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ABSTRACT

This work presents a physical model of the yaybahar, a recently
invented acoustic instrument. Here, output from a bowed string is
passed through a long spring, before being amplified and prop-
agated in air via a membrane. The highly dispersive character
of the spring is responsible for the typical synthetic tonal qual-
ity of this instrument. Building on previous literature, this work
presents a modal discretisation of the full system, with fine control
over frequency-dependent decay times, modal amplitudes and fre-
quencies, all essential for an accurate simulation of the dispersive
characteristics of reverberation. The string-bow-bridge system is
also solved in the modal domain, using recently developed non-
iterative numerical methods allowing for efficient simulation.

1. INTRODUCTION

The yaybahar is an acoustic musical instrument, recently invented
by Turkish artist Görkem Şen 1. It consists of a neck, with two
strings and a fretboard, to which two long springs are attached;
each spring is in turn connected, on its opposite end, to a tensioned
membrane. The instrument, depicted in Figure 1, is played by ei-
ther bowing and plucking the strings, or by hitting the springs and
the membranes with a mallet. The yaybahar can be described as
a cello-like instrument, where amplification is provided by springs
and membranes, and not by a resonant body. This structure pro-
vides a distinctive reverberant sound, mainly due to the character-
istic sound transmission of springs [1]. Given its modular design,
the yaybahar lends itself well to physical modeling simulation:
in fact, all its components are widely studied systems in physi-
cal modeling literature [1, 2, 3]; therefore, a model can be imple-
mented by first simulating the different modules, and by then con-
necting them together appropriately. A first physical model of the
yaybahar was recently proposed by Christensen et al. [4]. There,
the strings and membranes are described by the Kirchhoff-Carrier
and the Berger models respectively [2, Chapters 8, 13], thus incor-
porating mild nonlinear effects, while the spring is modeled by a
linear stiff bar, following [5]. The components are then coupled
by lumped, spring-like connections, and the full model is simu-
lated by using finite-difference-time-domain (FDTD) methods.

1https://www.gorkemsen.com/
gorkem-sen-s-yaybahar

2https://commons.wikimedia.org/wiki/File:
Yaybahar.jpg
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Figure 1: The yaybahar (Source 2)

In this work, a different approach is proposed, based on a
modal decomposition of the subsystems. The bowed string, in
particular, is simulated in the modal domain following the non-
iterative procedure developed in [6], and building on the results
presented in [7]. The spring and the membrane, acting as rever-
beration units, can be simulated efficiently in the modal domain,
incorporating refined loss profiles for realistic reverberation [8, 9].
Here, the interconnection between subsystems is performed in an
energy-consistent framework via boundary forces, rather than us-
ing additional spring-like connections as in [4]. To this end, a
novel model for the coupling between a vibrating string and a dis-
tributed bridge is presented, in the modal domain, which serves as
an emulation for the neck. Given the low amplitude of vibration in
the subsystems, linear models for the resonators are adopted with-
out compromising the realism of the sound synthesis overall, as the
nonlinear bowing mechanism is largely responsible for the typical
drone-like sound of the instrument.

The paper is structured as follows: Section 2 presents the math-
ematical models of the instrument subcomponents, Section 3 de-
scribes the semi-discretisation in the modal domain, Section 4 il-
lustrates the time-stepping algorithms, Section 5 presents the re-
sults of a case study and, finally, Section 6 concludes the paper.

2. MODELS

In this section, continuous models for the various components of
the yaybahar are presented. A diagram of the instrument’s sub-
systems (bow, string and bridge) and their couplings is as shown
in Figure 2. The resulting bridge force is fed to the spring, and
the spring sets the membrane into vibration. As shown below,
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Figure 2: A scheme of the instrument model and the elements con-
nections.

the string-bridge coupling modifies significantly the distribution
of the eigenfrequencies compared to the isolated string. On the
other hand, the spring and the membrane, acting as reverberant
units characterised by a large modal density, are less affected by
couplings at the boundaries. This justifies their inclusion as non-
interacting subsystems, thus considerably simplifying the modal
approach. This design shares some similarities with the commuted
synthesis approach [10].

For simplicity, in this section, the models are presented
here with no damping, except for friction losses induced by the
bow. Viscous-type and radiation damping will be introduced in a
frequency-dependent manner in the modal domain, as illustrated
in Section 3.4.

2.1. Bowed Stiff String and Distributed Bridge

The equations for the coupled bowed string/bridge system are
given here as follows:

ρs∂
2
t us = Ts∂

2
xus − κ2

s∂
4
xus − Fbδ(x− xb)ϕ(η), (1a)

ρp∂
2
t up = −κ2

p∂
4
zup + δ(z − zs)Fs(t). (1b)

Here, subscripts s,p, b refer, respectively, to the string, the bridge
(“ponticello”) and the bow. In the system above assumes that the
string and the bridge vibrate in a single, vertical polarisation, thus
neglecting the rocking motion observed in instruments such as the
violin [11]. In (1a), us = us(x, t) : [0, Ls]× R+

0 → R represents
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Figure 3: Some friction characteristics: (a) Coulomb dry friction;
(b) the curve by Woodhouse and Smith [12]; (c) the curve by Gal-
luzzo [13]; (d) the continuous curve defined in equation 3, with
a = 10 (dashed line) and a = 100 (solid line). For the mathemat-
ical expressions of the four friction characteristics refer to [6].

the transverse displacement of a string of length Ls in a single
polarisation, as a function of spatial coordinate x and time t. ρs
is the string linear density in kg m−1; Ts is the string tension in
N, and κs is a rigidity constant in N1/2m (κ2

s is typically given

as the product of Young’s modulus times the moment of inertia).
Analogous definitions hold for (1b), the equation describing the
displacement up = up(z, t) : [0, Lp] × R+

0 → R of the bridge.
Here and elsewhere the nth partial derivative with respect to the
variable α is denoted by ∂n

α .
In (1a), the string is coupled with a bow model, following [6].

The bow excitation is assumed to act pointwise downward at xb,
according to the dimensionless friction coefficient ϕ, as seen in
[14]. Various choices for this coefficient are available, see e.g. [12,
13, 2] and also Figure 3. Note that all the four curves displayed in
Figure 3 satisfy:

η ϕ(η) ≥ 0, lim
|η|→0

ϕ(η)/η < ∞ , (2)

allowing a non-iterative time stepping procedure to be used, fol-
lowing recent results in [7]. Here, for illustrative purposes, the
“soft” characteristic defined in [2] was chosen, defined as:

ϕ(η) =
√
2a η e−aη2+

1
2 , η := ∂tu(xb, t)− vb. (3)

The input bow parameters are the bow force Fb, in N, and the bow
velocity vb in m s−1. Furthermore, in (3), a is a free parameter of
the model adjusting the slope of the curve.

The coupling between the string and the bridge takes place at
the string’s right boundary, and is expressed as an input force Fs

in the bridge equation (1b). The string is assumed to be in contact
with the bridge at zs along the bridge’s domain. The string’s left
boundary, as well as the bridge’s endpoints, are all assumed to be
simply-supported. The complete set of boundary conditions to be
imposed is:

up(0, t) = ∂2
zup(0, t) = up(Lp, t) = ∂2

zup(Lp, t) = 0, (4a)

us(0, t) = ∂2
xus(0, t) = ∂2

xus(Ls, t) = 0, (4b)

Fs(t) = −T0∂xus(Ls, t) + κ2
s∂

3
xus(Ls, t), (4c)

up(zs, t) = us(Ls, t). (4d)

The relations above are assumed to hold ∀t ≥ 0. Note that (4d)
represents a rigid contact condition between the string and the
bridge.

2.1.1. Energy Balance

An energy balance for the bridge is obtained after multiplying (1b)
by ∂tup and integrating over [0, Lp]. After integration by parts,
and owing to (4a), one obtains:

d

dt

∫ Lp

0

(
ρp
2
(∂tup)

2 +
κ2
p

2
(∂2

zup)
2

)
︸ ︷︷ ︸

Hp

dz = u̇p(zs, t)Fs. (5)

The string energy balance is obtained analogously, by multiplying
equation (1a) by ∂tus and integrating. After suitable integration
by parts, and taking into account the boundary conditions (4b) and
(4c), one obtains:

d

dt

∫ Ls

0

(
ρs
2
(∂tus)

2 +
Ts

2
(∂xus)

2 +
κ2
s

2
(∂2

xus)
2

)
︸ ︷︷ ︸

Hs

dx =

= −Fsu̇s(Ls, t)− Fb u̇(xb, t)ϕ(u̇(xb, t)). (6)
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Finally, owing to the contact condition (4d), and by means of (5),
one may express (6) as:

d

dt

(∫ Ls

0

Hs dx+

∫ Lp

0

Hp dz

)
= −Q+ P, (7)

where the dissipated and supplied power are defined as, respec-
tively, Q := Fb η ϕ(η), P := −Fb vb ϕ(η). Owing to property
(2), in the combined system the energy is non-increasing when the
bow velocity vb (and, therefore, the supplied power P) is identi-
cally zero, leading to boundedness of the solutions.

Finally, the output force exerted by the bridge onto the spring
is then computed at the desired location zo as:

Fp(t) = −κ2
p∂

3
zup(zo, t). (8)

2.2. Spring

A model of a thin spring that takes into account the helical struc-
ture is here implemented, following [3]. In fact, the “bar" model
of a spring holds for specific geometries [5], and cuts the low-
frequency echoes that are characteristic of spring reverberators [1].
The system is developed starting from Wittrick’s equations [15],
under the assumption that the wire radius-helix radius ratio rc/Rc

is small [16] (see Figure 4). This allows the model to be reduced
to a system of four equations, which relate the displacement in the
transverse and longitudinal directions to the moments along the
same directions:

A∂2
t v = R ∂sm+ δ(s− sp)αpFp, Dm = R∂sv. (9)

Here, v := [vτ (s, t), vλ(s, t)]
⊺ : [0, Lc] × R+

0 → R2 is the vec-
tor of displacements, where the subscripts τ and λ refer to the
transverse and longitudinal directions, respectively. Analogously,
m := [mτ ,mλ]

⊺ is the vector of moments. Above, s expresses
the arclength of the coil, such that 0 ≤ s ≤ Lc. The input force
Fp, computed in equation (8), is applied pointwise at s = sp,
while the vector αp is a unit vector that indicates the amount of
force exerted in both polarisations. The matrices A, D ∈ R2×2

are diagonal, and given by:

A = ρc

[
1 0
0 1− l2∂2

s

]
, D = κ−2

c

[
1 0
0 1 + νc − l2∂2

s

]
. (10)

Above, ρc is the linear density of the coil, in kg m−1, κc is a
rigidity constant in N1/2m, and νc is the Poisson ratio of the coil.
R ∈ R2×2 is a symmetric matrix, of the form:

R =

[
−2µ/l (1− µ2)/l + l∂2

s

0 2µ(l∂2
s + 1/l)

]
. (11)

The symbol l denotes the ratio Rc/ cos
2(θ), where θ is the pitch

angle, Rc the coil radius, and µ is shorthand for tan(θ). A graph-
ical representation of the spring physical quantities is provided in
Figure 4.

2.2.1. Energy Analysis

The energy balance and boundary conditions may be obtained, in
the zero-input (Fp = 0) case, as follows. First, left-multiply the
first equation in (9) by ∂tv

⊺. Then, take a time derivative of the

(a) Directions. (b) Wire/helix radius. (c) Tilt angle.

Figure 4: Spring physical quantities.

second equation in (9), and left-multiply by m⊺, where ⊺ is the
transposition operator. Integrating the resulting equations gives:

∫ Lc

0

∂tv
⊺A ∂2

t v ds =

∫ Lc

0

∂tv
⊺R ∂sm ds, (12a)∫ Lc

0

m⊺D ∂tm ds =

∫ Lc

0

m⊺R(∂s∂tv) ds. (12b)

Integrating by parts to the right-hand side of (12b), one is able to
express the right-hand side of (12a), which, in turn, can be rewrit-
ten as:

∫ Lc

0

(
∂tv

⊺A ∂2
t v +m⊺D ∂tm

)
ds = (B0 +m⊺R ∂tv)

∣∣Lc

0
.

Here

B0 := l∂s∂tvλ (∂smτ + 2µ∂smλ) + ∂tvλ(2µl∂
2
smλ − l∂2

smτ )

− l∂s∂tvτ (∂smλ)− ∂tvτ (l∂
2
smλ). (13)

By further applying integration by parts, one derives the energy
balance:

d

dt

∫ Lc

0

Hc ds = (B0 + B1 +m⊺R ∂tv)
∣∣Lc

0
:= Bc

∣∣Lc

0
. (14)

Here, the energy density is:

Hc =
ρc
2

(
(∂tvτ )

2 + (∂tvλ)
2 + l2(∂t∂svλ)

2)+
+

κ−2
c

2

(
m2

τ + (1 + νc)m
2
λ + l2(∂smλ)

2) ; (15)

while B1 is:

B1 = l2ρc(∂tvλ)(∂s∂
2
t vλ) + l2κ−2

c mλ(∂s∂tmλ). (16)

It is useful to write the boundary terms in terms of the conjugate
variables forces / velocities and moments / angular velocities [3].
To that end, rearranging the boundary terms in (14) allows to write:

Bc = Fτ∂tvτ + Fλ∂tvλ + Fσ∂tvσ +mτϕτ +mλϕλ +mσϕσ.
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Here, the σ denotes the direction perpendicular to the (τ, λ)-plane.
Denoting g := −µ2

l
+ 1

l
+ l∂2

s , one has

Fτ = gmλ − 2µmτ/l, (17a)

Fλ = gmτ + 2µ
(
l∂2

s + 1/l
)
mλ + l2ρc∂s∂

2
t vλ, (17b)

Fσ = −∂s(mτ + 2µmλ), (17c)

ϕτ = l∂2
s∂tvλ, (17d)

ϕλ = 2µl∂2
s∂tvλ + l2κ−2

c ∂s∂tmλ + l∂2
s∂tvτ , (17e)

ϕσ = −∂s∂tvτ , (17f)
mσ = l∂smλ, (17g)
vσ = l∂svλ. (17h)

Setting boundary displacements, forces and moments to zero leads
to a generalisation of the classic beam boundary conditions of free,
simply-supported or clamped type. Here, a variant of free bound-
ary conditions along τ, λ will be used, combined with clamped
conditions along σ. Hence:

Fτ = Fλ = mτ = mλ = vσ = ϕσ = 0. (18)

These are intended to hold at the boundary points s = {0, Lc},
and ∀t ≥ 0. An output signal Fc(t) may be then be extracted by
computing the sum of the forces Fτ , Fλ, Fσ at a so, close, but not
equal, to the boundary Lc. Thus:

Fc(t) = Fτ (so, t) + Fλ(so, t) + Fσ(so, t). (19)

2.3. Membrane

A model for the membrane is given by the 2D wave equation [2,
Chapter 11]:

ρm∂2
tw = Tm∇2w + δ(X −Xc)δ(Y − Yc)Fc(t). (20)

In the above, the two dimensional Laplacian was introduced as
∇2 := ∂2

X + ∂2
Y . For simplicity, and to avoid the introduction

of further symbols, the membrane is supposed to be defined over
a square, of side length Lm. Thus, w = w(X,Y, t) : [0, Lm] ×
[0, Lm] × R+ → R describes the displacement of the membrane
in the transversal direction, ρm is the material surface density in
kg m−2, and Tm is the tension applied at the edges in N m−1. An
energy analysis for this system can be found in [2, Chapter 11].
Boundary conditions of fixed type will be considered here, such
that:

w(0, Y ) = w(Lm, Y ) = w(X, 0) = w(X,Lm) = 0. (21)

3. SEMI-DISCRETISATION

The equations presented in Section 2 will be now semi-discretised
in space using a modal approach. While the spring and the mem-
brane possess an analytical form for the modes of vibration, this is
not true in the case of a string coupled with a distributed bridge on
one end. For this reason, the modal expansion for the latter system
will be performed by solving the eigenvalue problem numerically.

3.1. Bowed Stiff String and Distributed Bridge

First, it is convenient to introduce spatial difference operators. The
string domain is divided into Ms subintervals of length h, the grid
spacing. This yields Ms + 1 discretisation points, including the

end points. Analogously, the bridge is divided into Mp subinter-
vals of length h. The continuous functions us(x, t) and up(z, t)
are then approximated by grid functions um

s (t) ≈ us(mh, t) and
un
p(t) ≈ up(nh, t), for integer m,n. In light of the numerical

boundary conditions given below, one has m ∈ [1, ...,Ms − 1],
n ∈ [1, ...,Mp − 1]. In vector notation, the grid functions will be
denoted us, up.

Basic forward and backward difference operators, approxi-
mating the first spatial derivative, and acting on um

s , are:

δ±x um
s = ±(um±1

s − um
s )/h. (22)

Analogous definitions hold for the grid function un
p , thus, for in-

stance, δ+z un
p = (un+1

p − un
p)/h. The second and fourth spatial

derivatives are approximated by difference operators obtained by
combining the operators above, as:

δ2x := δ+x δ−x , δ4x := δ2xδ
2
x, (23)

with similar definitions holding for δ2z , δ4z . Discrete versions of the
Dirac deltas in (1) are also needed. To that end, δ(x− xb) in (1a)
is approximated by the column vector db, of length Ms − 1, as:

dνb = (1− α)/h, dν+1
b = α/h, (24)

where ν := floor(xb/h), α := xb/h−ν. An analogous definition
holds for ds, approximating δ(z − zs) in (1b).

3.1.1. Semi-Discrete Formulation

Given the definitions above, a semi-discrete approximation of (1)
is given as:

ρsü
m
s = Tsδ

2
xu

m
s − κ2

s δ
4
xu

m
s − Fbd

m
b ϕ(η), (25a)

ρpü
n
p = −κ2

bδ
4
zu

n
p + dns fs(t). (25b)

Here, η = hd⊺
bu̇s − vb. A discrete version of the boundary con-

ditions and contact condition (4) ensuring numerical stability is:

u0
p = δ2zu

0
p = u

Mp
p = δ2zu

Mp
p = 0, (26a)

u0
s = δ2xu

0
s = δ2xu

Ms
s = 0, (26b)

fs(t) = −Tsδ
+
x uMs

s + κ2
s δ

+
x δ2xu

Ms
s , (26c)

hd⊺
sup = uMs

s . (26d)

By expanding the operators and applying the boundary conditions,
the semi-discrete equations can be arranged in vector form. To
that end, define u⊺ := [u⊺

s ,u
⊺
p]. System (25) can be then written

in compact form as:

Mü = −Ku− FbJbϕ(η). (27)

Here, Jb is a vector obtained by concatenating db with a zero-
vector of dimension Mp−1, and η = hJ⊺

bu̇ − vb. M is positive-
definite, symmetric, square diagonal block matrix, with diagonal
blocks given as:

M11 = ρsIs, M22 =
(
ρpIp + ρsh

2dsd
⊺
s

)
. (28)

Here, Is and Ip are identity matrices, of dimension (Ms − 1) ×
(Mp − 1) and (Mp − 1) × (Ms − 1) respectively. Furthermore,
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the stiffness matrix is a positive-definite, square block matrix, with
blocks:

K11 = −TsD
2
x + κ2

sD
2
xD

2
x,

K12 = K⊺
21 K21 =

[
0,

κ2
s

h3ds,−
(

Ts
h2 +

2κ2
s

h3

)
ds

]
,

K22 = κ2
pD

2
zD

2
z +

(
Ts +

2κ2
s

h2

)
dsd

⊺
s ,

(29)

where D2
x and D2

z are the second difference operators with
Dirichlet end conditions of dimensions, respectively, (Ms − 1) ×
(Ms − 1), and (Mp − 1) × (Mp − 1) (for the explicit form
of these matrices, see [2, Chapter 5]). K21 has dimension
(Mp − 1)× (Ms − 1), and is a composition of a zero-matrix of
dimension (Mp − 1)× (Ms − 3) with two vectors.

An energy balance in the modal domain is readily available
from (27), after left-multiplying by hu̇⊺. When vb = 0, one has:

d

dt

(
h

2
u̇⊺Mu̇+

h

2
u⊺Ku

)
= −ηϕ(η) ≤ 0. (30)

Since both M, K are non-negative, the energy is non-negative, and
decays over time.
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Figure 5: Eigenfrequencies of the coupled system and the ones of a
simply supported stiff string in isolation, under two different values
of κp. The left value is typical of steel, while the right one was
chosen arbitrarily low for demonstration purposes. Other physical
parameters, on common between the two cases, were: Ls = 0.69
m; Ts = 147.7 N; ρs = 0.0063 Kg m−1; κs = 0.4835 N1/2

m; Lp = 0.07 m; ρp = 0.0251 Kg m−1. The contact point was
set to: zs = 0.03 m. The top figures report the frequencies in
log scale, while the bottom figures display the difference in cents
between frequencies with the same index.

3.1.2. Modal Expansion

A modal expansion of system (27) is now performed by solving the
generalised eigenvalue problem. For that, consider the following:

KU = MUΩ2
u. (31)

Figure 6: Modes of the coupled string-bridge system, which were
normalized, and plotted orthogonal one to another for visualisa-
tion purposes. The letter i gives the mode index. The blue line
represents the string, and red one the bridge, while the projection
of the contact point on the z-axis is highlighted with a black dot.
The physical parameters were the same listed in Figure 5, with
κp = 3.0619 N1/2 m.

Here, U is a matrix of real eigenvectors, and Ω2 is a diagonal ma-
trix of real, positive eigenvalues. Note that, while both K and M
are symmetric, the product M−1K generally will not be. How-
ever, since M is positive definite, the eigenvalues are then real
[17], and they must also be non-negative since so are the eigen-
values of K. Then, define u = U−1u. System (27) may then be
written as:

ü = −Ω2
uu− Fbξbϕ(η), η = ξ⊺

η u̇− vb, (32)

with ξ⊺
η := hJ⊺

bU, ξb := (MU)−1Jb. This a modal system
with a diagonal linear part, with modal coordinates u. One may of
course solve the numerical eigenvalue problem (31) using a very
fine grid (i.e., using a small grid spacing h), though only a number
Nu is kept in (32), fixed by Nyquist requirements.

Before proceeding, it is useful to compare the eigenfrequen-
cies of the string in isolation against those of the coupled string-
bridge system. Figure 5 shows two such comparisons, under two
different values of κp. These are computed for a bar of circular
cross section, with a diameter of 5 mm. The first value (κp ≈ 3)
is typical of steel, while the second value (κc ≈ 0.1) was selected
to artificially amplify the effects of the coupling. The top panels
report the frequencies in a log scale: it is seen that the reduced
stiffness shifts the eigenfrequencies downwards by up to two oc-
taves in the lowest range, as seen in the bottom panels. With suf-
ficiently large values of κp, as is the case of steel, the frequency
gap remains contained around the fundamental, as expected, but
it increases up to two semitones for larger modal indices. These
results underline the importance of considering the string-bridge
coupling for in the distribution of the eigenfrequencies.
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The eigenmodes are represented in Figure 6, for a steel bridge.
Here, the first four modes are displayed, along with the 10th and
the 12th. It is possible to see that the bridge eigenmodes start
exhibiting a third node only after the 10th mode.

3.2. Spring

A modal version of the thin spring model was originally proposed
by van Walstijn [18]. In van Walstijn’s model, the modal expansion
is carried out numerically, by first performing a semi-discretisation
in space, and then computing the eigenvalues of the resulting ma-
trix. Such model found practical application in [19], where a vir-
tual analogue simulation of a spring reverb is developed. In this
work an analytic form for the modes is available under a choice
of the boundary conditions as per (18). To that end, consider the
following:

v(s, t) =
√

2/Lc cos (γs) v̄(t),

m(s, t) =
√

2/Lc sin (γs) m̄(t),
(33)

where v̄, m̄ are the time modal coordinates, and the factor√
2/Lc is just a useful normalisation constant. It is immedi-

ate to see that these satisfy the boundary conditions (18) when
γ = {π/Lc, 2π/Lc, ..., nπ/Lc, ...}.

Let now γn := nπ/Lc, for integer n. A solution to the
equation of motion is obtained using the quantised expressions
of the modes to solve an eigenvalue problem. Left-multiplying
the first equation in (9) by

√
2/Lc cos (γns), and the second by√

2/Lc sin (γns) and integrating, one is able to express (9) as:

Ā¨̄v = γnR̄m̄+
√

2/Lc cos(γnsp)αpFp(t), (34a)

D̄m̄ = −γnR̄v̄. (34b)

Here, the transformed matrices are obtained by applying the
derivatives to the modal functions, and have the form (10), (11)
under the replacement of ∂2

s by −γ2
n. Then, (34b) is used to ex-

press m̄ is terms of v̄, and this is substituted in (34a). One gets:

¨̄v = −VΩ2
nV

−1v̄ +
√

2/Lc cos(γnsp)Ā
−1αpFp.

where it was set:

VΩ2
nV

−1 := γ2
nĀ

−1R̄D̄−1R̄. (35)

Here V is a 2× 2 matrix of eigenvectors for the wavenumber γn,
and Ωn is a diagnoal 2 × 2 matrix of eigenfrequencies. Figure 7
reports the solution to the eigenvalue problem for a typical spring.
The eigenfrequencies lay on the yellow an purple lines.

Then, define vn := (V)−1v̄. Thus, one gets:

v̈n = −Ω2
nv+

√
2/Lc cos(γnsp)(ĀV)−1αpFp(t). (36)

Assume now n = 1, ..., Nv. The modal equations for the spring
are then a system of 2Nv equations, of the form:

v̈ = −Ω2
vv+ ξpFp(t), (37)

where v is a vector of length 2Nv, Ωv is a 2Nv × 2Nv di-
agonal matrix, whose diagonal elements are the 2 × 2 diag-
onal blocks Ωn, n = 1, ...Nv defined in (35), and ξp is
a 2Nv vector made composed by stacking the 2 × 1 blocks:√

2/Lc cos(γnsp)(ĀV)−1αp, n = 1, ..., Nv.
Output (19) is extracted by substituting the solution (33) into

the boundary forces (17c) (17b) and (17a) computed at a position
close to Lc.

Figure 7: Plot of the dispersion relation of a thin spring. Physical
parameters were chosen to be coherent with a possible yaybahar
spring: Rc = 9 mm, rc = 1 mm, θ = 2°, Lc = 40 m, κc = 9.9
and νc = 0.3. These values yield Nv = 2812 within the hearing
range.

3.3. Membrane

A particular solution to equation (20) with fixed boundary condi-
tions (21) is given by:

w(X,Y, t) =
2

Lm
sin

βj
XπX

Lm
sin

βj
Y πY

Lm
wj(t), (38)

for integers βj
X , βj

Y [20]. The associated modal frequency is:

ωj =
π

Lm

√
Tm

ρm

(
(βj

X)2 + (βj
Y )2

)
. (39)

The modal system for the membrane is then given by:

ẅ = −Ω2
ww+ ξcFc(t), (40)

where w is a Nw × 1 vector, Ωw is a Nw × Nw diagonal matrix
where the jth diagonal element is ωj given above. The frequencies
should here be sorted in ascending order, such that ωj−1 ≤ ωj ≤
ωj+1, j = 2, ..., Nw − 1. This allows to find the corresponding
modal indices βj

X , βj
Y . Above, ξc is a Nw × 1 vector whose jth

component is 2
Lmρm

sin
β
j
X

πXc

Lm
sin

β
j
Y

πYc

Lm
.

Output is extracted as:

wo(t) =

Nw∑
j=1

2

Lm
sin

βj
XπXo

Lm
sin

βj
Y πYo

Lm
wj(t), (41)

though for synthesis purposes it may be convenient to use ẇo(t)
instead.

3.4. Modal Equations of the Full System with Loss

The full system in the modal domain can thus be written as an
augmented version of (32), (37) and (40). This is:

ü(t) = −Ω2
uu(t)−Cuu̇(t)− ξbFbϕ(η), (42a)

v̈(t) = −Ω2
vv(t)−Cvv̇(t) + ξpFp(t), (42b)

ẅ(t) = −Ω2
ww(t)−Cwẇ(t) + ξcFc(t), (42c)
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where Cu, Cv, Cw are, respectively, Nu × Nu, 2Nv × 2Nv,
Nw × Nw positive, diagonal matrices containing the modal loss
coefficients in s−1. System (42) depends on time only, and a suit-
able time stepping routine is offered below. Here, the input pa-
rameters are the bow force Fb, velocity vb and position along the
string xb, which may be time-varying. The output is given by the
membrane displacement at the output location, as per (41).

4. TIME DISCRETISATION

Now, time is discretised with a time step k, yielding a sample rate
fs = 1/k. Then, a continuous function u(t) is approximated at
time step t = nk by the time series un. Time difference operators
are then introduced, as:

δ±t un := ±(un±1−un)/k, δ◦t u
n := (un+1−un−1)/2k. (43)

The second time difference is defined by combining the operators
above: δ2t u

n := δ+t δ−t un. Finally, a time averaging operator is
defined as:

µ+
t u

n := (un+1 + un)/2. (44)

4.1. String-Bridge System

It is now possible to adapt the numerical solver proposed in [7,
6] to numerically integrate equation (42a) in time. To that end,
(42a) is first turned into a 2Nu×2Nu system of first-order-in-time
equations. Thus, define q := Ωuu, p := u̇. Therefore, (42a)
becomes:[

q̇
ṗ

]
=

[
0 Ωu

−Ωu −Ω−1
u Cu

]
︸ ︷︷ ︸

G

[
q
p

]
−

[
0

Ω−1
u ξb

]
Fbϕ(η),

η =
[
0, ξ⊺

η

] [q
p

]
− vb.

(45)

A second-order accurate, non-iterative numerical scheme is given
as:

σn

[
δ+t qn

δ+t pn

]
= G

[
µ+
t q

n

µ+
t p

n

]
−

[
0

Ω−1
u ξb

]
Fb

ϕ(ηn)

ηn
µt+η

n. (46)

The form of σn, adapted from [6], is:

σn = I+
kFb

2

(
dϕ

dη
− ϕ

η

)
t=kn

[
0

Ω−1
u ξb

] [
0, ξ⊺

η

]
, (47)

and is well-defined, owing to (2). Here, Jb and U are as per Sec-
tion 3.1.1 and 3.1.2, respectively. Expanding out the operators in
(46), one is able to compute qn+1, pn+1 as the solution of a single
linear system, thus avoiding entirely the need for iterative nonlin-
ear root finders. The update equation in this case is:(

I+
kFb

2

(
dϕ

dη

)[
0

Ω−1
u ξb

] [
0, ξ⊺

η

]
− k

2
G

)[
qn+1

pn+1

]
= bn,

where bn is known from previous time steps. It is seen that the
update matrix is in the form of a block matrix with fully diagonal
blocks, plus a rank-1 perturbation. This can be solved efficiently,
via the Sherman-Morrison formula [21], as detailed in [6].

Stability of scheme (46) is somewhat harder to prove, though
partial results are available in [7]. Provided one chooses a num-
ber Nu of modes lower than the Nyquist limit, empirical evidence

suggests that the proposed scheme greatly outperforms simpler
explicit designs such as forward Euler or Runge-Kutta-type al-
gorithms [22] in terms of stability, while keeping compute times
within reference bounds for efficient simulation.

4.2. Spring & Membrane

The numerical integration of (42b), (42c) may be performed sim-
ply as:

δ2t v
n = −Ω2

vv
n −Cvδ

◦
t v

n + ξpF
n
p , (48a)

δ2tw
n = −Ω2

ww
n −Cwδ

◦
tw

n + ξcF
n
c . (48b)

Various other designs are possible, varying greatly in terms of sta-
bility and spectral accuracy. An attractive alternative is represented
by exact integrators [23, 2], though the schemes above yield a per-
ceptually reasonable reverberation characteristic [8]. Note that sta-
bility conditions arise as: Ωv,w < 2/k. These set upper limits for
the modal frequencies.

5. OUTPUT SIGNALS

Figure 8 displays the spectrograms of the normalised signals ex-
tracted from the three subsystems. The string physical values were
the ones of a C2 cello string, taken from [14], while the bridge
parameters were the same listed in Figure 5. The bow pressure
was Fb = 0.02 N, and the input and output positions were set to
0.73 ·Ls and 0.34 ·Lp respectively. The latter values were chosen
empirically to obtain a Helmholtz motion-shaped output sound [2,
Chapter 7]. The damping profile applied was the one proposed by
Valette [24]. The spring parameters were the ones detailed in Fig-
ure 7. Finally, the membrane physical values were: Lm = 0.5
m, Tm = 3000 N m−1 and ρm = 1.26 Kg m−2, and the out-
put point was (Xo, Yo) = (0.47, 0.62) · Lm. A damping profile
was chosen, for the spring and the membrane, which consists of
a frequency-independent (F-I) and a frequency-dependent (F-D)
part; as proposed by Bilbao [2, Chapter 7] the latter depends on
the square of the mode number. The damping coefficients for the
spring were taken from [18]; in the mebrane case, the F-I coeffi-
cient was set to 10, while the F-D one to 5×10−5, both chosen em-
pirically. Only a few seconds-long portion of data was analysed,
in order to avoid including too many signal variations. The spring
and the membrane act here as reverberant components. Panel (b)
from Figure 8 clearly exhibits cross stripes which correspond to
the spring chirps. The membrane, on the other hand, introduces
a broadband signal, which mimics late reflections. This is clearly
visible in Panel (c) from Figure 8. Sound samples can be found at
the following Github link3.

6. CONCLUSION

This paper presented a physical model of the yaybahar in the
modal domain. To this end, a modal decomposition of its subcom-
ponents was offered, including a model for the coupling between
a vibrating string and a distributed bridge, and the analytic modal
expansion of a helical spring. In addition, an energy-consistent
method for connecting the instrument components was here pre-
sented, making use of boundary forces.

This work focused on the development of a yaybahar physical
model; nevertheless, different aspects were overlooked, and will be

3https://github.com/Nemus-Project/yaybahar-nit
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Figure 8: Spectrograms of the three subsystems outputs after the
initial transient. Panel (a) displays the spectrogram of the ex-
tracted force Fp, panel (b) shows the spectrogram of the force
signal Fc, and panel (c) represents the output signal ẇo at the
output position (Xo, Yo).

subject of future work. The physical values for the spring and the
membrane were empirically tuned, while running proper measure-
ments on a real instrument would significantly improve the sound
quality. This is valid for the damping profiles as well. In addition,
the membrane was considered to be rectangular, while an accurate
reproduction would employ a circular model. Further future work
will also include a real-time implementation.

7. ACKNOWLEDGMENTS

This work was supported by the European Research Council
(ERC), under grant 2020-StG-950084-NEMUS.

8. REFERENCES

[1] J Parker and S. Bilbao, “Spring reverberation: A physi-
cal perspective,” in Proc. Digital Audio Effects (DAFx-09),
Como, Italy, 09 2009.

[2] S. Bilbao, Numerical Sound Synthesis, John Wiley & Sons,
Ltd, Chichester, UK, 2009.

[3] S. Bilbao, “Numerical simulation of spring reverberation,” in
Proc. Digital Audio Effects (DAFx-13), Maynooth, Ireland,
09 2013.

[4] P.J. Christensen, S. Willemsen, and S. Serafin, “Applied
Physical Modeling for Sound Synthesis: the Yaybahar,” in
Proc. 2nd Nordic SMC Conf., Online, 11 2021.

[5] J. Parker, H. Penttinen, S. Bilbao, and J.S. Abel, “Modeling
methods for the highly dispersive slinky spring: A novel mu-

sical toy,” in Proc. Digital Audio Effects (DAFx-10), Graz,
Austria, 09 2010.

[6] Riccardo Russo, Michele Ducceschi, and Stefan Bilbao, “Ef-
ficient simulation of the bowed string in modal form,” in
Proc. Digital Audio Effects (DAFx-2022), Vienna, 09 2022.

[7] M. Ducceschi and S. Bilbao, “Non-iterative simulation meth-
ods for virtual analog modelling,” IEEE/ACM Trans. Audio
Speech Lang. Process., vol. 30, pp. 3189–3198, 2022.

[8] M. Ducceschi and C.J. Webb, “Plate reverberation: Towards
the development of a real-time plug-in for the working musi-
cian,” in Proc. Int. Conf. Acoust. (ICA 2016), Buenos Aires,
Argentina, 09 2016.

[9] R. Russo, “Physical modeling and optimisation of a emt 140
plate reverb,” M.S. thesis, Aalborg University Copenhagen,
Copenhagen, Denmark, 2021.

[10] J.O. Smith, Physical Audio Signal Processing, https://
ccrma.stanford.edu/~jos/pasp/pasp.html,
accessed April 2023, online book, 2010 edition.

[11] J. Woodhouse, “On the "bridge hill" of the violin,” Acta
Acust. united Acust., vol. 91, pp. 155–165, 2005.

[12] J.H. Smith and J. Woodhouse, “The tribology of rosin,” J.
Mech. Phys. Solids, vol. 48, pp. 1633–1681, 08 2000.

[13] P. Galluzzo, J. Woodhouse, and H. Mansour, “Assessing fric-
tion laws for simulating bowed-string motion,” Acta Acust.
united Acust., vol. 103, pp. 1080–1099, 11 2017.

[14] C. Desvages, Physical modelling of the bowed string and
applications to sound synthesis, Ph.D. thesis, The University
of Edinburgh, 2018.

[15] W.H. Wittrick, “On elastic wave propagation in helical
springs,” Int. J. Mech. Sci., vol. 8, no. 1, pp. 25–47, 1966.

[16] L. Della Pietra and S. della Valle, “On the dynamic behaviour
of axially excited helical springs,” Meccanica, vol. 17, pp.
31–43, 1982.

[17] J.N. Franklin, Matrix Theory, Dover Publications, Mineola,
NY, USA, 2000.

[18] M. Van Walstijn, “Numerical calculation of modal spring
reverb parameters,” in Proc. Digital Audio Effects (DAFx-
2020), Online, 09 2020.

[19] J. McQuillan and M. Van Walstijn, “Modal spring reverb
based on discretisation of the thin helical spring model,” in
Proc. Digital Audio Effects (DAFx-2021), Online, 09 2021,
vol. 2.

[20] L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders,
Fundamentals of Acoustics, 4th Edition, Wiley, Hoboken,
NJ, USA, 1999.

[21] J. Sherman and W.J. Morrison, “Adjustment of an inverse
matrix corresponding to a change in one element of a given
matrix,” Ann. Math. Stat., vol. 21, pp. 124–127, 1950.

[22] R.J. LeVeque, Finite Difference Methods for Ordinary and
Partial Differential Equations. Steady State and Time Depen-
dent Problems, SIAM, Philadelphia, USA, 2007.

[23] J. Cieslinski, “On the exact discretization of the classical
harmonic oscillator equation,” J. Differ. Equ. Appl., vol. 17,
no. 11, pp. 1673–1694, 2009.

[24] C. Valette and C. Cuesta, Mécanique de la corde vibrante,
Hermès, Paris, 1993.

DAFx.8

https://ccrma.stanford.edu/~jos/pasp/pasp.html
https://ccrma.stanford.edu/~jos/pasp/pasp.html

	1  Introduction
	2  Models
	2.1  Bowed Stiff String and Distributed Bridge
	2.1.1  Energy Balance

	2.2  Spring
	2.2.1  Energy Analysis

	2.3  Membrane

	3  Semi-discretisation
	3.1  Bowed Stiff String and Distributed Bridge
	3.1.1  Semi-Discrete Formulation
	3.1.2  Modal Expansion

	3.2  Spring
	3.3  Membrane
	3.4  Modal Equations of the Full System with Loss

	4  Time Discretisation
	4.1  String-Bridge System
	4.2  Spring & Membrane

	5  Output signals
	6  Conclusion
	7  Acknowledgments
	8  References

