegree and centimeter-level real-time pose estimation

compatible with typically available onboard power levels.
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II. Photorealistic Dataset

Moving components, such as antennas and solar arrays, are
common for large spacecrafts, i.e., the ones that would benefit the

most fromOOS. The need to validate pose estimation pipelines, even

in this scenario, drove the design of a new dataset, named the
COSMOphotorealistic dataset, depicting a satellite from theSkyMed

Earth-observation constellation in heterogeneous combinations of
poses, solar arrays configurations, lighting conditions, and back-

grounds. To this end, the 3-D computer graphics software, Blender,

was selected because of its native support to physically based render-
ing (PBR). Most assumptions adopted for setting the spacecraft pose

distribution and image postprocessing follow that of the SPEED [4]

for ease of benchmarking, as will be detailed in the following.

A. Blender Scene

The Blender scene consists of three concentric highly polygonal

spheres representing Earth, clouds, and the atmosphere plus a CAD
model of the COSMO spacecraft. Similar to Ref. [7], the Earth was

textured with a high-resolution map further augmented with an ocean

mask** and topography data from the NASA’s Blue Marble collec-
tion,†† which also provided cloud texture. A third-party shader‡‡ was

applied to increase the realismof the clouds, providing at the same time

the transparency, diffusion, and reflection.Atmospheric scatteringwas
emulated, exploiting Blender’s volumetric rendering in combination

with a second shader, from the same package, which implements an
exponential density model. A Blender sun lamp emulates the sun by

providing collimated light at a blackbody temperature of 5778 K.
The main exterior features of COSMO spacecraft are the multi-

layer insulation (MLI) and the solar panels. A faithful representation

of the MLI material was obtained thanks to a crumpled normal

texture§§ mapped to the spacecraft body for emulating the typical
random reflections. The solar arrays have been equipped with a solar

cell texture providing base color and displacement, whereas surface

reflection has been obtained through Blender’s glossy shader.

B. Pose Distribution

The distance is randomly selected from a standard normal distri-

bution (μ � 36m and σ � 10 m) rejecting all the values above 70 m
and below 36 m. The x-y offsets on the image plane are uncorrelated

random values selected from a multivariate normal distribution,

which are constrained to guarantee that the satellite almost always
lies entirely in the image frame. The attitude is selected randomly

from a uniform distribution of all rotations in the 3-D space.
Pose distribution and camera–satellite alignment are governed by

the Starfish library [14]. Domainvariation is provided throughBlender

Python interface by rotating the Earth and clouds beneath the satellite

before each rendering. Geometrical constraints are prescribed to avoid

dark images. The sun–probe–Earth angle is required to be greater than
70 deg to exclude eclipse conditions.We also prescribe that at least one
of the surfaces of the spacecraft main bus is illuminated by the sun and
at the same time in view of the camera. This, in turn, is obtained by
requiring that 1) the angle between the sun direction and the outward
surface normal is smaller than 80 deg, and 2) that the angle between the
position vector of the camera and the surface normal is smaller than
70 deg. Besides that, the lighting direction is randomized across the
dataset to provide a comprehensive range of illumination conditions.
An approximate sun-tracking rotation of solar panels is added through
aBlender “locked track” constraint. It consists of setting the orientation
of the solar arrays about the longitudinal axis to have them pointed
toward the projection of the sun vector in the plane orthogonal to the
rotation axis. This is a reasonable assumption for a spacecraft equipped
with steerable solar panels.

C. Render Setup and Postprocessing

A total of 15,000 images has been rendered with the PBR Cycles
engine through a pinhole camera model. The resolution has been set
to 1920 × 1200 pixels. Postprocessing steps include a glare node
(meant to replicate the bloom effect), grayscale conversion, and the
addition of Gaussian noise and Gaussian blurring to emulate the shot
noise and depth of field. Figure 1 depicts a close-up rendering of the
satellite and two samples from the dataset before grayscale conver-
sion and noise addition.

III. Methods

Our software pipeline is based on three stages, namely, 1) spacecraft
detection, 2) landmarks’ regression, and 3) pose estimation. For this
work, we hold the assumption that the target is known by the chaser;
i.e., a wireframe model is available. Because this information was not
included in the SPEED [4] dataset, we reconstructed a 3-D model
throughmultiview triangulation.We then retrieved training and testing
labels (i.e., bounding boxes and landmarks’ coordinates) for both
datasets by projecting the 3-D satellites’ key points, highlighted in
Fig. 2, onto the image plane exploiting the known target pose.

A. Spacecraft Detection

Direct processing of high-resolution images would prevent real-
time inference on low-power embedded devices due to the need for
large NNs and a highmemory footprint. The purpose of the detection
network (DN) is therefore to identify a region of interest (ROI) by
detecting the satellite on the image.
To this end, we employed a MobileDet Edge TPU optimized

model [19] from the TensorFlow (TF) Detection Model Zoo¶¶ with
an input shape of 320 × 320 pixels and about 3.3million parameters.
The matching between the true and the estimated bounding boxes is
assessed in terms of the intersection over union (IOU). To avoid
distortion, the regressed bounding box is made square by enlarging
the shortest side to match the longest one while keeping the box
center fixed. The edges of the bounding box are further expanded by a
factor of 1.15 to increase the chance that the satellitewill liewithin its

Fig. 1 Close-up preview of the COSMO SkyMed satellite (Fig. 1a), and sample images from CPD before postprocessing (Figs. 1b and 1c).

**Data available online at https://www.shadedrelief.com [retrieved 22
February 2021].

††Data available online at https://visibleearth.nasa.gov [retrieved22February
2021].

‡‡Data available online at https://gumroad.com/l/JlNTt [retrieved 22February
2021].

§§Data available online at https://nasa3d.arc.nasa.gov/detail/Sentinel-6
[retrieved 26 February 2021].

¶¶Data available online at https://github.com/tensorflow/models/blob/
master/research/object_detection/g3doc/tf1_detection_zoo.md [retrieved 25
October 2021].
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margins. The original image is eventually padded with black pixels
whenever the ROI extends beyond its sides. In case the ROI is smaller
than the second NN input shape, its borders are further enlarged to
avoid excessive artifacts arising from direct resizing.

B. Landmark Regression

The resulting ROI is fed into a second CNN, which is in charge of
detecting a set of predefined key points. We propose a regression
network (RN) architecture that can be scaled to different accuracy–
latency tradeoffs. It consists of a fully convolutional model built on
top of EfficientNet-Lite backbones,*** which are obtained by remov-
ing operations not well supported by mobile accelerators from the
original EfficientNet [20]. The regression head consists of a sequence
of four convolutions (Table 1), which gradually reduce the feature
map channels and dimensions through learned operations rather than
pooling. The network returns a vector containing normalized coor-
dinates of the landmarks in a predefined order.
EfficientNet-Lite backbones come in fivevariants that are obtained

by scaling up the network’s width, depth, and input resolution of a
baseline model, as outlined in Table 2.
The target position and orientation are estimated through an EPnP

solver [21]with randomsample consensus exploiting the known two-
dimensional/3-D correspondences. The resulting pose is eventually
refined with a Levenberg–Marquardt optimization step.†††

IV. Experiments and Results

Our models are first compared with state-of-the-art methods using
the floating point, nonoptimized NNs configuration. We then illus-
trate the benefits obtained through TensorFlow Lite‡‡‡ conversion
first and quantization later. These modifications enable the deploy-
ment of the models on a low-power machine learning accelerator
(namely, a TPU), which can further reduce the inference time.

A. Training Setup

For the SPEED dataset, because the ground truth poses for the test
sets have not been released at the time of this writing, only the 12,000
synthetic images from the SPEC training set were used. To prevent
overfitting, a cross-validation framework has been adopted. To this aim,

both the SPEED and CPD have been divided into equally sized parti-
tions containing 3000 images each. Given k partitions, each step of the
cross-validation process consists of training the models on k − 1 parti-
tions and tests it on the holdout one. The test results are then aggregated
to compute average metrics. The DN is trained for 25,000 steps with a
momentum optimizer starting from COCO’s [22] pretrained weights,
applying random crops as well as random brightness and contrast
adjustments to avoid overfitting. RNs have been trained with an Adam
optimizer [23] and a mean absolute error loss for 500 epochs on the
SPEED and 375 epochs on the CPD. EfficientNet-Lite backboneswere
initializedwith Imagenet [24] checkpoints. Applied data augmentations
include random image rotations, bounding box enlargements and shifts,
random brightness, and contrast adjustments.
The DN learning rate was gradually reduced according to a cosine

decay law after a warmup phase, lasting 2000 steps, where it grew
linearly from 0.015 to 0.45; whereas for the RNs, a linear scheduling
was adopted, ranging from 2e-3 to 2e-5. The batch sizewas set to 200
for the DN and 250 for the RNs.
The trained networks were first deployed on the CPU of a Coral

Dev Board Mini for performance assessment. Later, all networks
were retrained by exploiting quantization aware training§§§ (QAT),
which emulates quantization along with NN parameter tuning, to
reduce accuracy loss at conversion.
The results provided in the next paragraphs refer to the SPEED [4]

unless otherwise stated.

B. Comparison with State of the Art

To assess the accuracy of ourmethods, we adopt the samemetric of
the SPEC [17]. This is based on the sum of a normalized position �et
and rotation eq errors averaged over all the N images:

eti � jtGTi
− tESTi

j2 (1)

�et �
1

N

XN

i�1

eti
jtGTi

j2
(2)

eq � 1

N

XN

i�1

2 arccos�jhqGTi
; qESTi

ij� (3)

E � �et � eq (4)

Table 3¶¶¶ displays the error metrics attained by all of our pipeline
variants alongwith those of the best-ranked submissions of the SPEC

Table 1 Regression head structure

No. Type
Activation
function Kernel size Padding

No. of
filters

1 Standard RELU 1 Valid 128
2 Separable RELU 3 Same 128
3 Standard — — 1 Valid 22
4 Standard — — Previous layer

resolution
Valid 22

Table 2 EfficientNet-Lite models specifications relative
to Lite0 variant

Model Input size, pixels Width coefficient Depth coefficient

Lite0 224 × 224 1.0 1.0
Lite1 240 × 240 1.0 1.1
Lite2 260 × 260 1.1 1.2
Lite3 280 × 280 1.2 1.4
Lite4 300 × 300 1.4 1.8

Fig. 2 Wireframe models: a) COSMO, and b) Tango.

***Data available online at https://blog.tensorflow.org/2020/03/higher-
accuracy-on-vision-models-with-efficientnet-lite.html [retrieved 30 March
2021].

†††Data available online at https://docs.opencv.org/3.4.12/d9/d0c/group__
calib3d.html [retrieved 5 April 2021].

‡‡‡Data available online at https://tensorflow.org/lite [retrieved 9November
2021].

§§§Data available online at https://tensorflow.org/model_optimization/
guide/quantization/training?hl=en [retrieved 12 November 2021].

¶¶¶Gerard, K., “Segmentation-Driven Satellite Pose Estimation,” Kelvins
Day Presentation, 2019, https://indico.esa.int/event/319/attachments/3561/
4754/pose_gerard_segmentation.pdf [retrieved 4 January 2021].
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and the embedded method proposed in Ref. [13]. Our results clearly

indicate how state-of-the art accuracy can be achieved with remark-

ably less NN parameters. We emphasize that our results referred to

the whole SPEC training set through cross validation rather than to

the competition test set.

C. Conversion to TensorFlow Lite

Because TF is not optimized for on-device inference, we converted

all NNs to TFLite. In this work, we exploited the 2.9.0 version of

tflite-runtime with XNNPACK, which is a ML library providing
efficient implementations of the most common NN operators for
ARM processors. Performance comparisons are reported in Table 4
and Fig. 3, highlighting latency reduction and persistence of accu-
racy. Note that the frames per second (FPS) data do not include image
loading time from memory. Conversion from TF to TFlite allowed
increasing the inference speed from 66 to 84% without affecting the
accuracy.

D. Quantization: CPU Versus TPU Inference

Quantization, which is needed for deploying the networks on the
TPU, allows compressing the file sizes up to the 75%, thereby
significantly reducing latency. To limit the accuracy reduction arising
from the conversion of floating point weights to integer values, all the
models have been retained by applying QAT. A comparison between
CPU and TPU performances is provided in Fig. 4, highlighting the
superior FPS attainable by the latter, which is up to the 229% higher
than with the CPU. In addition, the TPU allows reducing power
consumption at inference: our tests revealed that the average absorp-
tion drops from the 3 W required by the CPU to 2.2 W for the TPU.
This is also reflected by the board heating. Indeed, switching from the
CPU to the TPU reduced the average temperature from 85 to 49°C.
Notably, QATwas found to limit the pose error increase to only about
18% on average.

E. Performance on CPD

Finally, we tested our TPU pipelines on the CPD. In this case, the
quantized DN achieved 0.9219 and 0.9368 mean and median IOUs,
respectively. The mean pose error E is similar to that in the SPEED
(see Table 5), even though few outliers are present. The worst results
are obtained on images characterized by large self-occlusions, espe-
cially thosewhere the solar panels hide a large portion of the synthetic
aperture radar antenna. Overall, the results are promising, demon-
strating the pipeline robustness to the variable geometrical configu-
ration of the target arising from the steerable solar panels’ orientation.

V. Conclusions

In this Note, a new photorealistic satellite dataset including
steerable solar panels was introduced, and neural models enabling
real-time spacecraft pose estimation from monocular images on

Table 3 Comparison with state of the art [6–8,13,17]

Model E eq, deg et, m
Parameters,
millions

UniAdelaide [5] 0.0094 0.41± 1.50 0.032± 0.095 176.2
Lite4 (ours) 0.0143 0.57± 0.75 0.040± 0.167 15.4
Lite3 (ours) 0.0152 0.61± 0.73 0.041± 0.106 10.5
Lite2 (ours) 0.0163 0.66± 0.80 0.044± 0.109 8.4
Lite1 (ours) 0.0166 0.67± 0.82 0.045± 0.124 7.7
Lite0 (ours) 0.0186 0.76± 1.06 0.053± 0.201 6.9
EPFL_cvlab (see
footnote ¶¶¶)

0.0215 0.91± 1.29 0.073± 0.587 89.2

Black et al. [13] 0.0409 —— — — 6.9
pedro_fairspace [7] 0.0571 2.49± 3.02 0.145± 0.239 ≈500
SLAB_baseline [6] 0.0626 2.62± 2.90 0.209± 1.133 11.2

Table 4 DN performances

DN IOU mean IOU median

TF 0.9332 0.9524
TFLite 0.9332 0.9523

Fig. 3 TF vs TFLite pipelines performances’ comparison on CPU.

Table 5 TPU pipelines’ performances on CPD

Quantized RNs E eq, deg et, m

Lite0 0.0193 0.852 ± 3.590 0.200 ± 0.500
Lite1 0.0170 0.748 ± 2.839 0.176 ± 0.583
Lite2 0.0163 0.708 ± 2.595 0.179 ± 0.619
Lite3 0.0158 0.686 ± 2.791 0.170 ± 0.402
Lite4 0.0138 0.598 ± 1.674 0.150 ± 0.373

Fig. 4 Quantized model inference, with CPU vs TPU: a) NNs’ runtimes, and b) pipeline performances.
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low-power embedded hardware were discussed. The main findings
obtained from this work can be summarized as follows:
1) Converting themodels to TFLite improved the overall inference

speed by about 77% on average.
2) Network quantization, when coupled to quantization-aware

training, can significantly improve the accuracy–latency tradeoff,
leading on average to a further 80% speedup against an 18% increase
of pose error.
3) While being light, the software developed in this paper demon-

strate that the presence of movable components does not hinder the
average pose estimation accuracy as long as their features are
excluded from training.
4) Switching from a CPU to a TPU allows increasing the FPS by a

factor of ≈2 to 3 (up to 7.7 FPS) while reducing the measured power
consumption by 25% (from 3 W down to 2.2 W). As a result, the
pipelines perform on par with the state of the art while using
extremely lite networks. When evaluated on the CPD, the algorithms
exhibit accuracies in line with the SPEED, although with higher
sensitivity to occlusions, which deserve further investigation.
Future developments include testing the NNs on real imagery to

investigate the domain gap.
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