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Abstract. In recent years, considerable work has been devoted to the design of energy-stable
numerical methods, a class of geometrical integration technique in which the discrete energy
or pseudo-energy remains conserved. This property finds practical applications in systems for
which the energy is bounded from below since the growth of the solutions is then itself bounded,
yielding a form of stability. Such a property may be further exploited to transform the energy
overall into a quadratic form, representing the core of recent numerical techniques such as
the invariant energy quadratization (IEQ) and the scalar auxiliary variable (SAV) approaches.
These methods have been applied to a large class of problems due to their remarkable efficiency.
Yet, several aspects of such techniques have seen little investigation. In this work, the role of the
“shift” constant in the expression of the potential energy in Hamiltonian systems is investigated.
This is a positive gauge constant that may be used to augment the expression of the energy. Since
Hamilton’s equations are given in terms of gradients of the Hamiltonian, such a constant has no
influence on the resulting dynamics in the continuous system. However, empirical evidence has
suggested that the convergence properties of the associated SAV approaches are affected by the
magnitude of the shift factor. In this work, the behaviour of the relative global error of SAV
schemes in the cases of the harmonic and Duffing oscillators is numerically investigated. The
results reveal an optimal shift factor that increases the convergence rate. Using the optimal shift
factor, the proposed method displays variable order accuracy ranging from second to twelfth
order.

1. Introduction
Hamiltonian systems are widespread in physics, describing a large class of dynamical systems.
Under time-invariant or autonomous conditions, the Hamiltonian corresponds to the physical
energy of a given system, and is conserved. In the simulation setting, mimicking this property
through a conserved numerical energy (or pseudo-energy) conservation is, thus, a desirable
feature. In many numerical designs, the enforcing of such a conservation property is achieved by
means of fully implicit schemes requiring the iterative solution of nonlinear algebraic equations at
each time step, or via the exact evaluation of continuous-time integrals [1, 2]. In the former case,
the iterative nature of the time-stepping routine often represents a computational bottleneck,
while in the latter, exact numerical energy conservation is achieved in the few cases where the
integrals can be computed exactly. Recently, fully explicit, energy-stable numerical designs for
a class of Hamiltonian systems have been proposed [3], overcoming all such limitations. These
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designs are part of a larger class of techniques rooted in energy quadratisation, and appearing
under various guises such as the Invariant Energy Quadratisation (IEQ) [4, 5], and the Scalar
Auxiliary Variable (SAV) methods [6]. These methods have seen a growing body of applications,
particularly in gradient flow systems (see e.g. [7, 8]), and including diagonally-implicit Runge-
Kutta methods [9].

Hamilton’s dynamical equations are derived from the gradients of the Hamiltonian, and thus
the equations are gauge-invariant: that is, Hamiltonians differing by a constant yield the same
equations. Numerically, however, gauge constants have been shown to influence the behaviour of
the numerical error, as in the Navier-Stokes simulation routines presented in [10]. The influence
of the gauge constant in SAV-like methods for Hamiltonian systems will be the subject of this
article, building on previous work by the authors [3]. A rule for selecting the shift constant is
tested here on two scalar problems: the simple harmonic oscillator and the Duffing oscillator (a
particularly simple nonlinear oscillator). The experimental analysis reveals that an optimal shift
factor exists for a given potential, which can improve the local convergence rate up to several
orders, and which may be obtained as a fraction of the system’s energy.

The manuscript is organized as follows: Section 2 describes the proposed method, applied to
the test cases described in Section 3. Section 4 includes the numerical tests and the estimates
of the optimal gauge constant’s values.

2. Energy-shifted Hamiltonian systems
Hamilton’s equations are a set of ordinary differential equations (ODEs) giving the rate of change
of the displacements and momenta of a system of particles. In this work, a single particle with
position q(t) and momentum p(t) is considered, for which:

q̇ =
∂H

∂p
ṗ = −∂H

∂q
. (1)

Here, H = H(q, p) : R2 → R is the Hamiltonian, restricted here to the form:

H (p, q) = 1
2p

2 + V (q) , (2)

where V (q) is the potential energy of the particle. Here, and in the following, the Hamiltonian
is scaled by the particle’s mass for the sake of conciseness. It is furthermore assumed that:

V (q) ≥ 0 ∀q ∈ R , (3)

implying H ≥ 0 ∀ (p, q). The non-negativity of the potential V is verified in many Hamiltonian
systems, though not all – amongst others, the gravitational potential is an exception. When (3)
holds, the potential energy may be written as [3]:

V = 1
2ψ

2 , (4)

where ψ ∈ R+
0 is referred to as the “auxiliary variable” [3, 4]. Consequently, Hamilton’s equations

take the form:
q̇ = p ṗ = −gψ . (5)

with g := ∂ψ
∂q .

The equations in (5) can be combined through differentiation, and the rate of change of the
auxiliary variable may itself be obtained by a simple application of the chain rule. Together,
these yield the following system, forming the basis for SAV-like approaches:

q̈ = −gψ ψ̇ = gq̇ . (6)



IC-MSQUARE-2023
Journal of Physics: Conference Series 2701 (2024) 012089

IOP Publishing
doi:10.1088/1742-6596/2701/1/012089

3

Initialisation is provided by:

q(0) = q0 q̇(0) = p0 ψ(0) =
√
2V (q0), (7)

where q0, p0 are constants.
Note that the same equations can be obtained by replacing V with Vϵ in (2), a shifted potential

defined as:
Vϵ := V +

ϵ

2
ϵ > 0,

where the non-negative shift ϵ has the interpretation of a gauge constant.

2.1. Time stepping routine
System (6) is now integrated in time using the method proposed in [3]. This is a finite difference
scheme discretizing the time domain into uniformly-spaced grid intervals at the times tn = nk,
where n ∈ N is the time index, and k is time step. This grid is used to compute the discrete-time
position qn ≈ q(tn). Moreover, an interleaved grid centered at the midpoints tn+

k
2 is employed

to approximate the auxiliary variable ψn+
1
2 ≈ ψ(tn +

k
2 ). An approximation to (6) is obtained

as:

qn+1 = 2qn − qn−1 − k2

2
gnϵ

(
ψn+

1
2 + ψn−

1
2

)
ψn+

1
2 = ψn−

1
2 + 1

2g
n
ϵ

(
qn+1 − qn−1

)
, (8)

where:

gnϵ :=
∂ψ

∂q

∣∣∣
q=qn

=
1√

2V (qn) + ϵ

∂V

∂q

∣∣∣
q=qn

. (9)

All finite difference approximations in the scheme are centered, making the scheme reversible
and (at least) second-order accurate. Furthermore, it possesses a conserved, non-negative energy
of the form:

hn+
1
2 =

(qn+1 − qn)2

2k2
+

(ψn+
1
2 )2

2
= h

1
2 ≥ 0 , (10)

from which bounds on |qn−qn−1| and |ψn−
1
2 | in terms of the initial energy h

1
2 are easily derived,

leading to unconditional stability.
The numerical initialisation of scheme (8) is given in terms of the exact solution q(t), as:

q0 = q(0) q1 = q(k) ψ
1
2 =

√
2V (q(k/2)) + ϵ . (11)

Whilst q is here a scalar, scheme (8) may be generalised to the vector case; an explicit update
exists, making the scheme particularly attractive from the standpoint of real-time simulation
[3, 11–13].

3. Test Cases
Two test problems are considered, with closed-form solution. For both problems, in order to
simplify the analysis, null velocity initial conditions are considered, such that p0 = 0 in (7).

Simple Harmonic Oscillator The first test case is the classical simple harmonic oscillator, for
which:

V (q) =
ν2q2

2
, (12)
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where ν > 0 is the oscillator’s angular frequency in radians per second. An exact solution to (6)
exists as:

q(t) = q0 cos(νt) . (13)

Substituting the definition of V (q) as per (12) in (9), one has:

gnϵ =
ν2qn√

ν2(qn)2 + ϵ
. (14)

Duffing Oscillator The second test case is the Duffing oscillator, a nonlinear oscillator with
a mixed linear/cubic restoring force. It models various oscillatory systems, such as the simple
pendulum under a moderately large vibration amplitude [14] and, in the distributed case, it
governs the dynamics of plates, shells and strings [12, 15]. In the scalar case considered here,
one has:

V (q) =
ν2q2

2
+
γq4

4
. (15)

The sign of γ may be positive or negative, leading to a “hardening” or a “softening” nonlinearity,
respectively. Because (3) is required to hold, only the case γ ≥ 0 is considered here. An analytic
solution exists, generalising (13), as:

q(t) = q0 cn

(√
ν2 + γq20 t ;

γq20
2γq20 + 2ν2

)
. (16)

Here, cn(z;m) is the Jacobi elliptic function of argument z and parameter m. Using (15) in (9),
the nonlinear gradient is given in this case by:

gϵ(q
n) =

ν2qn + γ(qn)3√
ν2(qn)2 + γ q

4

2 + ϵ
. (17)

4. Numerical Results
To investigate the impact of the shift constant on the convergence properties of scheme (8), the
influence of ϵ on the relative error is first assessed. The relative error is here defined as:

δNϵ :=
|qN − q(tN )|

|q(tN )|
, (18)

that is, the relative difference between the output of scheme (8) at the final time step N and the
corresponding exact solution q(tN ). Note that qn, from (8), depends on ϵ via gnϵ , and, hence, so
does δNϵ . Then, define:

ϵ⋆ := argmin
ϵ
δNϵ ϵmin ≤ ϵ ≤ ϵmax , (19)

provided this minimum exists. Here, ϵ⋆ will be sought as a fraction of h0 the total numerical
energy in the absence of shift, such that:

ϵ := η h0 ηmin ≤ η ≤ ηmax , (20)

with

h0 :=
(q(k)− q(0))2

2k2
+ V (q(k/2)) . (21)

The total energy h0 provides in this case a useful scaling factor. Hence, the global minimum
will be defined in terms of the scaled shift, as:

ϵ⋆ := η⋆h0 . (22)
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4.1. Simple Harmonic Oscillator
The behaviour of the relative error δNϵ is first checked as a function of η, for a set of frequencies
Ω =

{
ν | ν ∈ (1, 2, 5, 10, 20, 50) · 102

}
, and under various choices of the time step k. It is

convenient to perform a check on a coarse grid along the η axis, and then to restrict the search to
a useful range. The coarse search reveals the presence of minima in the range 0.01 ≤ η⋆ ≤ 0.03,
as seen in Figure 1. An analysis of this figure reveals that a single (and, hence, global) minimum

Figure 1. Coarse behaviour of the relative error δNϵ as a function of the scaled shift η, under
various choices of the time step k, given on top of each panel, and linear frequency ν, given
by different colours. Colour scheme: ν = 100 (blue), 200 (red), 500 (yellow), 1000 (purple),
2000 (green), 5000 (cyan). Here, N = floor(0.3/k), and the η axis is sampled using 500 linearly
spaced grid points between 0.01 and 0.03. When 10−6 ≲ k ≲ 10−5, a single, global minimum
is detected ∀ ν. For larger values of k, a single minimum is detected only for frequencies such
that νk ≲ 0.1 whereas for smaller values of k, the effects of round-off are visible as a noise-like
distortion. For all tests, the system is initialised with q0 = 1, p0 = 0.

exists for δNϵ when the time step k becomes sufficiently small compared to the radian frequency ν,
such that νk ≲ 0.1. When 10−6 ≲ k ≲ 10−5, a clear global minimum appears for all frequencies.
The definition of the scaled shift η as per (20) results appropriate from the inspection of this
figure, where the minimum points η⋆ appear to be more or less aligned for all frequencies, though
a small dependency of η⋆ on ν is nonetheless observed. Interestingly, for smaller values of the
time step k, the behaviour of δNϵ is dominated by round-off errors appearing as a noise-like
distortion.

This qualitative analysis suggests retrieving η⋆ numerically, using an appropriate value for
the time step k and a very fine grid along η. The results are summarised in Table 1. Note
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ν 100 200 500 1000 2000 5000

102 η⋆ 1.931 2.420 2.171 2.293 2.283 2.292

Table 1. Numerically-computed global minimum points from Figure 1. For the calculation,
k = 3 · 10−6 was used for ν = {100, 200, 500}, and k = 10−6 for ν = {1000, 2000, 5000}. In both
cases, the η axis was scanned between 0.01 and 0.03 using 5000 grid points.

that, while Figure 1 displays the case q0 = 1, the minimum points η⋆ are independent of the
magnitude of the initial condition q0 for fixed ν. Furthermore, such values for η⋆ are independent
of k for fixed ν, provided that k is small enough to yield sufficient resolution, but large enough
to keep away from round-off errors. In practice, the optimal scaled shift value appears to be a

Figure 2. Convergence curves for the simple harmonic oscillator, under various choices of
the natural frequency ν as indicated on top of each panel, and scaled shift constant η, where
η ∈ W ∪ {0, 1012}. The leapfrog scheme is also used. Colour scheme: η = 1.9193·10−2 (blue),
2.4191·10−2 (red), 2.1692·10−2 (yellow), 2.2931·10−2 (purple), 2.2839·10−2 (green), 2.2923·10−2

(cyan), 0 (pink), 1012 (dashed ilac), leapfrog (burgundy). Grey-shaded areas represent portions
of the plane dominated by round-off errors, whilst red-shaded areas correspond to time steps
yielding insufficient resolution (no convergence).

function of the radian frequency only, so that η⋆ = η⋆(ν), and is thus independent of k and q0.
Let W = {η | η = η⋆(ν), ν ∈ Ω} denote the set of the computed minimum points from Table
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1. The convergence rate of scheme (8) as a function of the time step k is now checked, as
per Figure 2. Each panel considers one frequency from the set Ω, and the nine coloured lines
correspond to the eight values of the shift constant obtained from W∪{0, 1012} (that is, from the
set E = {ϵ | ϵ ∈ (W ∪ {0, 1012}) h0}), plus the second-order leapfrog scheme, used as a reference.
For all panels, as expected, the value of δNϵ is considerably smaller in correspondence of ϵ⋆.
When k ≈ 10−5 (a typical value of the time step in acoustics simulation), the relative error is
several orders of magnitude smaller for the energy-shifted SAV scheme compared to the leapfrog
scheme. These results suggest computing ϵ⋆ with a precision at least 4 significant digits, since
a smaller precision yields rather large amplifications of the relative error δNϵ . This conclusion is
supported by the behaviour of the curves in Figure 1, all presenting a very steep descent in the
neighbourhood of η⋆.

The dependence of the convergence rate on ϵ is another evident feature of the curves in Figure
2, and one of the most interesting findings of this work. Whilst scheme (8) remains, generally,
second-order convergent, the rate of convergence seems to be largely affected by the magnitude
of the shift factor. Locally, slopes range from 3 to 12 when ϵ = ϵ⋆. When ϵ is chosen in some
neighbourhood around ϵ⋆, some improvements are still observed for larger time steps. This
suggests that increasing the precision on the estimate of ϵ⋆ may improve the convergence rates
further, though this behaviour can only be understood by a formal analysis of the structure of
the error, left as future work.

The limiting cases ϵ = {0,∞} are also worth commenting. It is remarked that the somewhat
“natural” choice ϵ = 0 yields a very slow convergence rate, if any: for larger values of the
oscillator frequency ν, the convergence of the scheme seems to be completely impaired. On
the other hand, a very large value of ϵ produces a scheme virtually indistinguishable from the
leapfrog algorithm, as one can show immediately from (8) (in this case, gnϵ ≈ (

√
ϵ)−1∂V/∂q,

ψn+
1
2 ≈

√
ϵ, from which the leapfrog is recovered).

Before proceeding, it is worth remarking that the case ϵ = 0 may be treated differently.
First, note that, according to definition (14), gnϵ = ν sign(qn) when ϵ = 0. Whilst ψ, from (4)
was restricted to be a positive constant, it may well change sign according to ψ = ±

√
2V + ϵ.

Selecting the sign accordingly, one may then get gnϵ = ν, yielding a different three-step scheme.
The assessment of this scheme is left as future work.

4.2. Duffing oscillator
The analysis of the Duffing oscillator may be done analogously. It is convenient in this case to
keep the linear frequency ν fixed, and to study the behaviour of the scheme for varying (γ, q0):
both these parameters influence the amplitude-dependent nonlinearity of the system. In the
following, γ ∈ {0.1, 1, 10, 100} and q0 ∈ {0.1, 1, 10}.

First, a coarse check of the η axis is performed, as per Figure 3. In the figure, plots of δNϵ
under two different choices of the initial condition q0 and time step k are given. Whilst a single,
global minimum is recovered for fixed ν, γ, k, the value of η⋆ now clearly depends on the intial
condition q0. Thus, η⋆ = η⋆(q0, ν, γ). Table 2 reports values of the minimum points η⋆ under
various choices for γ, q0. Note that, as expected, for small values of the nonlinear parameter γ
and q0, the same value as from Table 1 is recovered (η⋆ = 0.02171 for ν = 500).

Let now V = {η | η = η⋆(ν, γ, q0), ν = 500, γ ∈ {0.1, 1, 10, 100}, q0 ∈ {0.1, 1, 10}} be the set
of the optimal scaled shift values from Table 2. In Figure 4, the behaviour of the relative error
δNϵ is assessed against the time step k, using the values of the shift constant from V ∪ {0}, plus
the leapfrog scheme. Much like the simple harmonic oscillator case, it can be appreciated that
the convergence rate improves drastically whenever ϵ = ϵ⋆. Values in the neighbourhood of ϵ⋆

also lead to a considerably faster convergence for larger k compared to the leapfrog. Again, the
no-shift case (ϵ = 0) leads to poor or no convergence.
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γ 0.1 1.0 10 100

102 η⋆, q0 = 0.1 2.171 2.171 2.171 2.171

102 η⋆, q0 = 1.0 2.171 2.171 2.171 2.168

102 η⋆, q0 = 10 1.919 2.168 2.150 1.921

Table 2. Numerically-computed global minimum points for the Duffing oscillator, with linear
frequency ν = 500. Nonlinear parameter γ and intial condition q0 as indicated. For the numerical
search, k = 3 · 10−6 was used, and the η axis was scanned between 0.015 and 0.03 using 5000
grid points.

Figure 3. Coarse behaviour of the relative error δNϵ for the Duffing oscillator as a function of the
scaled shift η, under various choices of the time step k, given on top of each panel, and γ, given
by different colours. Colour scheme: γ = 0.1 (blue), 1.0 (red), 10 (yellow), 100 (purple). Here,
N = floor(0.3/k), and the η axis is sampled using 500 linearly spaced grid points between 0.015
and 0.03. For the tests, the system is initialised with q0 as indicated, showing the dependence
of η⋆ on the initial condition.

5. Conclusions
In this work, an assessment of the gauge constant in energy-shifted SAV methods for Hamiltonian
system was given. The scalar cases of the simple harmonic oscillator and the Duffing oscillator
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Figure 4. Convergence curves for the Duffing oscillator, under various choices of the nonlinear
coefficient γ as indicated on top of each panel, and scaled shift constant η, where η ∈ V ∪ {0}.
The leapfrog scheme is also used. Colour scheme: η = 1.919·10−2 (blue), 2.168·10−2 (red),
2.150·10−2 (yellow), 1.921·10−2 (purple), 0 (pink), leapfrog (burgundy). Grey-shaded areas
represent portions of the plane dominated by round-off errors. For all panels, q0 = 10.

were treated in detail. In both cases, the value of the shift affects the convergence rate, and
numerically computed optimal values were given as a fraction of the system’s energy. For the
harmonic oscillator, a linear problem, such optimal value depends exclusively on the linear
oscillator frequency, whilst for the Duffing oscillator, a nonlinear problem, such optimal value
depends on the amplitude of the initial condition as well as the linear frequency and nonlinear
parameter. When the shift is chosen in the neighbourhood of the numerically computed optimal
values, local changes in the convergence rate up to twelfth order are observed, as well as a large
reduction of the magnitude of the relative error compared to standard algorithms such as the
leapfrog. On the other hand, when the schemes are run with no shift, the error does not decrease
with decreasing time step, and hence convergence is halted. These findings suggest studying the
behaviour of relative error as a function of the shift analytically, which is left as future work.
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