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Abstract
Meta-solver approaches exploit many individual solvers to potentially build a better

solver. To assess the performance of meta-solvers, one can adopt the metrics typically used
for individual solvers (e.g., runtime or solution quality) or employ more specific evaluation
metrics (e.g., by measuring how close the meta-solver gets to its virtual best performance).
In this paper, based on some recently published works, we provide an overview of dif-
ferent performance metrics for evaluating (meta-)solvers by exposing their strengths and
weaknesses.

1. Introduction

A famous quote attributed to Aristotle says that “the whole is greater than the sum of its
parts”. This principle has been applied in several contexts, including the field of constraint
solving and optimization. Combinatorial problems arising from application domains such as
scheduling, manufacturing, routing or logistics can be tackled by combining and leveraging
the complementary strengths of different solvers to create a better global meta-solver.1

Several approaches for combining solvers and hence creating effective meta-solvers have
been developed. Over the last decades, we witnessed the creation of new Algorithm Selection
(AS) (Kotthoff, 2016) and Configuration (H. H. Hoos, 2012) approaches2 that reached peak
results in various solving competitions (SAT competition, 2021; Stuckey, Becket, & Fischer,
2010; ICAPS, 2021). To compare different meta-solvers, new competitions were created,
e.g., the 2015 ICON challenge (Kotthoff, Hurley, & O’Sullivan, 2017) and the 2017 OASC
competition on algorithm selection (Lindauer, van Rijn, & Kotthoff, 2019). However, the
discussion of why a particular evaluation metric has been chosen to rank the solvers is absent.

We believe that further study on comparing meta-solvers is necessary because meta-
solvers are often evaluated on heterogeneous scenarios, characterized by different problems

1. Meta-solvers are sometimes referred in the literature as portfolio solvers because they take advantage of
a “portfolio” of different solvers.

2. A fine-tuned solver can be seen as a meta-solver where we consider different configurations of the same
solver as different solvers.
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having specific features, different timeouts, and different individual solvers from which the
meta-solver approaches are built. From our point of view, this is one of the main differences
w.r.t. the evaluation of individual solvers. Indeed, the latter are typically assessed in more
homogeneous scenarios, where a fixed number of solvers compete against each other on
related problems (e.g., SAT problems, ASP problems, Planning problems, etc.) within a
fixed time window. In this work, we will consider the scenarios of the Algorithm Selection
library (ASlib) (Bischl et al., 2016), i.e., the reference library for AS scenarios. The ASlib
contains several data sets from the literature, and we assume that they represent realistic
scenarios.

Starting from some surprising results presented by Liu, Amadini, Mauro, and Gabbrielli
(2021) showing dramatic ranking changes with different but reasonable metrics, we would
like to draw more attention to the evaluation of meta-solver approaches by shedding some
light on the strengths and weaknesses of different metrics. Unsurprisingly, some of the
findings we report here also apply to the evaluation of individual solvers.

2. Evaluation Metrics

Before talking about the evaluation metrics, we should spend some words on what we need to
evaluate: the solvers. In our context, a solver is a program that takes as input the description
of a computational problem in a given language and returns an observable outcome providing
zero or more solutions for the given problem. For example, for decision problems, the
outcome may be simply “yes” or “no” while for optimization problems, we might be interested
in the best solutions found along the search. An evaluation metric, or performance metric,
is a function mapping the outcome of a solver on a given instance to a number representing
“how good” the solver is on this instance.

An evaluation metric is often not just defined by the output of the (meta-)solver. Indeed,
it can be influenced by other actors, such as the computational resources available, the
problems on which we evaluate the solver, and the other solvers involved in the evaluation.
For example, it is often unavoidable to set a timeout τ on the solver’s execution when there
is no guarantee of termination in a reasonable amount of time (e.g., NP-hard problems).
Timeouts make the evaluation feasible but inevitably couple the evaluation metric to the
execution context. For this reason, the evaluation of a meta-solver should also consider the
scenario that encompasses the solvers to evaluate, the instances used for the validation, and
the timeout. Formally, at least for the purposes of this paper, we can define a scenario as
a triple (I,S, τ) where: I is a set of problem instances, S is a set of individual solvers,
τ ∈ (0,+∞) is a timeout such that the outcome of solver s ∈ S over instance i ∈ I is always
measured in the time interval [0, τ).

Evaluating meta-solvers over heterogeneous scenarios (I1,S1, τ1), (I2,S2, τ2), . . . , is com-
plicated by the fact that the sets of instances Ik, the sets of solvers Sk and the timeouts
τk can be very different. As we shall see in Sect. 2.3, things are even trickier in scenarios
including optimization problems.

2.1 Absolute vs Relative Metrics

A sharp distinction between evaluation metrics can be drawn depending on whether their
values depend on the outcome of other solvers. We say that an evaluation metric is relative
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in the former case, absolute otherwise. For example, a well-known absolute metric is the
penalized average runtime with penalty λ ≥ 1 (PARλ) that compares the solvers by using
the average solving runtime and penalizes the timeouts with λ times the timeout.

Formally, let time(i, s, τ) be the function returning the runtime of solver s on instance
i with timeout τ , assuming time(i, s, τ) = τ if s cannot solve i before the timeout τ . For
optimization problems, we consider the runtime as the time taken by s to solve i to opti-
mality3 assuming w.l.o.g. that an optimization problem is always a minimization problem.
We can define PARλ as follows.

Definition 1 (Penalized Average Runtime). Let (I,S, τ) be a scenario, the PARλ score of

solver s ∈ S over I is given by
1

|I|
∑
i∈I

parλ(i, s, τ) where:

parλ(i, s, τ) =

{
time(i, s, τ) if time(i, s, τ) < τ

λ · τ otherwise.

Well-known PAR measures are, e.g., the PAR2 adopted in the SAT competitions (SAT
competition, 2021) or the PAR10 used by Lindauer et al. (2019); Luo, Vallati, and Hoos
(2019). The PAR score readily applies to meta-solvers: whether s is an individual solver
does not affect the definition of PARλ (and, in general, of any absolute metric). However,
it is important to note that meta-solvers are often evaluated over scenarios with different
timeouts. This should imply a normalization of PARλ in a fixed range to avoid misleading
comparisons due to the impact of different penalization when time(i, s, τ) = τ .

Another absolute metric for decision problems is the number (or percentage) of instances
solved where ties are broken by favoring the solver minimizing the average running time,
i.e., minimizing the PAR1 score. This metric has been used in various tracks of the planning
competition (ICAPS, 2021), the XCSP competition (XCSP Competition, 2019), and the
QBF evaluations (QBFEVAL, 2021).

A well-established relative metric is instead the Borda count, adopted, e.g., by the MiniZ-
inc Challenge (Stuckey, Feydy, Schutt, Tack, & Fischer, 2014) for both single solvers and
meta-solvers. The Borda count is a family of voting rules applicable to the evaluation of a
solver by considering the comparison as an election where the solvers are the candidates,
and the problem instances are the voters. The MiniZinc challenge uses a variant of Borda4

where each solver scores points proportionally to the number of solvers it beats. Assuming
that obj(i, s, t) is the best objective value found by solver s on optimization problem i at
time t, with obj(i, s, t) = +∞ when no solution is found at time t, the MiniZinc challenge
score is defined as follows.

Definition 2 (MiniZinc challenge score). Let (S, I, τ) be a scenario where I = Idec ∪
Iopt with Idec decision problems and Iopt optimization problems. The MiniZinc challenge

3. If s cannot solve i to optimality before τ , then time(i, s) = τ even if sub-optimal solutions are found.
4. In the original definition, the lowest-ranked candidate gets 0 points, the next-lowest 1 point, and so on.
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(MZNC) score of s ∈ S over I is
∑

i∈I,s′∈S\{s}
ms(i, s

′, τ) where:

ms(i, s
′, τ) =



0 if unknown(i, s, τ) ∨ better(i, s′, s, τ)
1 if better(i, s, s′, τ)
0.5 if time(i, s, τ) = time(i, s′, τ)

and obj(i, s, τ) = obj(i, s′, τ)
time(i, s′, τ)

time(i, s, τ) + time(i, s′, τ)
otherwise

where the predicate unknown(i, s, τ) holds if s does not produce any solution within the time-
out:

unknown(i, s, τ) = (i ∈ Idec ∧ time(i, s, τ) = τ) ∨ (i ∈ Iopt ∧ obj(i, s, τ) =∞)

and better(i, s, s′, τ) holds if s finishes earlier than s′ or it produces a better solution:

better(i, s, s′, τ) = (time(i, s, τ) < time(i, s′, τ) ∧ time(i, s′, τ) = τ) ∨ (obj(i, s, τ) < obj(i, s′, τ))

This is clearly a relative metric because changing the set of available solvers can affect
the MiniZinc scores.

A relative and meta-solver-specific measure, adopted in the 2015 ICON and 2017 OASC
challenges (Lindauer et al., 2019) to handle the disparate nature of the scenarios, is the
closed gap score. This metric assigns to a meta-solver a value in (−∞, 1] proportional
to how much it closes the gap between the best individual solver available, or single best
solver (SBS ), and the virtual best solver (VBS ), i.e., an oracle-like meta-solver always
selecting the best individual solver. The closed gap is actually a “meta-metric”, defined in
terms of another evaluation metric m to minimize. Formally, if (I,S, τ) is a scenario then
m(i,VBS , τ) = min{m(i, s, τ) | s ∈ S} for each i ∈ I and SBS = argmin

s∈S

∑
i∈I m(i, s, τ).

With these definitions

Definition 3 (Closed gap). Let (I,S, τ) be a scenario and m : I×(S∪{S, V BS})×[0, τ ]→
R an evaluation metric to minimize for that scenario, where S is a meta-solver over the
solvers of S. Let mσ =

∑
i∈I m(i, σ, τ) for σ ∈ {S,SBS ,VBS}. The closed gap of S

w.r.t. m on that scenario is:5
mSBS −mS

mSBS −mVBS

The obvious assumption here is mSBS > mVBS , i.e., no single-solver can be the VBS
(otherwise, no AS would be needed). Note that, unlike the PAR and MZNC scores, the
closed gap is specifically tailored for meta-solvers. Indeed, applying it to individual solvers
means assigning the score 0 to the SBS and a negative score to the other solvers linearly
proportional to their performance difference w.r.t. the SBS and the gap mSBS−mVBS . This
clearly makes little sense for individual solvers.

If not specified, we will assume that the closed gaps are computed w.r.t. the PAR10 score
as done in the AS challenges 2015 and 2017.6

5. The definition of m is overloaded to be consistent with the notation that one can find, e.g., in (Lindauer
et al., 2019).

6. In the 2015 edition, the closed gap was computed as 1− mSBS−mS
mSBS−mVBS

= mVBS−mS
mVBS−mSBS

.
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Table 1: Comparison ASAP vs RF. The MZNC column reports the average MZNC score
per scenario. Negative scores are in bold font.

Closed gap MZNC Better than other
Scenario ASAP RF ASAP RF ASAP RF
ASP-POTASSCO 0.7444 0.5314 2.2235 2.6163 275 671
BNSL-2016 0.8463 0.7451 1.2830 3.0250 98 993
CPMP-2015 0.6323 0.1732 2.0501 2.3660 137 334
CSP-MiniZinc-Time-2016 0.6251 0.2723 2.1552 2.7214 17 53
GLUHACK-2018 0.4663 0.4057 1.9040 2.4528 62 147
GRAPHS-2015 0.758 -0.6412 2.3045 3.3731 489 3663
MAXSAT-PMS-2016 0.5734 0.3263 1.4747 2.8616 66 439
MAXSAT-WPMS-2016 0.7736 -1.1826 1.5168 2.4043 126 386
MAXSAT19-UCMS 0.6583 -0.2413 2.0893 2.5189 145 269
MIP-2016 0.35 -0.3626 2.4035 2.4239 81 105
QBF-2016 0.7568 -0.1366 1.8642 2.7154 193 467
SAT03-16_INDU 0.3997 0.1503 2.1508 2.5812 491 1116
SAT12-ALL 0.7617 0.6528 1.6785 2.8250 262 1227
SAT18-EXP 0.5576 0.3202 1.9239 2.4998 61 164
TSP-LION2015 0.4042 -19.1569 2.4352 2.6979 1115 1949
Tot. 9.3077 -18.1438 29.4777 40.0622 3618 11983
Tot.−TSP-LION2015 8.9036 1.0131 27.0425 37.3642 2503 10034

2.2 A Surprising Outcome

An interesting outcome reported in Liu et al. (2021) was the profound difference between
the closed gap and the MiniZinc challenge scores. Liu et al. compared the performance of
six meta-solver approaches across 15 decision-problem scenarios taken from ASlib (Bischl
et al., 2016) and coming from heterogeneous domains such as Answer-Set Programming,
Constraint Programming, Quantified Boolean Formula, Boolean Satisfiability.

Tab. 1 reports the performance of meta-solvers ASAP and RF,7 respectively the best
approach according to the closed gap score and the MZNC score. The scores in the four
leftmost columns clearly show a remarkable difference in rank if we swap the evaluation
metric. With the closed gap, ASAP is the best approach and RF the worst among all
the meta-solvers considered, while with the MZNC score RF climbs to the first position
while ASAP drops to the last position. The fact that different metrics used in international
competitions give diametrically opposite results should give pause for thought.

Another thing that catches the eye in Tab. 1 is the presence of negative scores. This
happens because, by definition, the closed gap has upper bound 1 (no meta-solver can
improve the VBS ) but not a fixed lower bound. Hence, when the performance of the meta-
solver is worse than the performance of the single best solver, the closed gap drops below
zero. While, at first glance, this seems reasonable—meta-solvers should perform no worse
than the individual solvers—it is worth noting that the penalty for performing worse than
the SBS also depends on the denominator mSBS − mVBS . This means that in scenarios

7. RF uses a Random Forest classifier to predict the best solver of the portfolio for a given instance.
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Figure 1: Cumulative Borda count by varying the δ threshold.

where the performance of the SBS is close to the perfect performance of the VBS , this
penalty can be significantly magnified. The TSP-LION2015 scenario is a clear example:
the RF approach gets a penalization of more than 19 points, i.e., more than 19 times the
perfect score of the virtual best solver. This means that RF should perform flawlessly in
about 20 other scenarios to compensate for this punishment. In fact, in TSP-LION2015 the
PAR10 distributions of SBS and VBS are very close: the SBS is able to solve 99.65% of
the instances solved by the VBS , leaving little room for improvement. RF scores -19.1569
while still solving more than 90% of the instances of the scenario and having a difference
with ASAP of slightly more than 5% instances solved. Furthermore, in this scenario, RF
beats ASAP on 1949 instances, while ASAP beats RF on 834 instances less (26.85% of the
dataset).

Why are the closed gap and the MZNC rankings so different? Looking at the rightmost
two columns in Tab. 1 showing, for each scenario, the number of instances where one ap-
proach is faster than the other, one may conclude that RF is far better than ASAP. Indeed,
for all the scenarios, the number of instances where RF is faster than ASAP is bigger than
the number of instances where ASAP is faster than RF. Overall, it is quite impressive that
RF beats ASAP on 11983 instances while ASAP beats RF on 3618 times only.

An initial clue of why this happens is revealed in Liu et al. (2021), where a parametric
version of MZNC score is used. Def. 2 is generalized by assuming the performance of two
solvers equivalent if their runtime difference is below a given time threshold δ.8 This variant
was considered because a time difference of a few seconds could be considered irrelevant if
solving a problem can take minutes or hours. The parametric MZNC score is depicted in
Fig. 1, where different thresholds δ are considered on the x-axis. It is easy to see how the
performance of ASAP and RF reverses when δ increases: ASAP bubbles from the bottom
to the top, while RF gradually sinks to the bottom.

8. Formally, if |time(i, s, τ)− time(i, s′, τ)| ≤ δ then both s and s′ scores 0.5 points. Note that if δ = 0 we
get the original MZNC score as in Def. 2.
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Figure 2: Runtime distribution of solved instances between ASAP and RF.

Let us further investigate this anomaly. Fig. 2 shows the runtime distributions of the
instances solved by ASAP and RF, sorted by ascending runtime. We can see that ASAP
solves more instances, but for around 15k instances, RF is never slower than ASAP. In
summary, ASAP solves more instances, but RF generally is quicker when it solves an (often
easy) instance. This entails the significant difference between the closed gap and Borda
metrics.

In our opinion, on the one hand, it is fair to think that ASAP performs better than RF in
these scenarios. The MZNC score seems to over-penalize ASAP w.r.t. RF. Moreover, from
Fig. 1 we can also note that for δ ≤ 103 the parametric MZNC score of RF is still better,
but 103 seconds looks quite a high threshold to consider two performances as equivalent.
On the other hand, the closed gap score can also be over-penalizing due to negative outliers.
The simplest fix for this issue would be to set the metric’s lower bound to a parameter
` ≤ 0, but this would not discriminate between performances with a closed gap less than `.
Alternatively, one can modify the closed gap (c.f. Def. 3) when ms ≥ mSBS by using the

“virtual worst solver” to establish a lower bound, thus assigning the score
mSBS −ms

mVWS −mVBS
where mVWS =

∑
i∈I max{m(i, s, τ) | s ∈ S} is the performance of the “virtual worst

solver”. In this way, the closed gap will always be in [−1, 1], with −1 denoting the worst
possible performance, 0 the SBS performance and 1 the VBS performance.

We also point out that the definitions of SBS found in the literature do not clarify how
it is computed in scenarios where the set of instances I is split into test and training sets.
Should the SBS be computed on the instances of the training set, the test set, or the whole
dataset I? One would be inclined to use the test set to select the SBS , but this choice
might be problematic because the test set is usually relatively small w.r.t. the training set
when using, e.g., cross-validation methods. In this case, issues with negative outliers might
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Figure 3: Modified Borda count by varying the δ threshold.

be amplified. If not clarified, this could lead to confusion. For example, in the 2015 ICON
challenge, the SBS was computed by considering the entire dataset (training and testing
instances together). In the 2017 OASC, instead, the SBS was originally computed on the
test set of the scenarios, but later the results were amended by computing the SBS on the
training set.

A possible way around the above issues of negative scores and amplification of small
performance differences is to use a modified version of the MZNC score, as proposed in
(Amadini, Gabbrielli, & Mauro, 2015) for individual solvers, where a meta-solver s gets a

score of 0.5+
time(i, s′, τ)− time(i, s, τ)

2τ
when the outcomes of s and any other meta-solver

s′ are indistinguishable, i.e., if they produce the same solution and their runtime difference
does not exceed a given threshold δ. Fig. 3 shows the scores of the meta-solvers reported in
Fig. 1 with this new definition, by varying δ ∈ [0, 3600]. The difference between Fig. 1 and
Fig. 3 is clear: with the modified score, the meta-solvers’ ranking is more stable, especially
for ASAP and RF. This can be explained with a simple example: suppose that τ = 1000,
time(i, s, τ) = 3, and time(i, s′, τ) = 9 with δ = 5. With the original MZNC score (Def. 2),
s scores 0.75 while s′ scores 0.25; with the modified one s scores 0.503 while s′ scores 0.497.
However, if time(i, s, τ) = 300, and time(i, s′, τ) = 900 with the original MZNC score s and
s′ would achieve the same score, despite an absolute time difference of 6 and 600 seconds
respectively. Instead, with the modified score s and s′ would score 0.8 and 0.2, respectively.
Alternatively, δ can be defined according to the percentage gap between the two solvers,
i.e., two solvers are considered indistinguishable if their runtime difference is within 1% of
the better one.

Another plausible alternative is to consider the speedup of a meta-solver w.r.t. the SBS
or the VBS , i.e., how much a meta-solver can improve a baseline solver. This metric was
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Table 2: Average closed gap, speedup, incomplete score and Relative Marginal Contribution
(RMC). Peak performance in bold font.

Meta-solver Closed gap Speedup Incomplete RMC [%]
ASAP 0.6205 0.1137 0.4619 11.4606
sunny-as2 0.5126 0.1061 0.6591 12.6824
SUNNY-original 0.4893 0.0878 0.6303 8.5392
autofolio 0.4686 0.0927 0.6755 10.1789
RF-reg 0.4090 0.0842 0.6589 28.3729
*Zilla 0.2169 0.0734 0.5770 12.3025
RF -1.2096 0.0492 0.7108 16.4635

mentioned in (Liu et al., 2021), inspired by what in (Lindauer et al., 2019) is called “im-
provement factor”. We can compute the speedup of a meta-solver s as mVBS

ms
where m is a

performance metric to be minimized. This is a normalized runtime measure, where ms is
scaled via mVBS hence avoiding issues with scenarios having different timeouts. Unlike the
closed gap, which has no lower bound, the speedup always falls in (0, 1] with bigger values
meaning better performance. An apparently similar approach is computing the speedup on

a per-instance basis, i.e., considering
m(i,VBS , τ)

m(i, s, τ)
for each instance i ∈ I of the scenario.

Because m could be 0, one might use instead the incomplete score used in the MaxSAT

Evaluation (MaxSAT Evaluation, 2022), i.e.,
∑

i∈I
1 +m(i,VBS , τ)

1 +m(i, s, τ)
where m is the cost

(i.e., the number of violated clauses in the context of MaxSAT).
Tab. 2 reports, using the data of (Liu et al., 2021) andm = PAR10, the average closed gap,

speedup, and MaxSAT incomplete score for different meta-solvers. As additional baseline,
we added a regression version of RF, called RF-reg, which uses RF with regression instead of
classification to estimate the PAR10 of a solver for a new instance. RF-reg picks the solver of
the portfolio with lowest predicted PAR10. Closed gap and speedup have similar definitions,
with the main difference that the speedup does not take into account the SBS performance
and does not allow negative scores. Therefore, it is not surprising that the closed gap and
speedup results are similar, apart from SUNNY-original and autofolio, which swap their
position, and the RF score, which is now positive and not so far from the other approaches.
Instead, with the incomplete score ASAP and RF revert their positions similarly to what
happens with the MZNC score. This happens because these two metrics have a similar
approach: for each instance, the MZNC compares each solver against each other, while the
incomplete score compares each solver against the best one. Note that Tab. 2 reports an
adaptation of the MaxSAT incomplete score to PAR10. However, this metric makes much
more sense in its native context, i.e., for optimization problems (as we shall see in Sect. 2.3).
RF-reg is not competitive w.r.t. to the best approaches in terms of closed gap, speedup, and
incomplete score even though it is specifically trained with the PAR10 metric. If we look at
Fig. 4, showing the runtime distributions of the instances solved by ASAP and RF-reg, we
observe a trend similar to Fig. 2 where ASAP and RF are compared.

We believe that somehow a balance has to be found between the metrics of Tab. 2 when
we evaluate meta-solvers. We should not over-reward a meta-solver that, after all, is the one
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Figure 4: Runtime distribution of solved instances between ASAP and RF-reg.

with the lowest number of solved instances. On the one hand, we should not over-penalize
slight time differences, which we believe are acceptable for meta-solvers. For example, it is
natural for a meta-solver to spend some time in tasks such as pre-solving, feature selection,
or parallel computation. Also, for the speedup the choice of λ matters if m = PARλ. For
example, with PAR1 the best speedup approach would be sunny-as2 followed by autofolio,
while ASAP would drop from the first to the third position.

The rightmost column of Tab. 2 reports instead the average relative marginal contribution
(RMC) of each meta-solver over the different scenarios. This metric was used in the Sparkle
SAT Challenge 2018 (Luo, Vallati, & Hoos, 2018) and the Sparkle Planning Challenge
2019 (Luo et al., 2019) to rank individual solvers (i.e., planners) according to the magnitude
of their contribution to the VBS over the portfolio of all the participants. For each scenario,
if S is the set of meta-solvers we consider, the RMC of s ∈ S over the instances of I is given
by AMC(I,s)∑

s′∈S AMC(I,s′) where the absolute marginal contribution (AMC)9 of s is:

AMC(I, s) =

{
log10

PAR10(I,VBS\{s})
PAR10(I,VBS) if PAR10(I,VBS \ {s}) > PAR10(I,VBS )

0 otherwise

where VBS \ {s} is the virtual best solver of the portfolio S \ {s}.
If we look at the average RMC results of Tab. 2, the RF approaches dominate because

they are far better on the easiest instances. We claim that measuring the marginal con-
tribution with evaluation metrics such as the RMC or the Shapley value (Fréchette et al.,
2016) is interesting and should be considered when building a meta-solver, because in this
case we are interested in using a portfolio of individual solvers covering as many instances
as possible.

9. Note that according to the definition given in this paper, AMC is a relative metric.
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However, we must be careful when using the marginal contribution to assess the per-
formance, especially when evaluating meta-solvers. For example, the RMC metric may
lead to paradoxical results by over-penalizing approaches that work very well in general
but do not excel for a few instances. Consider for example a scenario with 100 instances
I = {i0, . . . , i99} and 2 meta-solvers A and B where A solves only i0 in 200 seconds while B
cannot solve i0, but solves i1, . . . , i99 in 1 second.10 In this setting, B clearly wins according
to all the metrics so far introduced. But if we introduce a new meta-solver C performing
the same as B, then A would be the new winner because the portfolios {A,C} and {A,B}
would perform better than {B,C}.

2.3 Optimization Problems

So far we have mainly talked about evaluating meta-solvers on decision problems. While
the MZNC score also considers optimization problems, for the closed gap or the speedup the
generalization is not as obvious as it might seem. Here using the runtime might not be the
right choice: often, a solver cannot prove the optimality of a solution, even when it actually
finds it. Hence, the apparent alternative is to consider just the objective value of a solution.
Nevertheless, this value needs to be normalized, and what bounds should we choose to do
so? Furthermore: how to reward a solver that actually proves the optimality of a solution?
Moreover, how to penalize solvers that cannot find any solution?

If solving to optimality is not rewarded, metrics such as the incomplete score of the
MZNC or the MaxSAT Evaluation, or the satisficing track score of the 2018 International
Planning Competition (International Planning Competition, 2018)11 can be used. More
elaborate scoring systems can combine together the quality of the best solution found, how
quickly any solution is found, whether a solution is optimal, and how quickly good solutions
are found. For example, Amadini, Gabbrielli, and Mauro (2016) proposed a relative metric
where each solver s gets a reward in {0} ∪ [α, β] ∪ {1} according to the objective value
obj(s, i, τ) of the best solution it finds, with 0 ≤ α ≤ β ≤ 1. If no solution is found then s
scores 0, if it solves i to optimality it scores 1, otherwise the score is computed by linearly
scaling obj(s, i, τ) in [α, β] according to the best and worst objective values found by any
other available solver on problem i. The choice of α and β determines respectively how
much to penalize (reward) a solver that does not find any solution (solves to optimality). If
α = 0 and β = 1, we somehow have an incomplete score where no reward nor penalization is
given. This may exacerbate small differences between solvers. Suppose indeed that s1, s2, s3
find minimal values 98, 99, 100 respectively. They would score 1, 0.5, 0 respectively, and in
particular s3 would score 0 points, the same score as a solver not finding any solution, despite
being only two units away from the best solution found by s1. In this case, metrics like the
incomplete score of the MaxSAT Evaluation would be more reasonable (the scores, in this
case, would be 1, 0.99, 0.97).

The above considerations apply to both solvers and meta-solvers. If we focus on meta-
solvers only, we emphasize the importance of tracking the sub-optimal solutions found by the
individual solvers along the search process. For example, none of the optimization scenarios

10. Example from https://pdfs.semanticscholar.org/a0a9/403524ae9f4bc07b683c0b2ac73975511c6d
.pdf

11. This track includes optimization problems where the goal is to minimize the length of a plan.
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of the ASlib report sub-optimal solutions. This is not ideal for different reasons. First of all,
we cannot consider the value of metrics such as the area score, adopted by the MZNC since
2017, which computes the integral of a step function of the solution value over the runtime
horizon. Most importantly, we cannot properly build and evaluate meta-solvers that schedule
more than one individual solver in the solving time window [0, τ), because we do not know
the best solution found by a solver at a time point t < τ . This is unfortunate since scheduling
different solvers is very common for a number of effective meta-solvers (Hula, Mojzísek, &
Janota, 2021; Gonard, Schoenauer, & Sebag, 2017; H. Hoos, Kaminski, Lindauer, & Schaub,
2015; Amadini, Gabbrielli, & Mauro, 2014; Malitsky, Sabharwal, Samulowitz, & Sellmann,
2013; Xu, Hutter, Hoos, & Leyton-Brown, 2008).

2.4 Randomness and Aggregation

We conclude the section with some remarks about randomness and data aggregation.
When evaluating a meta-solver s on scenario (I,S, τ), it is common practice to partition

I into a training set Itr, on which s “learns” how to leverage its individual solvers, and a
test set Its where the performance of s on unforeseen problems is measured. In particular,
to prevent overfitting, it is possible to use a k-fold cross validation by first splitting I into
k disjoint folds, and then using, in turn, one fold as test set and the union of the other
folds as the training set. In the 2015 AS challenge (Lindauer et al., 2019) the submissions
were evaluated with a 10-fold cross validation, while in the OASC in 2017 the dataset of
the scenarios was divided only into one test set and one training set. As also underlined by
the organizers of the competition, this is risky because it may reward a lucky meta-solver
performing well on that split but poorly on other splits.

Note that, so far, we have assumed deterministic solvers, i.e., solvers providing the same
outcome if executed on the same instance in the same execution environment. Unfortunately,
the scenario may contain randomized or parallel solvers, potentially producing different
results with high variability. In this case, solvers should be evaluated over a number of
runs, and particular care must be taken because the assumption that a solver can never
outperform the VBS would be no longer valid.

A cautious choice to decrease the variance of model predictions would be to repeat the
k-fold cross validation n > 1 times with different random splits. However, this might imply
a tremendous computational effort—the training phase of a meta-solver might take hours or
days—and therefore significant energy consumption. This issue is becoming an increasing
concern. For example, in their recent work Matricon, Anastacio, Fijalkow, Simon, and
Hoos (2021) propose an approach to early stop running an individual solver that is likely to
perform worse than another solver on a subset of the instances of the scenario. In this way,
fewer resources are wasted for solvers that most likely will not bring any improvement.

Finally, we spend a few words on the aggregation of the results. It is pretty common to
use the arithmetic mean, or just the sum, when aggregating the outcomes of a meta-solver
over different problems of the same scenario (e.g., when evaluating the results on the n · k
test sets of a k-fold cross validation repeated n times). The same applies when evaluating
different scenarios. The choice of how to aggregate the metric values into a unique value
should, however, be motivated since the arithmetic mean can lead to misleading conclusions
when summarizing a normalized benchmark (Fleming & Wallace, 1986). For example, to
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dampen the effect of outliers, one may use the median or the geometric mean to average
over normalized numbers.

3. Conclusions

The choice of different yet reasonable evaluation metrics can have opposite effects when
assessing the performance of (meta-)solvers. The comparison of meta-solver approaches
poses new challenges due to the diversity of the scenarios, which can remarkably vary in
terms of the number and type of problems, solvers, and solving time budget.

The goal of this research note is not to propose an unrealistic fits-all metric but to bring
attention to the problem of selecting a “stable” metric for comparing meta-solver approaches,
trying to avoid under- and over-penalties as much as possible. The take-away messages and
food for thought of this paper are the following:

• When selecting a metric for evaluating meta-solvers, we should first frame the target:
are we approaching the problem from the developer’s or the user’s point of view?
In the first case, where we focus on creating a meta-solver or even a “meta-meta-
solver” (Tornede, Gehring, Tornede, Wever, & Hüllermeier, 2022), metrics like the
marginal contribution can shed some lights on which (meta-)solvers work best on
what instances. Here an approach performing poorly overall but much better than
others over a few instances is considered valuable. However, this is not the focus of
this paper.

In this work, we put ourselves in the user’s shoes by considering meta-solvers as “black
boxes” for which the overall performance matters, rather than in its internals. In this
context, we should ask ourselves whether the performance metric should depend on
the outcome of other solvers (what we called relative metric) or not (absolute metric).
The choice here is arbitrary, but one thing to consider in both cases is the variability
of the scenarios where the meta-solvers are assessed. For example, for PARλ score,
care must be taken because the τ × λ penalty is susceptible to the timeout τ , which
can vary significantly across different scenarios.

• Relative metrics are particularly exposed to the risk of amplifying small “absolute”
performance variations into large differences, and it is fundamental to understand why
and when this can happen. This aspect is essential for meta-solvers, for which we claim
that a little time overhead should be negligible (e.g., due to feature selection or solvers’
selection and scheduling). Certainly, the primary goal of meta-solvers is closing the gap
between the single best solver and the virtual best solver of the portfolio of available
solvers. A crucial point of this paper is to mind about how this gap is measured.

• When dealing with optimization problems it is of paramount importance to know
the sub-optimal solutions found by individual solvers along the search. Indeed, many
effective meta-solvers rely on scheduling more than one solver for a limited time, and
without knowing the anytime performance of a solver it is impossible to assess the
performance of the schedule. Unfortunately, standard benchmarks like ASlib lack this
information. We believe that a community effort is needed to fill this gap.
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• Meta-solvers are typically built by learning on a training set and testing the learned
model on a disjoint test set. It is essential to use approaches like cross-validation to
increase the stability of the results, possibly using a randomly repeated cross-validation
to avoid rewarding “lucky” approaches overfitting on a particular training/testing set.
Also, the problem of aggregating the results over different runs should not be over-
looked: we naturally tend to consider the sum or the arithmetic mean to determine
the overall performance, but other choices may make (more) sense.
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