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Abstract 
We study the dynamic price competition of hotels in Venice using publicly available data scraped from an online 
travel agency. This study poses two main challenges. First, the time series of prices recorded for each hotel 
encompasses a twofold time frame. For every single asking price for an overnight stay on a specific day, there 
is a corresponding time series of asking prices along the booking window on the online platforms. Second, the 
competition relations between different hoteliers is clearly unknown and needs to be discovered using a 
suitable methodology. We address these problems by proposing a novel Network Autoregressive model 
which is able to handle the peculiar threefold data structure of the data set with time-varying coefficients 
over the booking window. This approach allows us to uncover the competition network of the market 
players by employing a quick data-driven algorithm. Independent, mixed, and leader–follower relationships 
are detected, revealing the competitive dynamics of the destination, useful to managers and stakeholders. 
Keywords: correlation, data-driven approach, dynamic pricing, leader–follower relationships, multivariate time series, 
network autoregression 

1 Introduction 
The spread of E-commerce has facilitated the creation, exchange, and processing of large amounts 
of information, which has led to changing business strategies for product customisation and mar-
keting in many sectors, including the travel and tourism market (Provenzano & Baggio, 2020). 
Pricing strategies have also evolved from pure room inventory controls to multi-pricing ap-
proaches, allowing revenue managers to differentiate the effect on price due to demand shifts across 
distribution channels, day of stay and booking horizons (Bigné et al., 2021). The extensive use of 
online booking platforms such as Booking.com, HRS, or Expedia (i.e. online travel agencies— 
OTAs) by hotels and their guests has encouraged price transparency and competition (Bigné & 
Decrop, 2019), increasing the information available about how competing hotels react to competi-
tor price adjustments. 

This research contributes to the existing literature by providing a new tool to discover complex 
relationships using the statistical methods of network data analysis. In line with Skilton and 
Bernardes (2015), we conjecture that competitive behaviour can be represented by a network 
architecture. More precisely a competition network (Gimeno, 2004) whose edges are based on 
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competitive interdependency, market engagement assumptions and are drawn by observing public 
actions and responses of different competing agents (Choi et al., 2022). For this reason, we suggest 
that the whole set of prices a hotel publishes on an OTA can be considered an effective example of 
(implicit) shared knowledge regarding business price competition tactics in a real-life context 
(Guizzardi et al., 2021). This is important information because it is composed of primary data (col-
lected in a raw format), posted directly by the competitors and, therefore, observed without the 
bias that can occurs when using secondary (big) data (e.g. statistics from Google Trends—see  
Lazer et al., 2014). 

The proper analysis of such data poses new statistical challenges because every single asking 
price for an overnight stay on a certain day corresponds to a time series of asking prices along a 
booking window. We attack this problem by proposing to relate the inter-temporal pricing struc-
tures encoded by these ‘time series of time series’ with a new autoregressive network approach. 
This allows us to discover the leader–follower relation among decision makers without any a pri-
ori constraints on the network structure, except the very general ones pertaining to the quality seg-
ment the hotel competes in—proxied by its median rate—and the size of the geographical area of 
competition. 

Our approach examines the day-by-day online prices, without making a priori assumptions on 
the factors inducing heterogeneity: pricing strategies or responses to reaction choices by compet-
itors. However, we do evaluate ex-post the role played by some non-price factors, namely, the total 
capacity at the decision unit, their star rating, and the availability of special features such as res-
taurants and meeting rooms. These aspects influence competitive behaviours and determine their 
ability to compete in different market segments (e.g. business or groups markets). Moreover, by 
considering time-lagged interactions, we avoid the problem of endogeneity bias (Li et al., 
2018), resulting from the joint determination of prices among agents, for example, a hotel’s price 
could be simultaneously a function of its competitors’ prices and vice versa. 

We develop this methodology using data from 95 hotels in Venice, a world renowned cultural– 
historical destination in Italy, focussing on daily pricing strategies and time-lagged interactions, 
for up to 14 days of advance booking. This results in 14 autoregressive networks—one for each 
advance booking—synthesising leader–follower competition patterns over a time span of almost 
one year (344 days in total from 1 April 2019 to 9 March 2020). 

To the best of our knowledge, this is the first attempt to design a self-defining competition net-
work of accommodation enterprises leveraging public data characterised by high-frequency sam-
pling, while explicitly accounting for the role of advance booking. Specifically, we aim to 
understand decision-making practices in the competitive environment by discovering and measur-
ing the effect of competition on pricing, one of the key management tasks. 

The rest of the paper is organised as follows: Section 2 focuses on the background of the present 
study. In Section 3, a preliminary data analysis is reported highlighting the properties of the data. 
The methodology for model estimation and competition network discovery is amply discussed in 
Section 4. Section 5 provides the main results emerging from the network autoregressive models 
estimation. The interpretation of the hotelier profiles and relations emerging from competition 
networks are reported in Section 6. A brief summary of the main contributions of the paper is in-
cluded in Section 7. Finally, Appendix A reports the asymptotic theory for the employed estima-
tors and contains additional tables and figures. 

2 Study background 
Competition occurs when firms share common resources and product markets (Choi et al., 2022;  
Yao et al., 2008). Gimeno (2004) suggests that rivalry is also determined when a network of inter- 
firm relationships exists. Thus, in line with Choi et al. (2022) and Lavie (2021), we define a com-
petition network as the overlapping relationships formed in common markets through the actions 
and responses of embedded rival firms. 

The set of competitive relations of a competition network are commonly found in patents, an-
nual reports, traditional and social media such as newspapers, radio, Facebook, or Twitter (Choi 
et al., 2022) and, specifically for a service where consumption and purchase do not coincide in 
time, evidence of competitive relations are also inside the online pricing strategies during a pur-
chase time window (Guizzardi et al., 2019). This is implicit public information which is rarely  
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codified because firms need advanced technical tools to interpret their competitors’ behaviours 
and develop policies to obtain business opportunities or reduce threats. 

Focussing on the accommodation sector, we know that competitors do not react uniformly in 
response to a fall in price (Kim et al., 2018) as companies with the strongest competitive position 
are able to price the service without taking into account the rates from other leaders in the market 
(Pellinen, 2003). Additionally, Bigné and Decrop (2019) highlight that the high level of dispersion 
in company pricing strategies also depends on the coexistence of companies who focus more on 
revenue expansion (providing a high-quality service for customers) and others whose goal is 
cost reduction. In both cases, companies are aware that customers have a high propensity to search 
the OTA for the best perceived value (which is not always the lowest price Chung et al., 2021). 
This makes the challenge of profit maximisation more complex. Moreover, the presence of both 
stochastic demand and a rich data set of competitors’ prices and number of bookings, can be over-
whelming to managers gathering information (from the Internet). 

The sheer quantity of information (Olsen & Roper, 1998) can lead them to a limited and local 
centric search for alternative actions (Cyert & March, 1963), where the final pricing decisions be-
come a routine practice based on partial information (Lee, 2016). In these cases, imitation is a 
characteristic response to uncertainty in decision-making (Gavilan et al., 2018) especially when 
there is a strong perception of a performance gap with respect to competitors (March & Simon, 
1993). This gap is an important trigger for experiential learning (Rezvani et al., 2019); perform-
ance levels near expectations foster learning from one’s own experience, while performance levels 
far from expectations favour exploring and learning from others (Baum & Dahlin, 2007). 
Accordingly, the process of analysing and selecting alternative strategies can make a larger impact 
than foreseen (Mohr, 1978) given the lack of strategic development skills, organisational goals 
may be unclear or changing (Cohen et al., 1972) and decision-making eventually depends on 
the context (Pellinen, 2003). 

As a consequence, see also Smallman and Moore (2010), we believe that decision-making 
should be investigated by specifically focussing on context, accepting complex and unclear caus-
ality, and accounting for the importance of both decision-making heuristics and time. Both the 
time dimensions (day of consumption and advance purchase) affecting competitive dynamics on 
all the markets where consumption is not on day of purchase and the capacity are fixed (e.g. tickets 
for events and exhibitions, overnight stays in accommodation facilities, seats in means of 
transportation). 

To fully exploit the opportunity offered by these publicly available threefold data (time and in-
dividuals), and to identify competition between decision makers only on the basis of their behav-
iour, we suggest a new approach. A network time-series model that does not require specifying a 
priori connections between the nodes (i.e. a self-defining network) precisely because identifying 
the structure of the competition network is the final goal of this contribution. 

In recent years, a growing stream of literature on modelling network connections over multi-
variate time series has been developed. Zhu et al. (2017) proposed a network autoregressive model 
(NAR) where a continuous response variable is observed for each node of a network. The high- 
dimensional vector of such responses is modelled through a dynamic time series regressed on 
the past values of the response, measured on the node itself and the average lagged response of 
the neighbours connected to the node. A significant extension of the work to quantile regression 
has been developed by Zhu et al. (2019). Some other extensions for network time-series models, 
include the grouped least squares estimation of the NAR model (Zhu & Pan, 2020), and a network 
version for GARCH-type models (Zhou et al., 2020). Knight et al. (2020) consider a model with 
more elaborate neighbourhood structures, called generalised NAR, which addresses the effect of 
several layers of connections between the nodes of the network. In addition, an R software for fit-
ting such models is provided, but only for continuous-valued variables. The latest applications of 
generalised NAR models can be found in Nason and Wei (2022). 

More recently, Armillotta and Fokianos (2022a) extended this line of research to accommodate 
multivariate count data by specifying linear and a log-linear Poisson network autoregressive mod-
els. Further details on count time series can be found in Armillotta, Luati, et al. (2022). The same 
authors have proposed non-linear extensions of both count and continuous NAR models and a 
procedure for testing the linearity of the model (Armillotta & Fokianos, 2022b; Armillotta, 
Fokianos, et al., 2022). R software to perform this kind of analysis was developed by Tsagris  
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et al. (2022) and Armillotta, Tsagris, et al. (2022). Other multivariate models for network data 
have recently been applied with success in several fields; see Lebacher et al. (2021) for an applica-
tion on global weapon markets and Gilardi et al. (2022) for an example with car crashes data. 

All previous literature develops inference by assuming that connections between the nodes of the 
network are known a priori, while our contribution does not rely on this kind of assumption. We 
introduce a new approach that brings to light the unknown network competition patterns between 
hotels, using a purely data-driven algorithm exploiting all the available information about hotels’ 
price dynamics. The algorithm includes a novel specification of the network autoregressive frame-
work, which takes the three-dimensional nature of the data set into account where the dynamic 
part of the model is based on advance booking effects connected to prices for each arrival time, 
instead of the classic lagged time effects. The parameters of the models and the network connec-
tions can vary with the advance booking to account for different competition patterns along the 
booking window, for example, the early or last-minute booking periods. This constitutes an add-
itional innovation in our approach with respect to the existing literature. 

We also suggest that the predictive accuracy along advance bookings could be used as a measure 
to identify the optimal competition network by simply observing daily organisational contexts. In 
this way, following Roy and Raju (2011), among others, the networks are built on the direct edges 
among the hotels that are then associated to three typical competition profiles: (i) independent 
(Bertrand-Nash) behaviour, where firms adjust prices only to maximise their revenue, (ii) 
Stackelberg leader–follower, where a firm acts as the leader or the follower of another one, and 
(iii) mixed, where a firm is alternatively leader or follower of a second firm along the advance 
booking window (i.e. its reaction function varies with the time-lag between purchase and 
consumption). 

Ideally, the competition network should be inter-regional, encompassing all competitors oper-
ating at a destination including those in nearby destinations (Pellinen, 2003). However, Abrate 
and Viglia (2016) suggest that price competition is driven by sharing context-related attributes 
(primarily location), in addition to tangible and reputational ones. Accordingly, competition is 
also studied at a single destination level, assuming limits to the geographical distance between 
two competitors (e.g. almost 300 m in the case of the city of Seville, Spain; Chica-Olmo, 2020). 
Furthermore, Mohammed et al. (2019) conceptualises the frequency of room rate change to be de-
termined by market structure factors (average occupancy ratio and competitor spatial concentra-
tion), hotel characteristics (chain affiliation, star rating, size, and class) and location attributes 
(district, distance to airport and train station). Thus, in accordance with Urtasun and Gutiérrez 
(2006), among others, we assume the average price (i.e. market commonality and resource simi-
larity) as a variable to select ‘true’ competitors in a given geographical neighbourhood. However, 
we also consider the role played by some important factors that introduce heterogeneity in either 
pricing strategies, or responses to competitors: capacity (Park et al., 2022), star rating 
(Sánchez-Pérez et al., 2020) and the availability of special features such as restaurants and meeting 
rooms. 

The approach we propose can be employed to study competition behaviour in every market 
where consumption is delayed with respect to the purchase time. Given that online shopping 
has significantly increased in recent years (with a consequent increasing availability of data), we 
believe we are addressing a major challenge for both academics and managers, as we tackle an im-
portant question around the complex competitive relationships among highly heterogeneous ser-
vice providers. 

3 Explanatory data analysis 
Our empirical analysis focus on hotels in Venice, a world renowned destination in Italy. As the 
goal of this paper is to show how it is possible to evince hotel price competition from publicly avail-
able data, we focus on a pre-COVID-19 time span. In fact, during COVID-19 many hotels peri-
shed from the Internet or followed a virtual channel closure strategy, i.e. offering very high 
rates only to maintain online visibility while managing to stay closed on certain arrival dates to 
save on the costs of personnel, heating, and electricity. This point has been further discussed by  
Arabadzhyan et al. (2021) for the case of Milan. For the specific area of Venice, some evidence  
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has been provided by the Center of Advanced Studies in Tourism (CAST) at University of Bologna; 
see https://site.unibo.it/indiceattivitalberghiera/en/hai-index for further information. 

3.1 Data description 
On 10 March 2020, the Italian Ministry issued a decree limiting the movement of all individuals 
throughout Italy, except when specifically authorised for work or healthcare. This date marks the 
beginning of the pandemic in Italy. Therefore, 9 March 2020 is the end date of the sample under 
study. With the aid of a Python-based web-scraping software—see https://pypi.org/project/ 
selenium/—we simulate a customer searching for a room through Booking.com at each of 14 
(0–13) different advance booking periods. Prices were scraped between mid-night and 05:00 
am, to restrain price changes during the scraping period. All posted offers were recorded but 
the best available rate (BAR), i.e. the lowest price offered for a standard room was kept, when 
the rooms appear equivalent based on their characteristics. The most frequent choice for a 
room during the advance booking period is a non-refundable, double room for single use with 
breakfast included in the price. We choose this kind of room as our standard for the search. 
This implies and ensures homogeneity with respect to possible (unobservable) product differenti-
ation practices. Data collection began on 18 March 2019. 

The observed data ranges from 1 April 2019 to 9 March 2020 (344 days). We lose 13 days of 
data at the beginning of the time period because we consider a booking window up to 13 days (e.g. 
the rate for a stay on 1 April, booked 13 days in advance, can only be found scraping the data on 18 
March). Even though the proposed approach can be used to study the pricing behaviour in any 
booking window, longer horizons are excluded because we expect that competition is fiercer at 
the last minute (Guizzardi et al., 2019). 

Following this criteria, we scraped 95 high- and mid-segment hotels active in online market in 
Venice, as they have a higher likelihood for dynamic pricing and electronic distribution practices 
(Dabas & Manaktola, 2007). For these hotels, some covariates describing their characteristics are 
publicly available: two dummies for the presence/absence of restaurant and meeting room; the to-
tal number of rooms available for each hotel; the star rating (from 1 to 5) and the geographical 
latitude–longitude coordinates. Other covariates (spa, swimming pool, gym, etc.) might be rele-
vant for price competition but we will not consider them for two reasons. First, we apply a parsi-
mony principle leveraging the well-known relation between star rating, number of rooms (as a 
proxy of hotel size), and customer preference ranking (Dolnicar, 2002). Second, variables for serv-
ices represent a potential source of bias as they do not guarantee these facilities will actually be 
used (Guizzardi et al., 2016). For example, knowledge that a hotel has a swimming pool does 
not provide any information about its size or schedule of operation. 

3.2 Descriptive statistics 
The set of hotels is indexed by i = 1, . . . , N, t = 1, . . . , T refers to the arrival date and k = 
0, . . . , K = 13 to the number of days of advance booking. Let Y(k)

i,t = log (P(k)
i,t ) denote the log of 

BAR, for hotel i, arrival date t and advance booking days k. 
Table 1 shows some descriptive statistics for P(k)

i,t , computed over all N hotels and T arrival dates, 
for each specific advance booking period. We note that average prices are proportional to the ad-
vance booking and their minimum is attained at k = 0. Venice is a very popular destination and the 
risk of not finding a room, when booking during last minute, costs more than 30 euros between the 
median asking price at k = 13 and the average rate at k = 0. The large gap between the extreme 
percentiles (about 417 euros on average) is partially explained by fluctuations which are typical 
of daily time-series rates in a destination where world-famous events are held, such as Carnival 
or the Biennale. Furthermore, even though the sample consists of hotels which are relatively homo-
geneous in terms of quality (at least 3 stars), some offer special features such as good views of 
Venice’s main attractions. For this reason, location can lead to differentiated average room rates 
even when comparing facilities located a few metres apart. Mathur and Dewani (2016). For a 
room with a view of the Grand Canal in a 5-star hotel, the cost rarely falls below 4,000 euros 
per night with peaks around 7,500 during the high season. 

The first column in Table 2 presents some descriptive statistics for the BAR computed over all 
hotels, arrival dates, and advance bookings. In the second column the same results are presented  
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considering only the last-minute booking, i.e. 0 ≤ k ≤ 3. A summary of the other covariates is also 
reported. From Table 2, we can see that the median BAR is around 135.2 euros, with high vari-
ability of the different hotels available in the large market of Venice. About 28% (18%) of the 
hotels analysed has a restaurant (meeting) room. All the hotels included in the analysis have at least 
10 rooms, with an average number of rooms around 45. Typically, each hotel has 5–6 neighbour-
hood hotels within a 200 m radius. 

A multivariate time-series plot for all hotels at advance booking k = 0, see Figure 1, shows the 
seasonal patterns observed in Venice. Two distinct profiles become clear during the time period we 
consider. The green part of the plot shows the high room prices that correspond to the seasonal 
periods of Spring and Summer. From the median log-price time series (Figure 1, panel below), 
we note that major peaks are detected during Easter and August holidays. The purple part of 
the plot corresponds to the prices during the Winter period. This season constitutes a second pro-
file which is characterised by lower room rates. We also observe peaks around end-of-the-year hol-
idays and during Venice carnival. Figure A1 in Appendix A provides a better illustration of the 
same data by employing a cubic spline smoother. The conclusions are identical. The seasonal pat-
tern is homogeneous across all advance bookings. (Figures with k ≠ 0 are not shown due to space 
constraints, but are available upon request.) 

In Figure 2, the left panel shows the result of a hierarchical cluster analysis on hotels, using as 

clustering variables 14 standard deviations, σ(k)
i =

��������������������������

T−1
T

t=1 (Y(k)
i,t − Y̅

(k)
i )2



, for k = 0, . . . , 13, 

where Y̅
(k)
i is the sample mean for the log-BARs of hotel i at advance booking k. In Figure 2 (right 

panel), we cluster the advance bookings k = 0, . . . , 13 by using the same standard deviations, σ(k)
i 

as clustering variables. Finally, in Figure 3, we report the magnitude of the standard deviations. On 
the whole, it appears that not all hotels have the same propensity to apply dynamic pricing. From  
Figure 2 (left panel), the height of the dendrogram reveals the presence of two groups. Cluster 1, 
includes 60% of hotels with the lowest price variability (see Figure 3), while Cluster 2 groups the 
hotels with the highest likelihood of changing price according to seasonality. 

We also note that there is a strong advance booking effect on the propensity to rely on dynamic 
pricing. In fact, we find a clear separation between last-minute booking (k = 0, . . . , 3) and early 
reservations. We observe a slightly lower variability, indicating that the pricing strategies become 
more homogeneous during last-minute reservations—see Figure 3. This is a lower-effort/less-risky 
pricing strategy. 

Table 1. Descriptive statistics of best available rates for each advance booking 

k 5%-quantile Median Mean 95%-quantile  

0  44.170  113.550  166.689  457.500 

1  45.320  125.515  173.538  460.565 

2  46.400  128.600  175.844  457.500 

3  46.400  129.500  178.704  456.120 

4  48.494  129.620  175.959  450.500 

5  48.500  134.540  181.094  453.300 

6  48.500  135.980  181.012  451.635 

7  49.400  139.500  199.609  510.854 

8  49.400  139.500  189.917  501.635 

9  48.652  138.500  178.665  453.500 

10  48.500  139.500  177.962  450.500 

11  48.500  142.730  180.014  452.721 

12  48.500  143.640  183.676  453.603 

13  48.500  146.500  185.306  454.443   
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Table 3 summarises some descriptive statistics. The two clusters of hotels identified are very dif-
ferent in terms of size, price and meeting room availability. Cluster 1 includes large and expensive 
accommodations offering business-oriented services. This is expected as these high-quality hotels 
tend to maintain a more stable pricing pattern to address price-fairness concerns. In addition, they 
are positioned in the off-line market where the business customers often book multiple rooms, well 
in advance, negotiating special rates. Such established rates become a benchmark which is difficult 
to change because businesses cannot price rooms online and at the same time satisfy their off-line 
customers. 

4 Methodology 
The room prices published online provide researchers an opportunity to dig deeply into the hotel’s 
short-term price competition tactics in a real-life context. In line with Skilton and Bernardes 
(2015), we propose to model the heterogeneity with which competing hotels react to competitors’ 
price adjustments by employing a novel Network Autoregressive approach (see Section 4.1) able 
to handle data with one cross-sectional dimension (the hotels i) and two time-series dimensions 

Table 2. Descriptive statistics  

BAR BAR (k ≤ 3) Restaurant Meeting Num. rooms Num. hotels in 200 m  

1st Qu.  81.50  75.48  0.00  0.00  22.00  1.00 

Median  135.20  124.50  0.00  0.00  28.00  4.00 

Mean  181.70  173.57  0.28  0.18  44.98  5.28 

3rd Qu.  213.50  201.90  1.00  0.00  53.00  9.00 

Note. BAR = best available rate.  

Figure 1. Multivariate time series of log-transformed best available rates. Advance booking k = 0. Hotels by row 
ordered in descending order by median log-price. Time in column (1 April 2019–9 March 2020). Colours reflect 
threefolds of log-price distribution: high (green), mid (grey), low (purple) obtained by dividing each hotel’s log-price 
distribution in tertiles. Right panel: box plot distribution around the median (full dot) for each hotel time series. 
Below: time series of hotel median log-price levels.   
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(arrival dates t for the room rented and number of days of advance booking k). The structure of a 
network with N nodes (network size) with index i = 1, . . . N is described by an adjacency matrix 
A = (aij) ∈ {0, 1}N×N, i.e. aij = 1 if there exists a directed edge from i to j, i→ j (hotel i follows hotel 
j), and aij = 0 otherwise. Since any hotel cannot be competing against itself, self-relationships are 
not allowed, i.e. aii = 0 for any i = 1, . . . , N; this is a typical assumption (Kolaczyk & Csárdi, 
2014; Wasserman et al., 1994). For each hotel (node i) the time series of BARs is measured 
over a time window t = 1, . . . , T. 

Moreover, to account for different competition behaviours along the booking window, the net-
work matrix is assumed to depend on k, i.e. A(k) = (a(k)

ij ) ∈ {0, 1}N×N, i.e. a(k)
ij = 1 if hotel i follows 

the discounts/surcharges of hotel j for rooms sold k days in advance (i→ j), and a(k)
ij = 0 otherwise. 

For example, if k = 0, the network will uncover the competition relations in the last-minute sector, 
while for k = 13 we account for a different early-booking competition network. 

A focal point of our analysis is that we do not have a priori knowledge of the competition rela-
tions between hotels. Therefore, we suggest this approach to discover the price competition rela-
tions, starting from the competitors’ pricing actions and reactions observed along time t and 
advance booking k. To this aim, we introduce the following methodology. 

4.1 Advance booking network autoregression 
In this section, we will assume that the sequence of network adjacency matrices {A(k), k = 
0, . . . , K − 1} is known, leaving the task of reconstructing such sequence of matrices to the next 
section, using a data-driven process able to give a structural form to competition patterns between 
hotels. We propose the following network autoregressive models for advance bookings 
k = 0, . . . , K − 1. 

Y(k)
i,t = β(k)

0 + Z′iγ
(k) + δ′tα

(k) + β(k)
1

1

n(k)
i

N

j=1

a(k)
ij Y(k+1)

j,t + β(k)
2 Y(k+1)

i,t + ε(k)
i,t , (1) 

where Y(k)
i,t = log (P(k)

i,t ), ε(k)
i,t is the stochastic error, assumed to be independent, with standard devi-

ation σ(k), n(k)
i =

N
j=1 a(k)

ij is the total number of connections starting from hotel i, at advance 

Figure 2. Hierarchical clustering with complete linkage of sample standard deviations of hotels (left panel) and 
advance bookings (right panel). Group dissimilarity levels on the vertical axis. For the segmentation along hotels (left 
panel) the clustering variables are 14 standard deviations computed over arrival dates t, one for each advance 
booking k. For clustering of advance booking (right panel), clustering variables are 95 standard deviations computed 
over arrival dates t, one for each hotel i.   
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booking k, called out-degree. 
Model (1) postulates that, for every single hotel i being a potential node of a network, the 

log-BAR time series of hotel i, at arrival time t, booked k days in advance, Y(k)
i,t , is regressed on: 

• The average log-BARs, same arrival date t, at advance booking (k + 1), computed over hotels 
j ≠ i which are followed by i (i.e. i→ j). That way we let price policies of hotels j have an im-
pact on the prices of hotel i; such effect is then called ‘network effect’, associated to the par-
ameter β(k)

1 . 

• The log-BAR for the same hotel i, same arrival day t, but higher advance booking, Y(k+1)
i,t . The 

advance booking autoregressive effect is measured by the parameter β(k)
2 , that will be hence-

forth simply called ‘autoregressive effect’. 
• A set of structural hotel-specific covariates Zi = (Z1,i, Z2,i, Z3,i, Z4,i, Z5,i)

′. More precisely, 
Z1,i (Z2,i) is a dummy variable taking values 1 if hotel i owns a restaurant (meeting room, re-
spectively), 0 otherwise. Z3,i is the normalised number of hotel i’s rooms; this represent hotel 
i’s size. Z4,i is the (normalised) number of hotels within 200 m from hotel i; this is assumed to 
measure the competition pressure that hotel i undergoes. Finally, Z5,i is the star rating. 

• A set of seasonal dummies δt = (δ1,t, . . . , δ8,t)
′, where δ1,t is the weekend dummy, taking value 

1 if the arrival date t is at the end of the week (Friday/Saturday/Sunday), 0 otherwise. The 
others indicators correspond to a specified holiday period. We considered: Carnival, 
Easter, Pentecost, August, Mid-August, Halloween, Immaculate Conception, Christmas, 
and New Year. 

Figure 3. Heat map of the hierarchical clustering presented in Figure 2 whose dendrograms are reported over the 
axes (left panel → row-wise, right panel → column-wise). The magnitude of sample standard deviations over arrival 
time t for hotels (rows) and advance bookings (columns) is shown.   
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By rewriting model (1) in matrix form we have, for k = 0, . . . , K − 1 

Y(k)
t = β(k)

0 1 + Zγ(k) + Δtα(k) + G(k)Y(k+1)
t + ε(k)

t , (2) 

where G(k) = β(k)
1 W(k) + β(k)

2 I, W(k) = diag{1/n(k)
1 , . . . , 1/n(k)

N }A
(k) is the sequence of row- 

normalised adjacency matrix, with A(k) = (aij), so w(k)
i = (a(k)

ij /n
(k)
i , j = 1, . . . , N)′ ∈ RN is the ith 

row vector of the matrix W(k), and I is an identity matrix of appropriate dimensions. Note that 
all the row-sums of the matrix W(k) are no bigger than 1, for all k. Then, Z = (Z1, . . . , Z5) is 
the N × 5 matrix of covariates, with N-dimensional vectors Zh = (Zh,i), for i = 1, . . . , N and 
h = 1, . . . , 5, with γ(k) being the associated 4 × 1 vector of parameters. Finally, Δt = (δt, . . . , δt)

′

is an N × 8 matrix where each row replicates the dummy vector δt and whose relative parameter 
vector is α(k). 

Model (2) assumes that the structure of the network is non-random. Once the network matrix 
W is known, it is then possible to estimate the m × 1 vector of unknown parameters of the model 
θ(k) = (β(k)

0 , β(k)
1 , β(k)

2 , γ(k)′, α(k)′)′, for k = 1, . . . , K − 1, by using the following least squares 
methods. 

Define the N × m matrix of regressors Q(k+1)
t = (1, W(k)Y(k+1)

t , Y(k+1)
t , Z, Δt), so that model (2) 

can be rewritten as Y(k)
t = Q(k+1)

t θ(k) + ε(k)
t , for t = 1, . . . , T. We then rewrite the problem as a gen-

eral TN-dimensional linear model in the following way. Define Y(k) = (Y(k)′
1 , Y(k)′

2 , . . . , Y(k)′
T )′, ε(k) = 

(ε(k)′
1 , ε(k)′

2 , . . . , ε(k)′
T )′ and Q(k+1) = (Q(k+1)′

1 , Q(k+1)′
2 , . . . , Q(k+1)′

T )′ is the TN × m matrix of stacked 
regression matrices. The solution of the general linear system Y(k) = Q(k+1)θ(k) + ε(k) is the follow-
ing least squares estimator, for k = 1, . . . , K − 1 

θ̂(k) = Q(k+1)′Q(k+1)
 −1

Q(k+1)′Y(k) =
T

t=1

Q(k+1)′
t Q(k+1)

t

 −1
T

t=1

Q(k+1)′
t Y(k)

t . (3) 

Large sample properties of equation (3) are established within the typical Gauss-Markov frame-
work (see Appendix A.2) which presupposes iid errors and iid exogenous covariates. 

Note that model (2) has m parameters to be estimated. In contrast, if we had assumed the full- 
matrix model G(k) = (g(k)

ij )i,j=1,...,N then we would face the problem of estimating O(N2) parameters. 
As stated in Bernanke et al. (2005), full-matrix models are not often used for economic data sets 
that contain more than 6–8 time series. Therefore, the parsimony of equation (2) allows us to treat 
high-dimensional data. 

Price dynamics modelled by equation (1) introduce a novel methodology which has not been 
discussed in the literature, to the best of our knowledge. Related works (see Section 2) employ ra-
ther different approaches when compared to equation (1). Indeed, the dynamic part of the model is 

Table 3. Descriptive statistics for the two hotel clusters identified in Figure 2 

Cluster  BAR BAR (k ≤ 3) Restaurant Meeting Num. rooms Num. hotels in 200 m  

1 1st Qu.  87.00  83.69  0.00  0.00  22.50  1.00   

Median  142.20  132.50  0.00  0.00  31.00  4.00   

Mean  180.30  179.13  0.29  0.22  49.75  5.00   

3rd Qu.  217.50  209.25  1.00  0.00  63.50  8.50 

2 1st Qu.  66.92  58.50  0.00  0.00  20.75  1.75   

Median  124.82  108.03  0.00  0.00  26.00  4.00   

Mean  184.41  163.00  0.28  0.09  35.59  5.84   

3rd Qu.  204.74  184.50  1.00  0.00  39.50  9.25 

Note. BAR = best available rate.   
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not purely ‘autoregressive’, i.e. based on time observation (t − 1) but is indeed a forward effect in 
the advance booking (k + 1), connected to each time event t. Moreover, the model allows us to deal 
with three-dimensional data sets, for individual (i) over a time frame (t) with respect to a certain 
action occurring k time units previous. Finally, all the coefficients of the models, including net-
work, are allowed to vary with the advance booking. 

4.2 Building competition network 
The model defined in equation (1) is a flexible tool allowing for the examination of several network 
effects, according to the way the matrix W is selected. For, example, it can be chosen by computing 
the geographical distance between nodes. In this case, W represents the matrices of spatial effects; 
see Cliff and Ord (1975) and Martin and Oeppen (1975), among many others. However, several 
alternatives are possible, depending on available information about the nodes. 

In the present work, we are particularly interested in the definition of a self-selecting competi-
tion network composed by directed edges. In this way, competitive reactions (if any) are identified 
by the model which takes into account published prices at different arrival dates and lagged ad-
vance bookings. 

Thus, as a first step, we compute, for each hotel i, the median BAR, say Pi = mediank,t(P
(k)
i,t ), by 

considering all the arrival dates t = 1, . . . , T and all the advance bookings k = 0, . . . , 13. Pi is tak-
en as an overall measure of hotel’s competition segment, given its tangible, reputation and context-
ual characteristics. 

As a second step, we calculate the price distance between a pair of hotels i and j, by 
dij = log (Pi) − log (Pj)





. This quantity can be viewed as a measure of the difference between serv-

ices offered by the i and j hotels. Then, we determine the probabilities to draw an edge from hotel i 
to hotel j—the probability to compete—as follows: 

pij = ph
ijp

d
ij, where ph

ij = 1 − Fh(hij, μ, λ), pd
ij = 1 − Fd(dij, η, ν), (4) 

with hij being the geodesic distance between hotels i and j computed with the haversine formula. 
Fh, Fd are the cumulative distribution functions (c.d.f.) of the geodesic and price distances, respect-
ively, whose parameters τ = (μ, λ, η, ν)′ and distributional forms depend on the characteristics of 
the destination under study. We appeal to complement of the c.d.f. to obtain that pd

ij is decreasing 

function of distance, i.e. dij →∞ implies pd
ij → 0, and when dij → 0, then pd

ij → 1. Similar inter-

pretations hold for ph
ij. From equation (4), two hotels are likely to compete if they are geograph-

ically close and have a similar price positioning. By contrast, hotels that are far away and/or with 
significantly different average price levels will not compete. 

In order to determine competition probabilities we exploit the information already available 
about the peculiarities of Venice market. Focussing on spatial competition, we see that the most 
famous tourist heritage attractions in Venice are in the Sestiere San Marco district (Sestiere is 
one of six districts in the city of Venice). This area is only about 0.45 km2 with borders formed 
by the landmark bridges Ponte dell’Accademia (West), Ponte di Rialto (North), and Ponte della 
Paglia (East). Accordingly, about 50% of the hotels in this study are located in a radius measuring 
500 m from the centre of the San Marco district (see Figure 6). Therefore, we assume that at dis-
tance hij > 500 m the probability of competition between hotel i and j is zero, i.e. ph

ij = 0. This re-
striction is a realistic assumption since assuming the probability of competition among hotels 
beyond 500 m is greater than zero, would mean each hotel competes with a very large number 
of other hotels. However, in practice, market players only systematically follow a limited number 
of competitors (Cyert & March, 1963; Li et al., 2018). At the same time, we only want to consider 
all the hotels within a minimum geodesic distance as potential competitors. Following the litera-
ture (e.g. Chica-Olmo, 2020 and considering the high spatial density of hotels in Venice, we con-
sider it a realistic assumption that hotels close to each other have a high probability of being 
competitors. 

The logistic function is a natural choice to map probabilities in a (0, 1) range starting from a real 
domain. Therefore, for the spatial competition we employ a truncated logistic c.d.f. with left  
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truncation to 0 (distances cannot be negative) and right truncation to 500: 

Fh(hij, μ, λ) =
Lh(hij, μ, λ) − Lh(0, μ, λ)

Lh(500, μ, λ) − Lh(0, μ, λ)
, Lh(hij, μ, λ) =

1
1 + exp (−(hij − μ)/λ)

.

Focussing on the price distance, we assume that two hotels say i and j, have a high probability of 
being competitors if they have similar prices while they should have a very low probability of com-
petition if their prices are reasonably different. In this case, a logistic distribution is not adequate 
(Figure 4, right panel). As a reasonable choice of distribution for a non-negative variable such as 
the price distance, we choose dij ∼ Gamma(η, ν), where the parameters denote shape and rate, re-
spectively. We then estimate each pair of parameters by maximum likelihood, 

(μ̂, λ̂)′ = argmax
μ,λ

N

i=2



j<i

log fh(hij, μ, λ), (η̂, ν̂)′ = argmax
η,ν

N

i=2



j<i

log fd(dij, η, ν), 

where fh, fd are the probability density functions of the truncated logistic and gamma distribu-
tions, respectively. The estimation leads to τ̂ = (μ̂, λ̂, η̂, ν̂)′ = (362.45, 124.41, 1.22, 2.21)′ being 
all significantly different from 0 at usual significance levels. The resulting c.d.f. computed with es-
timated parameters provides an adequate fit of the data (see Figure 4). The Kolmogorov–Smirnov 
does not reject both models, at 1% level. 

Define Y(k) the whole set of observed prices at advance booking k, Δ the whole set of dummies at 
all the available arrival times t, and X(k) = (Y(k), Z, Δ) the whole data set of observations available 
to the researcher at advance booking k. With this notation, the OLS estimation of the parameters is 
a function of the network and the data set, i.e. θ̂(k) = θ̂(k)(W(k), X(k)). Thus, the fitted values Ŷ(k)

t = 
β̂0

(k)1 + Zγ̂(k) + Δtα̂(k) + (β̂(k)
1 W(k) + β̂(k)

2 I)Y(k+1)
t = Ŷ(k)

t (W(k), θ̂(k), X(k)) are functions of the data and 
the competition network structure. Since in competition market the network is unknown, we pro-
pose the following data-driven procedure to construct it. For each k = 0, . . . , K − 1, the off- 
diagonal element of a network adjacency matrix A(k) can be generated by a Bernoulli trial with 
probability pij defined as in equation (4), for each pair of hotels, i.e. for each element of the adja-
cency matrix, aij. Repeat the same simulation S times so that we obtain A(k,s) (and so W(k,s)), for 

s = 1, . . . , S, used to perform the estimation θ̂(k,s), compute fitted values Ŷ(k,s)
t , and then select 

Figure 4. Left: empirical c.d.f. of geodesic distances (black) against c.d.f. of estimated truncated logistic (red). Right: 
empirical c.d.f. of price distances (black) against estimated gamma c.d.f. (red).   
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the network matrix minimising the root mean squared error (RMSE) 

Ŵ(k) := argmin
W(k,s)

������������������������������

1
NT

T

t=1

N

i=1

Y(k)
i,t − Ŷ(k,s)

i,t

 2




 . (5) 

This type of data-driven sampling approach selects the network matrix minimising the discrep-
ancy between the model and the scraped data. This allows us to adaptively shape the price com-
petition network, that dynamically forms over time, which is more likely to represent the everyday 
price competition context in a certain neighbourhood area. 

In summary, the network estimation process consists of (i) maximum likelihood estimation of 
competition probabilities, by employing equation (4); for each advance booking k: (ii) simulating 
networks, several times, using the estimated probability; (iii) fitting of NAR model (1) to each net-
work generated by applying equation (3); (iv) and identification of the competition network which 
minimises the RMSE (5). Detailed description of the steps involved in unveiling the competition 
network is given by Algorithm 1. 

Alternative methodology might be applied to identify competition networks. For instance,  
Guizzardi et al. (2019) employ a vector autoregressive model of order 1, say VAR(1), in connec-
tion to Granger causality tests for the same estimation problem. However, fitting of a VAR(1) 
model requires estimation of N + N2 parameters for each advance booking k. The NAR based ap-
proach taken in this work requires estimation of less parameters (m for each k) and allows for co-
variate inclusion which can be instrumental on discovering the competition network. In addition, 
Algorithm 1 determines the network that minimises the discrepancy with the real world dynamic 
pricing. 

5 Estimation results 
Results of estimation from model (1), with networks generated according to the mechanism de-
scribed in Section 4.2 are shown in Table 4 by generating S = 1,000 network matrices. The output 
is focussed on variables with corresponding significant coefficients. We do not find any determin-
istic seasonal effect (weekend and holiday dummy variables were not significant) because any sto-
chastic seasonal effect is taken into account by the published price at advance booking k + 1. This 

Figure 5. Scatter plot of estimated network effects β̂(k)
1 of model (1) against the advance bookings k = 0, . . . , K − 1. 

Red line: linear trend (p-value 0.0176).   
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particular explanatory variable contains information for future demand fluctuations. Basically, it 
represents the expectation of each hotelier regarding the overall effect of seasonality at the destin-
ation due to different arrival days t, as well as its idiosyncratic effect due to single hotel features 
(Guizzardi et al., 2022). For a similar reason, Z5 (star rating) is not significant for all the advance 
booking periods. In fact, the lagged price can be considered a proxy of the general quality level 
and/or of the offered features. 

Therefore, model (1) was re-estimated by excluding the nonsignificant variables and the results 
are reported in Table 4. The analysis provides clear evidence of a significant network effect. 
More precisely, the coefficients β̂1 are found to be positive and significant at 5% significance level, 
indicating that, for competing hotels, a change in the rate published by the ‘average competitor’ at 
advance booking k + 1 is followed by a rate adjustment of the same sign in k. The adjustment ranges 
from around 1.5% in the early-booking period to more than 3.5% in the last-minute time frame. 
More interesting, we find that the estimated network effect follows a linear deterministic relation 
(see Figure 5). A simple regression where the dependent variable is a deterministic trend 
(k = 0, . . . , 12) yields a statistically significant slope. In other words, reactions to competitors’ pri-
cing policies increase as the number of advance booking days decreases; a result consistent with  
Guizzardi et al. (2019), among others. 

The autoregressive effect β̂2 is also significant and positive. The high value of the autoregressive 
coefficients (0.818 on average) shows that the prices set by hoteliers are very persistent, i.e. that 
hoteliers follow their own pricing strategy, which is accurate in forecasting reservations/cancella-
tions along the booking curve and/or attentive to consumers’ price-fairness issues affecting profits 
in the long term (Malc et al., 2016). The coefficient reaches its minimum at k = 0 when the risk of 
both being left with unsold rooms and a performance gap compared to a competitor become trig-
gers to imitating and learning from others. 

The covariates Zl, for l = {1, 2, 3}, are always significant and the overall tendency of their co-
efficients is positive. These variables together can be considered a proxy of the value of the 

Algorithm 1 Algorithm for identifying competitive networks on NAR models with advance bookings dynamic prices. 

Require N number of hotels; T temporal size; K total number of advance booking; S number of simulations; 
Y log-BAR data; Z covariates; Δ dummies; hij geodesic distances 

1: Pi ← mediank,t exp Y(k)
i,t

  

2: dij ← log (Pi) − log (Pj)






3: Estimate pij according to (4) 

4: for k = 0 to K do 

5: for s = 1 to S do 

6: Draw a(k,s)
ij ∈ 0, 1{ } from Bernoulli(pij) for all i ≠ j 

7: Compute the network matrix W(k,s) = w(k,s)
ij

 

i,j=1,...,N 
where w(k,s)

ij ← a(k,s)
ij /

N
j=1 a(k,s)

ij 

8: Q(k+1,s)
t ← 1, W(k,s)Y(k+1)

t , Y(k+1)
t , Z, Δt

 

9: Q(k+1,s) ← Q(k+1,s)′
1 , Q(k+1,s)′

2 , . . . , Q(k+1,s)′
T

 ′

10: θ̂(k,s) ← Q(k+1,s)′Q(k+1,s)
 −1

Q(k+1,s)′Y(k) 

11: Ŷ(k,s)
t ← β̂0

(k,s)1 + Zγ̂(k,s) + Δtα̂(k,s) + β̂(k,s)
1 W(k,s) + β̂(k,s)

2 I
 

Y(k+1)
t 

12: RMSEk,s ←

��������������������������������������

(NT)−1 T
t=1
N

i=1 Y(k)
i,t − Ŷ(k,s)

i,t

 2


13: end for 

14: RMSEk ← mins=1,...,S RMSEk,s
 

15: s∗ ← argmins=1,...,S (RMSEk,s) 

16: Ŵ(k) ←W(k,s∗); Ŷ(k) ← Ŷ(k,s∗); θ̂(k) ← θ̂(k,s∗) 

17: Compute the network matrix Â(k) = â(k)
ij

 

i,j=1,...,N 
where â(k)

ij ← I ŵ(k)
ij ≠ 0

 

return Â(k), Ŵ(k), Ŷ(k), θ̂(k), RMSEk

 

18: end for   
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property so that an upward effect on final price seems reasonable. The covariate Z4 is significant 
for 11 up to 13 advance bookings and is negative. It accounts for the spatial density of hotels in a 
limited 200 m area, measuring the effect of competition. Indeed, the hospitality literature has 
shown that a higher level of competition can decrease the price of a service (Becerra et al., 2013). 

Finally, we note that the minimised RMSE is low, indicating that shaped competitive relation-
ships help to predict the pricing behaviour and—consequently—they can be considered an accur-
ate representation of the competitors’ relationships in ‘real life’. See also Section 5.1. 

Figures 6 and 7 show the competition network at k = 0 and k = 7, respectively. The plots il-
lustrate that location is an important factor in differentiating the offer and therefore determine 
the intensity of the competition. High competition is observed in the San Marco district where 
all the hotels located in this area have the highest number of estimated average connections 
(up to 15). For a hotel, being near the Grand Canal significantly improves the possibility of dif-
ferentiating the offer to reduce the intensity of competition (the number of both competitors and 
bidirectional edges). Moreover, hotels on opposite sides of the Canal compete less, although 
they are close in geographical terms, they are perceived as distant due to the difficulty of crossing 
the water. As expected this evidence is stronger in the early-booking period with more rooms 
available. 

The autocorrelation functions of the residual ε(k)
i,t , see Figure A2, indicates that model (1) cap-

tures the time dependence along t quite satisfactorily at k = 0. Similar results (available on request 
but not shown for space considerations) are obtained for the other advance bookings k allowing us 
to conclude that the fluctuations of prices for t = 1, 2, . . . , T are adequately accounted for by 
model (1). 

5.1 Alternative model specifications 
In further support of the validity of the specification (1), we compare its forecasting performance 
against two rival models that also include the rates posted for arrival days t − 1 and t − 7 (using the 
same k). In this way, we assume that competition is also driven by a time effect along the calendar 

Figure 6. Estimated hotel competition network for k = 0 performed according to Algorithm 1. S = 1, 000 
simulations. Red dots: hotels. Blue line: connection between hotels.   
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days t, i.e. according to price adjustment between adjacent arrival days or between the same day of 
the week in adjacent weeks. In particular: 

ΔY(k)
i,t = β(k)

0 + Z′iγ
(k) + δ′tα

(k) + β(k)
1

1

n(k)
i

N

j=1

a(k)
ij ΔY(k+1)

j,t + β(k)
2 ΔY(k+1)

i,t + ε(k)
i,t , (6) 

where for the model in first differences we have ΔY(k)
i,t = log (P(k)

i,t ) − log (P(k)
i,t−1), whereas for the 

model on the weekly differences ΔY(k)
i,t = log (P(k)

i,t ) − log (P(k)
i,t−7). 

Since the main focus of this paper is on building a competition network, it seems reasonable to 
compare the models in terms of the normalised RMSE, say NRMSEk = RMSEk/(Y(k)

max − Y(k)
min), 

where Y(k)
max = maxi,t (Y(k)

i,t ) in order to account for the different scales of the dependent variables. 
Considering that the NRMSE is a measure of overall forecast accuracy lying in [0, 1], we can see 
from Table A1 that all the three models show good predictive performances with small NRMSE 
never exceeding a 7.4% error. However, in levels, the model has the smallest NRMSE for all the 
advance booking, apart from k = 0. 

For space constraints, we do not report estimation results (available upon request) for models 
(6), but will mention that all the exogenous variables are not significant (intercept included), while 
the network and lagged effects are significant. Interpretations of such effects are in line with the 
model (1) (see Section 6). 

6 Network interpretation 
Based on the previous findings, we have identified 13 networks of competing agents (one for each 
advance booking k = 0, . . . , K − 1). In this section, we first illustrate the suggested criteria to clas-
sify each hotel with its typical (i.e. more frequent) competitive behaviour in the booking window. 
Then we highlight the principal characteristics of the groups identified looking for differences and 
similarities. 

Figure 7. Estimated hotel competition network for k = 7 performed according to Algorithm 1. S = 1,000 
simulations. Red dots: hotels. Blue line: connection between hotels.   
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6.1 Classification criteria 
We start defining the following matrices which contain counts:  

1. Row-to-column matrix (RtC) counting the number of advance bookings where hotels by row 
(i) follow hotels by column (j), and not vice versa, i.e. i→ j but j ↛ i.  

2. Col-to-row matrix (CtR) counting the number of advance bookings where hotels by row (i) 
are followed by hotels by column (j), and not vice versa, i.e. i← j but j ↚ i.  

3. Mixed matrix counting the number of advance bookings where two different hotels, say i and 
j, have reciprocal follower–leader relation, i.e. i→ j and j→ i. 

For each couple of hotels (i, j), we then calculate the relative frequency of follower connections 
(fi→j), leader connections (fi←j) and mixed ones (fi↔j) considering the total number of advance 
bookings (recall that K = 13). That way, fi⊥j = 1 − fi→j − fi←j − fi↔j is the frequency of advance 
bookings where hotels i and j have independent behaviour. 

Average frequencies are obtained as f→ = f← =
N

i,j=1 fi→j/n→ and f↔ =
N

i,j=1 fi↔j/n↔, where 
n→ =

N
i,j=1 I(fi→j ≠ 0), n↔ =

N
i,j=1 I(fi↔j ≠ 0) and I(·) is the indicator function. Note that f→ = 

f← because the matrix CtR corresponds to the transposed RtC matrix. The respective standard de-
viations σ→ = σ← =

�����������
Var(fi→j)


and σ↔ =

�����������
Var(fi↔j)


are also determined. The competitive behav-

iour of hotel i with respect to hotel j is classified as follows: 

• follower if fi→j > max{0.5, f→ + σ→}; 
• leader if fi←j > max{0.5, f← + σ←}; 
• mixed if fi↔j > max{0.5, f↔ + σ↔}. 

To gain some intuition, the first rule implies that hotel i would be a follower of hotel j if the fre-
quency of advance bookings where i→ j is higher than the average overall frequency of followers 
plus its standard deviation; in any case such event should occur for more than half of the advance 
bookings. 

Then we define the following binary indices: mi→j = I(fi→j > max{0.5, f→ + σ→}), 
mi←j = I(fi←j > max{0.5, f← + σ←}), and mi↔j = I(fi↔j > max{0.5, f↔ + σ↔}), taking value 1 if 
the condition in the brackets is true, 0 otherwise. Note that each hotel can have a different behav-
iour with respect to the others, so for example mi→j = 1, while mi←l = 1, for j ≠ l. 

Finally, we categorise the characteristic competitive behaviour of hotel i looking at the following 
sums mi→ =

N
j=1 mi→j, mi← =

N
j=1 mi←j and mi↔ =

N
j=1 mi↔j. In particular, we apply the fol-

lowing criteria: 

• Independent, if mi→ = mi← = mi↔ = 0. An independent hotel has no relationship with com-
petitors, either as a leader or as a follower. 

• Mixed, if mi→ = mi← = 0 and mi↔ ≠ 0 or if mi→ = mi←.A mixed hotel only has reciprocal re-
lationships being, alternatively, leader or follower of a second hotel in the advance booking 
window. However, we also consider ‘mixed’ as the behaviour of a hotel with an equal number 
of follower and leader relationships (with different hotels). 

• Leader, if mi→ < mi←.A hotel is (typically) a leader if it turns out to be a leader by at least one 
more hotel than the number it follows. For example, if a hotelier is a follower 1 time, a leader 3 
times and is mixed 4 times, with respect to other hotels, then, by considering the mixed result 
as equivalent to leader and follower at the same time, the hotel will be ranked a leader for a 
total of 7 times and a follower 5 times. This hotel would then be classified as a leader. 

• Follower, if mi→ > mi←. A hotel is (typically) a follower if it follows at least one hotel more 
than the hotels considering it a leader.  

6.2 Analysis of the profiles of the competitive behaviours 
In this section, we study decision makers’ propensity to lead or follow competitor pricing strategies 
as a function of their structural characteristics. We first apply the classification criteria developed  
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in Section 6.1, then we calculate statistics for each of the four different types of competitors that 
coexist in Venice. This allows us to connect management practices and investment opportunity to 
competition patterns. 

From Section 3, we know that there is a clear difference between last-minute (k ≤ 3) and early- 
booking (k > 3) pricing behaviour. Accordingly, we find a different panorama if we focus on the 
competitive behaviour over the whole booking window considered—see Table 5—or in the first 
four advance booking days (k = 0, . . . , 3; see Table 6). 

When we look at the competition along a two-week advance booking window (see Table 5), we 
find that the independent hotels are the most expensive and the highest rated. They target richer 
customers and therefore are expected to maintain high and homogeneous prices along the advance 
booking period to communicate the exclusive offers. Looking at size and frequency of meeting 
rooms and restaurants, these hotels appear able to target large events like general meetings, con-
gresses and large exhibitions. This is a particular market segment where it is common to sell a large 
number of rooms, well in advance, in the off-line market at special negotiated rates. These prices 
become (unobservable) thresholds for the online rates that cannot be crossed. The likelihood of 
competing on price is also reduced by their exclusive location, with a very small number of poten-
tial competitors in a 200 m radius. 

Leaders, are hotels with low star rating, without meeting rooms and few restaurants. They tar-
get the low-price customers and their prices are more flexible. This is another market segment with 
customers booking (online) well in advance with respect to the arrival date. This characteristic 
makes them ‘price makers’ leading the online (early-booking) price competition. 

Followers are similar to independent hotels except that they cannot leverage an exclusive loca-
tion because they are located in the area of the highest competitor density in a 200 m radius. They 
offer meeting rooms and restaurants (also), positioning themselves in the business segment. 
However, their low average price tells us that they cannot even differentiate themselves from their 
competitors with respect to the services offered. Thus, price becomes a main competitive factor 
forcing them to follow one or more leaders in the neighbourhood. 

Finally, the proposed network-based methodology, discovers the presence of many hotels that 
are simultaneously leaders and followers. Mixed hotels associate a low average star rating with a 
high average price, a clear indication that they are able to differentiate themselves from the com-
petitors leveraging exclusive tangible, reputation or, more likely, context attributes. Their ‘aver-
age’ characteristics allow them to target the whole spectrum of business and leisure customers, 

Table 5. Average statistics for classified competitive relations on all advance booking (k = 0, . . . , 13) 

Category Frequency BAR Stars Restaurant Meeting Num. rooms Num. hotels in 200 m  

Follower  14  158.77  3.6  0.43  0.21  48.5  7.7 

Independent  40  200.00  3.7  0.35  0.28  47.9  3.1 

Leader  13  150.19  3.2  0.15  0.00  31.5  6.8 

Mixed  28  181.60  3.5  0.18  0.11  45.4  6.5 

Note. Maximum levels in green, minimum levels in red. BAR = best available rate.  

Table 6. Average statistics for classified competitive relations on last-minute booking (k ≤ 3) 

Category Frequency BAR Stars Restaurant Meeting Num. rooms Num. hotels in 200 m  

Follower  33  177.80  3.5  0.33  0.15  41.6  6.0 

Independent  14  214.17  3.9  0.36  0.36  68.1  1.9 

Leader  32  175.25  3.6  0.22  0.19  41.7  6.7 

Mixed  16  174.16  3.3  0.25  0.06  38.4  4.1 

Note. Maximum levels in green, minimum levels in red. BAR = best available rate.   
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from individual or small groups of business travellers (i.e. lower added value tourists compared to 
conference and incentive customers) to the richest part of the leisure segment (i.e. wedding). This 
wide ‘business mix’ increases the spectrum of pricing strategies, allowing them to be both leaders 
or followers over the whole 13 days of advance booking considered here. 

When we focus on the competition of the last-minute bookings (k = 0, . . . , 3), we get quite a 
different picture. Price competition becomes stronger and many hotels that were independent or 
mixed, when observed during a two-week booking window, become leaders or followers. 
Roughly speaking the independent hotels with the worst characteristics begin to compete on price 
while the larger and more expensive mixed-behaviour hotels (with the best features) ‘specialise’ 
their actions becoming price takers or price makers. 

The hotels leading the last-minute online price competition are mainly located in areas with a 
high concentration of competitors (which can, therefore, be considered areas of greater interest 
for demand). With respect to the early-booking framework, they show a higher average star rating 
and a non-zero quote of hotel with meeting rooms. This indicates that the last-minute leaders are 
also composed of well-equipped business-hotels seeking customers in the leisure segment. 

Thus, we can conclude they are prone to offering the last (low-quality) unsold rooms at lower 
rates, leading the last-minute price competition with aggressive last-minute discount policies. This 
is not due to them having the largest number of competitors in the neighbourhood, as they are in a 
situation where anticipating rate reductions could be a worth differentiation strategy. 

The number of followers increase significantly when k ≤ 3, especially by reducing the number of 
mixed hotels. Within a few days of the arrival date, the perceived performance gap with compet-
itors appears more difficult to bridge and pairs of hotels that, observed on a larger booking win-
dow, influence each other, start to mimic one leader tactics. Last-minute followers have a lower 
number of stars and a higher average price (with respect to followers at the higher advance book-
ings). Thus, the prototype of last-minute follower (in Venice) is a hotel which is able to leverage a 
more ‘exclusive’ location in terms of rates (see also the sharp decrease in the average number of 
hotels in a radius of 200 m) but without enough services. 

Hotels that remain independent in the last-minute period have the highest number of stars and 
size (the best tangible attributes to target both high-income business and leisure clients) and very 
few competitors nearby (1.9 on average). Therefore, they can leverage their ‘unique’ location and 
features to apply proper pricing strategies. As we know that the positive effect of horizontal dif-
ferentiation is higher for higher priced hotels (see Sánchez-Pérez et al., 2020), we can infer that 
these hotels compete by implementing horizontal differentiation strategies, e.g. maintaining a 
good online reputation or offering special features, with a very low tendency to change rates at 
the last minute. In this way, they also manage the reference price that customers desire, which 
is key to travellers perception of price acceptability. 

Finally, the cluster of hotels that are simultaneously leaders and followers in competition at the 
last minute constitutes hotels with the lowest price, size and number of star (mainly 3-star hotels). 
However, the most important distinctive feature is that they are located in areas with a low con-
centration of competitors. This allows them to play as leader (or follower) even if they have very 
little chance of differentiating themselves from competitors in terms of tangible attributes. In other 
words, we can infer that they are small-sized low-rate (‘periphery’) hotels that aim to saturate cap-
acity by leading or imitating (a few) competitors’ simple and aggressive last-minute discount 
policies. 

7 Conclusions 
We study dynamic price competition in the hotel market in Venice through the lens of publicly 
available data scraped from an OTA, monitoring three dimensions: individuals (hotels), arrival 
days and booking days (advance booking). 

This type of data set poses two main challenges. First, the time series of prices recorded for each 
hotel possess a twofold time frame. In fact, every single price for an overnight stay on a certain day, 
corresponds to a time series of asking prices along the booking window. Second, the competition 
relations between hoteliers are unknown and need to be represented dynamically. 

In line with the economics and management literature, we conjecture that competitive behav-
iour can be represented by a network architecture whose edges are drawn by observing the (public)  
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actions and responses of different competing agents. Accordingly, we propose a novel network au-
toregressive model, with time-varying coefficients over the booking window, suited to handle the 
peculiar threefold data structure of the data set. Identifying the structure of the competition net-
work is the final goal of our contribution. 

The approach we propose can be employed to study competition behaviour on every market 
where consumption is delayed with respect to the purchasing time. Considering that 
E-commerce and selling online has significantly increased in recent years (with a consequent in-
creasing availability of data), we think that we are taking up a major challenge for both academics 
and managers. Accordingly, this paper provides both methodological and empirical results as it 
studies decision-making through a strong focus on context, accepting complex and unclear caus-
ality, shaping the competition between decision makers on the basis of their ‘real-life’ behaviour. 

7.1 Methodological results 
We introduce a new network autoregressive model useful to discover unknown competition pat-
terns between hotels by using a purely data-driven algorithm. In particular, the model employs the 
predictive accuracy along advance booking as a metric to determine the optimal network architec-
ture, modelling competition only by observing the everyday organisational contexts. Parameters 
are easily estimated following a least squares method as we rewrite the problem as a general 
TN-dimensional linear model. Additionally, we provide the solution to the general linear system 
establishing consistency and asymptotic normality of the model estimators. 

To the best of our knowledge, this is the first time that the dynamic part of a network architec-
ture is based on pricing practices along the advance booking for each arrival time, instead of on the 
lagged time effects typically encountered in the previous literature. As a consequence, the param-
eters of the models and the network connections can vary with the advance booking to account for 
possible difference in the competition patterns along the booking window. 

7.2 Empirical and managerial results 
Venice is a very popular destination with a strong seasonality, driven by world-famous events such 
as Carnival or the Biennale, and a large variety of hotels prone to dynamic pricing. In our sample of 
hotels with 3–5 stars, we find that large and expensive accommodations, offering exclusive accom-
modation and business-oriented services, tend to keep a more stable pricing pattern across arrival 
days. More in general, looking at the advance booking effect on the likelihood of relying on dy-
namic pricing, we show that pricing strategies become more homogeneous during last-minute res-
ervation period. As a consequence, we find a stronger network effect at the last minute, when the 
risk of both being left with unsold rooms and experiencing a performance gap with competitors 
becomes a trigger to imitating and learning from others. 

In line with previous literature (Roy & Raju, 2011), we categorise three typical price competi-
tion patterns: independent, where firms adjust prices without a clear relationship to competitor 
pricing policies and leader (or) follower, where a firm anticipates or follows the rate changes of 
another one. We also find a fourth (mixed) behaviour, where a firm is leader or follower, depend-
ing on the advance booking period (i.e. the time-lag between purchase and consumption). 

We shape these competition behaviours through different self-building competition networks 
whose edges are built looking at competitors’ actions and reactions along the advance booking. 
We find a positive and significant network effect, i.e. we show that the rates published by a hotel, 
for a stay in t, at advance booking k also depends on the rates published on k + 1 by the compet-
itors (same arrival day). Moreover, this network effect has an intensity that follows a linear deter-
ministic relation, indicating that the reaction to competitors’ pricing policies increases in intensity 
as the advance booking period decrease. 

However, the most important determinant of the online rate in k is the price published by the 
hotelier himself in k + 1, same arrival day t. A result suggesting that hoteliers fix prices looking 
at both the (expected) demand seasonality at different arrival days t and the (expected) ‘attractive-
ness’ of the tangible, reputation or context attributes on the (expected) demand mix in t. This au-
toregressive component shows an estimated coefficient that reaches its minimum at k = 0 allowing 
us to conclude that the effect of hoteliers’ expectations on dynamic pricing choices reaches its  
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minimum when the risk of both being left with unsold rooms and/or having a performance gap 
with a competitor triggers them to imitate and learn from others. 

We also find that the overall spatial density pressure—measured by Z4, the number of hotels in a 
200 m radius—exerts a negative effect on the rate level. Spatial density measures both agglomer-
ation and competition effects. The hospitality literature has shown that a higher level of competi-
tion can decrease the price of a service (Becerra et al., 2013) but, on the other hand, it has also 
provided evidence of a positive relation between agglomeration and rates level; see  
Sánchez-Pérez et al. (2020). We find evidence that advance booking modifies the balance between 
the two effects. In fact, the negative effect of hotels’ spatial density on the rate level is higher in the 
last-minute period than in the early booking, leaving room for the hypothesis that agglomeration 
benefits succeed in partially balancing competition when it is weaker (i.e. in the early booking). 

When we look at the competitive behaviour, we show that the advance bookings, in addition to 
having a strong impact on the attitude towards dynamic competition, plays a crucial role in deter-
mining the reactions to competitors’ decisions, i.e. the businesses typical competitive behaviour. 
Price competition becomes stronger at the last minute, and many hotels categorised as independent 
or mixed, if observed on a two-week booking window, start to be leaders or followers. 

Furthermore, we find significant differences among the different competition profiles, in terms 
of: average BAR, capacity, services, location and density of neighbouring hotels. Roughly speak-
ing, the independent hotels with the worst characteristics begin to compete on price while the lar-
ger and more expensive mixed-behaviour hotels (with the best amenities) ‘specialise’ their actions 
becoming price takers or price makers. 

More in detail, in the early-booking period, the independent hotels are the most expensive and 
differentiated (in terms of services). They tend to maintain higher and more stable prices both for 
image and price-fairness reasons (e.g. high price communicates exclusivity to the high value leisure 
segment). Moreover, they can offer services (e.g. meeting rooms) to target both the leisure market 
segment (less elastic to price) and the business segment which is more attentive to price-quality and 
price-fairness issues. In fact, business-men are usually frequent buyers with a clear reference price, 
which is key to their perception of price acceptability. Independents strengthen in this profile at the 
last minute when the less isolated and lower rated hotels exit this cluster. The propensity to com-
pete on price is reduced even further (the average price in this cluster increases sharply despite the 
decreasing average price at the destinations, see Table 1 suggesting that they mainly compete using 
horizontal differentiation strategies. 

The cluster of hotels that are both leaders and followers (mixed) in the 13-day booking window 
considered, is composed of by hotels with average characteristics, allowing them to target the 
whole spectrum of business and leisure customers. They differentiate themselves from the compet-
itors leveraging the whole spectrum of attributes: price, reputation and/or context, avoiding sys-
tematically resorting to ‘price wars’, as demonstrated by the fact they combine a low average star 
rating with a high average price. In the last-minute period, the number of hotels in this cluster re-
duces significantly. Hotels with more rooms and especially those located in the most important 
tourist areas (with the highest average prices) exit this cluster, increasing the number of pure lead-
ers or pure followers. Consequently, the typical profile of a hotel acting both as a leader or a fol-
lower is 3-star hotels that are not differentiated in terms of tangible attributes, located in areas 
with a low concentration of competitors, willing to practice very aggressive last-minute discount 
policies leading or imitating (few) competitors. 

The hotels leading the early-booking price competition are hotels with a low star rating that tar-
get the segment of more price-elastic and early leisure (online) customers. For them, dynamic pri-
cing appears as the only possible differentiation strategy. Leaders grow in number at the last 
minute where well-equipped business-hotels seeking customers in the leisure segment join the clus-
ter. As a consequence, the typical last-minute leader has a higher number of stars and amenities 
with respect to the early-booking leader. It also has a very high number of nearby competitors 
and is in a situation where is worth getting ahead of the competitors by combining dynamic pricing 
and horizontal differentiation strategies. As an example, it can promote special offers on low- 
quality and/or low-services rooms in order to attract customers that accept paying more than their 
standard price for a hotel with exclusive features and/or a higher reputation with respect to the 
hotels located nearby.  
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Followers in the early-booking price competition are more similar to independent hotels except 
that they cannot leverage an exclusive location. In fact, they are located typically in the San Marco 
District, with few ways to differentiate themselves from leaders. The number of followers hotels 
strongly increases in the last-minute period when the perceived performance gap with competitors 
appears more difficult to bridge. Smaller and low-rated hotels join the cluster, especially if located 
in areas with a lower concentration of tourist attractions. They can leverage a more ‘exclusive’ lo-
cation in terms of a higher rate (compared to early-booking followers) even if they do not have 
enough services or strategic skills to develop their own online pricing tactics. 

This work gives managers and stakeholders a powerful tool to make informed decisions. As a 
revenue manager, unveiling competition network helps leveraging structural and quality differen-
ces with competitors (i.e. to increase revenues). For example, discovering that many followers can-
not offer a room with an exclusive view attaches added value to those hotel rooms with this unique 
feature. Similarly, a manager who discovers that his/her hotel is not followed by anyone does not 
worry about reactions of the competition to any pricing policies. Even knowing that there are 
many similar hotels following a certain leader allows managers to change (or choose) pricing pol-
icy. In terms of policy, uncovering quality and size of competition between companies enables as-
sessing results of product or communication policies developed over time. Moreover, the 
possibility of analysing the competition at a high spatial level and along the advance booking win-
dow grants control (and prediction) of the potential hazards of a massive and uncoordinated influx 
of tourists. The competition in the early booking informs about (expected) daily tourist demand 
peaks (positive or negative). This is a useful information to manage short-term operational tactics 
so that avoiding asset shortfalls/excess that tourists share with residents (i.e. transportation, secur-
ity, water , or urban space), and a more efficient management of budget and public resources. 

7.3 Discussion 
This contribution gives several directions for future research. For example, the NAR model (1) as-
sumes that only hotels directly followed by i (i.e. i→ j) possibly have an impact on its BAR. This 
assumption can be relaxed by allowing also a second order relationship among hotels, i.e. the com-
peting hotels of competitors have an impact on each hotel, that is i→ j and j→ l but i ↛ l. In this 
way, we can also study the effect i→ j→ l. Innovation terms might be correlated which implies 
that a different estimation technique, like generalised least squares, should be developed. Finally, 
extending the network model to include time-varying competition probabilities (4) will give fur-
ther insight on the way that competition networks evolve. 

A limitation of this study is that the methodology can only be applied to accommodation struc-
tures that regularly publish prices online and it requires a data collection process. As to date, there 
is no historical repository of hotel rates. We have not considered factors such as the hotel position 
on the Booking.com search page and the rating given by customers, which could also be consid-
ered to better explain pricing choices. We show that data from the OTAs are an effective example 
of (implicit) shared knowledge regarding business price competition tactics challenging statisti-
cians. However they do not inform about factors which might be important for determining the 
online price of a room. For example, whether or not the hotel has undergone recent renovation, 
if it relies on external professionals for pricing management or whether it reserves a significant por-
tion of rooms for off-line sales. By appealing to expert knowledge regarding the unique features of 
Venice tourism market, we define a competition network by employing reasonable assumptions 
related to distance and pricing policies of hotels. If a different competition network was under con-
sideration, i.e. tourism market of New York, then competition probabilities need to be defined in a 
different way to take into account the new networks’ particular characteristics. However, meth-
odology and algorithmic details developed in this work are still applicable and offer useful in-
sights, especially to markets where consumption is delayed when there exists fixed capacity (e.g. 
tickets for events and exhibitions, seats in means of transportation). 
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Appendix A 
A.1 Additional tables and plots  

Figure A1. Natural spline smoother of the multivariate time series of log-transformed best available rates for all 
hotels at advance booking k = 0 showed in Figure 1. Hotels by row ordered in descending order by median log-price. 
Time in column (1 April 2019–9 March 2020). Colours reflect threefolds of log-price distribution: high (green), mid 
(grey), low (purple) obtained by dividing each hotel’s log-price distribution in tertiles. Right panel: box plot distribution 
around the median (full dot) for each hotel time series. Below: time series of hotel median log-price levels.  

Table A1. Normalied root mean squared errors (NRMSE) for models estimated by Algorithm 1 in the levels (Y), in the 
first (Δ1) and seven days (Δ7) differences 

k 0 1 2 3 4 5 6 7 8 9 10 11 12  

Y  0.071  0.061  0.063  0.057  0.060  0.049  0.058  0.060  0.051  0.059  0.060  0.055  0.055 

Δ1  0.069  0.064  0.065  0.060  0.061  0.057  0.065  0.066  0.053  0.063  0.062  0.065  0.061 

Δ7  0.074  0.066  0.068  0.066  0.067  0.060  0.069  0.067  0.058  0.063  0.063  0.063  0.055   
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A.2 Consistency and asymptotic normality of advance booking network 
autoregressive model estimator 
Under the following suitable conditions, consistency and asymptotic normality of the least squares 
estimator (3) are derived:  

1. For k = 0, . . . , K − 1, the errors ε(k)
i,t are iid with mean 0 and standard deviation σk.  

2. The covariates Zi are independent and iid random vectors with mean vector 0 and covariance 
matrix Qz.  

3. The errors related to different advance bookings are independent, in symbols ε(k) ⊥ ε(s), for 
k ≠ s.  

4. Errors and covariates are mutually independent, ε(k) ⊥ Z, for k = 0, . . . , K − 1.  
5. Q(k+1) is full rank, for k = 0, . . . , K − 1. 

Assumption 1 is a typically required condition for least squares estimation and it would be realistic 
to assume that the errors regarding different hotels and different arrival dates are not dependent. 
Assumption 2 states a similar condition for the covariates, this is also a standard requirement. It is 
also realistic to assume that exogenous covariates for each hotels were generated independently 
from the same process. Assumption 3 is an extension of 1, by considering the independence of 
the errors also over the advance bookings. Assumptions 4 and 5 are standard in least squares meth-
ods and correspond to exogeneity of the regressors Z. 

Define θ(k)
0 the true value of the parameters of model (1) and →

p
, →

d 
denote the convergence in 

probability and in distribution, respectively. Finally, set E(Q(k+1)
i,t Q(k+1)′

i,t ) = Qk, where the 1 × m 

Figure A2. Model standardised residuals’ autocorrelation function for 12 randomly chosen hotels at advance 
booking k = 0.   
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row vector Q(k+1)′
i,t is the (i, t) row of the matrix Q(k+1). We can now derive the large sample prop-

erties of the estimator (3) when both the number of the hotels and the temporal sample size grow 
together. We define min{N, T} →∞ as shorthand for simultaneous double asymptotic regime 
T→∞ and N→∞, where N and T are not constrained to be related. 

Proposition A.1 Assume assumptions 1–5 hold. Then, for k = 1, . . . , K − 1, as 
min{N, T} →∞, θ̂(k)→

p
θ(k)

0 and 
�����
NT
√

(θ̂(k) − θ(k)
0 )→

d
N(0, σ2

kQ−1
k ). 

Proof. Assuming the linearity of the model, the consistency of the estimator follows by 
A2–A4 and equations (4)–(19) in Greene (2018). A2 is our assumption 
5. Assumptions 1, 3, and 4 imply A3 and A4. Equations (4)–(19) is obtained by  
Greene (2018, A5a), which is satisfied in our case by adding assumption 2 to 1, 
3 and 4. Under the same set of assumptions, the Grenander conditions described 
in Greene (2018, Tab. 4.2) hold for the regressors Q(k+1). Then, the asymptotic 
normality of the estimator follows by Greene (2018, Thm. 4.3).                     □ 
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