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In quantum many-body dynamics admitting a description in terms of noninteracting quasiparticles, the
Feynman-Vernon influence matrix (IM), encoding the effect of the system on the evolution of its local
subsystems, can be analyzed exactly. For discrete dynamics, the temporal entanglement (TE) of the
corresponding IM satisfies an area law, suggesting the possibility of an efficient representation of the IM in
terms of matrix-product states. A natural question is whether integrable interactions, preserving stable
quasiparticles, affect the behavior of the TE. While a simple semiclassical picture suggests a sublinear
growth in time, one can wonder whether interactions may lead to violations of the area law. We address this
problem by analyzing quantum quenches in a family of discrete integrable dynamics corresponding to the
real-time Trotterization of the interactingXXZ Heisenberg model. By means of an analytical solution at the
dual-unitary point and numerical calculations for generic values of the system parameters, we provide
evidence that, away from the noninteracting limit, the TE displays a logarithmic growth in time, thus
violating the area law. Our findings highlight the nontrivial role of interactions, and raise interesting
questions on the possibility to efficiently simulate the local dynamics of interacting integrable systems.
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While computing the exact properties of many-body
quantum systems out of equilibrium remains a formidable
problem, the past decades have witnessed the development
of powerful numerical techniques allowing for accurate
approximations. This is especially true in one dimension,
where the dynamics can be simulated using algorithms
based on matrix-product states (MPSs) [1–7]. Even in this
case, however, the generic linear growth of the entangle-
ment entropy [8,9] poses a major obstacle for the MPS
representation of the time-evolving state [7].
When one is interested in the dynamics of local

observables, it is natural to expect that much of the
information encoded in the wave function is irrelevant,
and that alternative approaches can be devised retaining
only the data needed to reconstruct the local physics. A
promising idea in this direction was put forward in Ref. [6]

(see also Refs. [10–12]), which proposed an MPS algo-
rithm to describe the dynamics induced on local subsys-
tems. Crucially, the efficiency of the method is insensitive
to the growth of the standard entanglement entropy.
Instead, it is related to the so-called temporal entanglement
(TE) [13], which is naturally understood as the entangle-
ment generated along a space-time rotated direction [6].
This approach has recently received renewed interest in
connection to the study of space-time dualities in Floquet
kicked Ising chains [14,15] and dual-unitary quantum
circuits [16], see Refs. [17–30]. In addition, similar ideas
motivated related constructions exploiting space-time
rotation in generic quantum-circuit dynamics [31–36].
Recently, the approach developed in Ref. [6] has been

understood in more physical terms based on the so-called
Feynman-Vernon influence matrix (IM) approach [13],
where one views the system as an environment for its
local subsystems. Complete information on the local
dynamics is encoded in the IM, which can be thought of
as a wave function in a multitime Hilbert space. The TE is
the bipartite entanglement entropy of the IM.
For time-discrete evolution, it has been argued that the

scaling of the TE provides valuable information about the
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nature of the dynamics [37–39], displaying, for instance, a
slow growth in many-body localized phases [39].
Still, despite a few interesting examples [17,41–44], our
understanding of the TE scaling remains largely
incomplete.
As an exception, a detailed characterization of the TE

was achieved for noninteracting systems, as exemplified
for infinite-temperature states in the transverse-field kicked
Ising chain [37]. Here, the IM was computed analytically,
displaying a Bardeen-Cooper-Schrieffer-like structure, and
the corresponding TE entropy was shown to obey an area-
law scaling.
Since the analysis of Ref. [37] relies on a quasiparticle

description, it is natural to ask about the fate of the TE area
law in the presence of integrable interactions, preserving
the stable quasiparticles. Besides its interest per se, this
question has implications on the possibility to efficiently
simulate the (discrete) dynamics of interacting integrable
models, a task known to be hard from the analytical
viewpoint [45–47].
We tackle this question by studying a family of dynamics

corresponding to the Trotterization of the interacting XXZ
Heisenberg model [48,49]. We focus on quenches from
generic initial states, extending the setting of Ref. [37] to
nonequilibrium situations. Based on a quasiparticle picture
[8,50–54], we argue that the TE scaling is sublinear in time.
We provide evidence that, while the area law is preserved
for a large class of initial states in the noninteracting case,
the TE exhibits a typical logarithmic growth in the presence
of interactions, violating the area law. We conjecture
this to be a generic feature of interacting integrable systems,
and discuss some interesting questions raised by our
results.
The model.—We consider a spin-1=2 chain with L sites

and periodic boundary conditions. The discrete dynamics is
driven by U ¼ UoddUeven, with

Uodd ¼
YL=2

n¼1

U2n;2nþ1; Ueven ¼
YL=2

n¼1

U2n−1;2n; ð1Þ

where

Un;nþ1 ¼ e−iJxσ
x
nσ

x
nþ1

−iJyσ
y
nσ

y
nþ1

−iJ0ðσznσznþ1
−1Þ ð2Þ

is a two-site gate expressed in terms of Pauli matrices. We
denote by j0ij, j1ij the states in the local computational
basis. Unless stated otherwise, we will set Jx ¼ Jy ¼ J.
This model was introduced in Refs. [48,49] as a para-
digmatic example of an integrable, periodically driven spin
chain and can be thought of as a Trotterized XXZ
Heisenberg evolution. These Floquet dynamics can be
represented as a brickwork circuit, cf. Fig. 1(a).
For J0 ¼ 0, the model reduces to the XY spin chain,

mappable to free-fermion dynamics by a Jordan-Wigner
transformation, while for Jx ¼ Jy ¼ π=4 the circuit gen-
erated by repeated application of the Floquet operator U is
dual unitary [16]. For arbitrary J, J0, the system displays an
extensive number of local conservation laws [48,49] and
the Floquet spectrummay be obtained exactly via the Bethe
ansatz [55,56]. The corresponding quasiparticle structure
bears similarities to that of the well-known XXZ
Heisenberg Hamiltonian [55,57].
The quench protocol and the IM.—We study a quench,

where the system is initialized in product states (either pure
or mixed), and analyze the subsequent evolution in the
thermodynamic limit L → ∞. The IM formalism [13] may
be introduced starting from the time-evolved expectation
value Tr½ρðtÞOj� ¼ Tr½ρ0ðU†ÞtOjU t� of a local observable
Oj at site j. Taking for simplicity an initial state

ρ0 ¼⊗k ρ
ðkÞ
0 , the parts of the system to the left and right

of j will be treated as environments. The IMs associated

(a) (b)
(c)

FIG. 1. (a) A system of L qubits is initialized in a product state and evolved via a brickwork quantum circuit, with two-site gate defined
in Eq. (2). “Folding” the circuit, the left and right IMs determine the evolution of local subsystems. Fixing a site j, the Floquet operator
decomposes into U ¼ U intUE, cf. the main text. In the figure, U int consists of the highlighted gates, while the gray and white gates are
part of UE. The operator T̃ defines the dual transfer matrix. (b) Cartoon of the quasiparticle picture for the TE. After folding, backward
and forward world lines for each quasiparticle are superimposed, leading to the prediction of sublinear growth for the TE. (c) Growth

of the TE for the noninteracting case. In the plot we set Jx ¼ 0.3; Jy ¼ 0.5; J0 ¼ 0, while the initial state is ρ0 ¼ ⨂kρ
ðkÞ
0 , with

ρðkÞ0 ¼ e−βσ
z
k=Z and Z ¼ 2 cosh β.
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with them arise from integrating out the environment
degrees of freedom, treating the trajectory of spin j as
an external parameter. Focusing on the right environment
k > j, we can write down the IM as a Keldysh path integral,
where forward and backward spin trajectories are “folded”
on a closed time contour. We introduce a subsystem-
environment decomposition U ¼ U intUE, where U int is
the gate acting on spins j and jþ 1, and UE acts only
on spins k > j, which can be done in a natural way
exploiting the brickwork structure, cf. Fig. 1(a). Defining
the partial matrix elements of U int as the operators
½U int�s;σ ¼ ½Uj;jþ1�sσ acting on spin jþ 1 only (where s,
σ are the input and output states of spin j), the IM jF ti is
the vector with coordinates depending on the trajectories
fs�τ ; σ�τ g as

F t½σ�τ ; s�τ � ¼ TrEð½U int�sþt ;σþt UE…UE½U int�sþ
1
;σþ

1

× UEρ
E
0U

†
E½U†

int�σ−
1
;s−
1
U†
E…U†

E½U†
int�σ−t ;s−t Þ; ð3Þ

where TrE ≡ Trk>j and ρE0 ≡ ⊗
k>j

ρðkÞ0 , cf. Fig. 1.

The IM of a longer environment can be computed from
that of a shorter one, leading to an exact self-consistency
equation in the thermodynamic limit [6,13]. As depicted in
Fig. 1, this can be formalized by introducing a dual transfer
matrix T̃ generating the evolution in a “rotated direction”:
the self-consistency equation reads T̃jF ti ¼ jF ti
[6,10,13] and completely determines jF ti.
The TE and the quasiparticle picture.—The quantity of

interest in this Letter is the TE entropy, denoted by SτðtÞ.
In order to define it, we consider a bipartition of the
multitime Hilbert space of spin trajectories, cut into two
regions with time labels 0 ≤ t0 ≤ τ and τ þ 1=2 ≤ t00 ≤ t.
Here t0; t00 ∈ ð0; tÞ are half integers. The TE is the von
Neumann entanglement entropy [58] of the state jF ti
associated with this bipartition.
We recall that the growth of the standard entanglement

entropy after a quantum quench in integrable systems is
captured by a well-known quasiparticle picture [8,50–54].
In essence, one postulates that the quench can be modeled
as a process creating at each point in space uncorrelated
pairs of entangled quasiparticles spreading through the
system with opposite momenta. Given two disjoint regions
A and B, their entanglement then grows proportionally to
the number of pairs with one quasiparticle in A and the
other in B. When supplemented with model-dependent
data, this results in a quantitative prediction for the linear
growth of the entanglement entropy, which has been proved
analytically for noninteracting chains [50] and extensively
tested numerically in interacting models [53,54,59–61].
Heuristically, we may apply this picture to the TE,

cf. Fig. 1(b). Now for each pair we have to keep track
of both the forward and backward evolution. Although
these trajectories are correlated, they end up being

superimposed in the folded spacetime. As a consequence,
given a “space slice,” all correlated quasiparticles occupy
the same temporal position on the Keldysh contour and
quasiparticles are not able to transport entanglement at
different time sites. One concludes that no TE is generated
between disjoint temporal regions after the quench [62].
A similar heuristic argument already appeared in

Ref. [6]. However, there it was stated in terms of non-
interacting localized excitations and supported by the
analysis of a circuit of swap gates [10]. In contrast, we
insist that the picture presented here is in terms of the stable
collective quasiparticles of integrable models. As such, it is
expected to hold in the scaling limit of large times and to
only provide predictions for the leading-order behavior of
the TE. That is, the above argument suggests that the TE in
integrable systems must asymptotically grow sublinearly
in time.
This prediction is consistent with the TE area law scaling

found in Ref. [37] for the infinite-temperature kicked Ising
chain

maxτ½SτðtÞ� ≤ c; ∀ t; ð4Þ

where c is a constant. This result was derived by mapping
the system to noninteracting fermions and constructing a
gapped quasilocal parent Hamiltonian for jF ti. The area
law (4) has been numerically confirmed exploiting a
covariance-matrix approach for efficient evaluation. A
similar analysis can be carried out in our model for
J0 ¼ 0, for which Eq. (1) is mapped onto a free-fermion
evolution. In addition, although Eq. (4) was originally
shown for infinite-temperature states [37], the covariance-
matrix approach can be generalized to any Gaussian initial
state [67], allowing us to confirm Eq. (4) for different
values of Jx, Jy, and various quenches. An example of our
data is shown in Fig. 1(c).
Next, our goal is to test the prediction of the quasiparticle

picture and scaling (4) in the presence of interactions. We
provide evidence that, while the TE growth is indeed
sublinearly in time, interactions bring about logarithmic
violations of the area law.
Exact IM at the dual-unitary point.—In principle,

integrability allows one to diagonalize the rotated transfer
matrix T̃ via the Bethe ansatz and obtain an explicit
expression for the IM [72,73]. However, the resulting wave
function is too complicated, and it is not known how to
extract the corresponding entanglement.
In order to get some analytical insight, we consider

J ¼ π=4, for which the dynamics is dual unitary [16].
While in this case the TE is vanishing for a class of fine-
tuned initial states [17], here we are interested in its
behavior for generic ones. To be concrete, we consider a
product state jΨ0i ¼ jþi⊗L, with jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

,
although our results generalize to arbitrary two-site shift
invariant states jΨ0i ¼ jψi1;2 ⊗ jψi3;4 ⊗ � � � ⊗ jψiL−1;L.
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The Bethe ansatz description remains nontrivial at
J ¼ π=4 [55]. Nonetheless, the form of the gate in
Eq. (2) becomes simple, allowing us to obtain an exact
MPS expression for the IM. Interestingly, we do this
avoiding Bethe ansatz techniques and relying instead on
methods borrowed from analytical tensor-network theory
[43,68]. We consign the details to the Supplemental
Material [67], while here we simply report the final result
of our analysis. Setting J0 ¼ π=4þ K, we find that the left
IM is

hF tj ¼ hvjA½1�B½2�A½3�B½4�…A½2t−1�jwi: ð5Þ

Here, A, B are tensors with four physical indices labeled by
00,01,10,11, and bond dimension 2tþ 1. The correspond-
ing matrices are defined by the elements ½A00�α;β¼
δα;β cos½2Kα�, ½A01�α;β¼δ1;α−β cos½2Kðα−1Þ�, ½A10�α;β¼
δ1;β−αcos½2Kβ�, ½A11�α;β¼½A00�α;β, and ½B00�α;β ¼
δα;β exp½2Kiα�, ½B11�α;β ¼ δα;β exp½−2Kiα�, ½B01�α;β ¼
½B10�α;β ¼ 0. Here α; β ¼ −t;−ðt − 1Þ;…; t. In addition,
the boundary vectors are defined by the elements jviα ¼
δα;0 and jwiα ¼ 1. A similar expression holds for the right
IM [67].
As an immediate consequence, we obtain

maxτ½SτðtÞ� ≤ lnð2tþ 1Þ ∼ lnðtÞ; ð6Þ

yielding a rigorous proof for the sublinear growth of the TE.
Here we used that the bipartite entanglement entropy of an
MPS with bond dimension D is bounded by lnD [7].
Despite the simplicity of the solution, the TE displays
interesting features. First, we find that the asymptotic
behavior at large times is not continuous as a function
of K. In order to see this, we take K ¼ ðnπ=mÞ, with n, m
coprime integers. In this case, it is easy to see that the MPS
(5) can be compressed to one with finite bond dimension:
because of the periodicity of the trigonometric functions,
the infinite matrices A½i� and B½i� can be truncated to the first
m lines and columns, so that the TE is bounded. However,

this compression is not possible when K=π is irrational,
suggesting a logarithmic growth.
In order to verify this, we evaluated numerically the TE

for irrational values of K=π, which can be done efficiently
since the MPS form of the IM is known exactly. An
example of our data is reported in Fig. 2(a), providing
evidence of a logarithmic growth. We also show the TE
corresponding to rational values approximating K=π [74].
In other cases, we observe that the TE might display
extremely long initial plateaux, which we attribute to the
vicinity of K=π to rational numbers with small denom-
inator, see Ref. [67]. This, in general, makes it challeng-
ing to extrapolate the asymptotic behavior from
finite-time data. Therefore, while the upper bound (6)
is rigorous, given the highly irregular behavior of the TE
at the dual unitary point, our numerical evidence should
be taken cum grano salis in this case. Still, for the
accessible timescales, our data consistently point to an
indefinite growth of the TE for generic J, thus violating
the area law [75].
Numerical study for generic interactions.—Away from

the dual-unitary point, the IM may be obtained using MPS
numerical methods. Following Refs. [6,10,13], we re-
present T̃ as a matrix product operator (MPO), and compute
its leading eigenvector using either the density-matrix
renormalization group (DMRG) [7], or power methods
[6]. In order to push the available simulation times, we
focus on initial states displaying Uð1Þ symmetry, allowing
us to enforce it explicitly in the local tensors [76]. Finally,
throughout our simulations we used the bond dimension D
as a control parameter, checking convergence with respect
to it.
We first consider the infinite-temperature state for differ-

ent values of J, J0. Away from J ¼ π=4, we find no
evidence of a TE area law for rational values of K=π. In
general, we observe an initial linear increase of the TE,
followed by an eventual logarithmic growth. Our data are
shown in Fig. 2(b): for the available times, curves corre-
sponding to increasing D are seen to converge to a straight
line in logarithmic scales.

(a)

(b) (c) (d)

FIG. 2. Maximum TE Smax ¼ maxτ½SτðtÞ� as a function of time for different values of Jx ¼ Jy ¼ π=4þ ϵ and J0 ¼ π=4þ K. (a) TE at
the dual-unitary point ϵ ¼ 0 and K=π ¼ lnð2Þ, quenching from jΨ0i ¼ jþi⊗L. The plot is obtained evaluating the entanglement entropy
of the analytical MPS solution (5). We also show the TE for rational values of K=π approximating ln(2). (b) TE at ϵ ¼ 0.05, J0 ¼ 1 for
the infinite-temperature state. (c)–(d) Same plot for the Néel state jΨ0i ¼ j01i⊗L=2. The parameters are J0 ¼ 1 and ϵ ¼ 0.05 (c),
ϵ ¼ 0.08 (d) Dotted lines are a guide to the eye to emphasize the logarithmic growth.
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Next, we turn to the TE from non-equilibrium initial
states. In order to preserve U(1) symmetry, we have chosen
the Néel state jΨ0i ¼ j01i⊗L=2. Here we observe that the
TE is large compared to the infinite-temperature state and
increasing as we move away from the dual-unitary point.
The TE is not symmetric around t=2, with its maximum
generally attained at later times between t=2 and t. Its
precise location varies with the initial states and parameters.
Our numerical data are shown in Fig. 2. Although simu-
lation times are limited, we observe a convincing loga-
rithmic growth emerging after an initial short-time regime.
Altogether, our results consistently point to a typical
logarithmic violation of the area law in the presence of
interactions, which we conjecture to be a general feature of
interacting integrable systems.
Outlook.—We have studied the TE in integrable discrete

dynamics. Starting from a heuristic quasiparticle picture
and based on analytical and numerical evidence in the XXZ
Heisenberg model, we have put forward that the TE
generically grows logarithmically in time, violating the
area law scaling away from the noninteracting regime.
Our findings raise several questions. First, it would be

interesting to put our conjecture on rigorous grounds away
from the dual-unitary point. From the computational point
of view, instead, it would be important to understand
whether and how the sublinear growth of the TE may be
exploited for an efficient computation of the IM and its
approximation in terms of MPS.
A natural question pertains to the relation between the

growth of the TE and the operator-space entanglement
entropy (OSEE) of local observables [77,78]. In fact, the
latter was also conjectured to grow logarithmically in
integrable systems [78–80]; see Refs. [21,22,81–83] for
a proof in special cases. However, at the dual-unitary point
of Eq. (2), the OSEE was shown to satisfy an area law [22].
Therefore, our results suggest that the OSEE is not directly
related to the TE: this is consistent with the intuition that
the IM bears information beyond the Heisenberg evolution
of local observables, see, e.g., Refs. [42,43].
Finally, while we have focused on discrete dynamics, it

would be interesting to study the Trotter limit of continu-
ous-time evolution. Preliminary results suggest that the TE
could be vanishing in this limit, similarly to the non-
interacting case studied in Ref. [37]. This would indicate
that a continuous MPS ansatz [84,85] could be successfully
employed in this limit.
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