
Quantum Circuits Assisted by Local Operations and Classical Communication:
Transformations and Phases of Matter

Lorenzo Piroli ,1,2 Georgios Styliaris,1,2 and J. Ignacio Cirac1,2
1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

2Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Mnchen, Germany

(Received 14 April 2021; accepted 26 October 2021; published 23 November 2021)

We introduce deterministic state-transformation protocols between many-body quantum states that can
be implemented by low-depth quantum circuits followed by local operations and classical communication.
We show that this gives rise to a classification of phases in which topologically ordered states or other
paradigmatic entangled states become trivial. We also investigate how the set of unitary operations is
enhanced by local operations and classical communication in this scenario, allowing one to perform certain
large-depth quantum circuits in terms of low-depth ones.
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Recently, we have witnessed the formation of close
connections between quantum information theory (QIT)
and quantummany-body physics (QMBP). A potential area
of common interest among the already established ones is
the classification of quantum states and operations. For
instance, in QITone is interested in states that are related by
local operations and classical communication (LOCC)
since entanglement is seen as a resource and those
operations do not increase it [1]. In QMBP, instead, one
is interested in the phases of matter that are dictated by local
(unitary) transformations [2–6] since those are the ones
typically occurring in nature. Despite the apparent simi-
larities, the goals and methods in these fields are very
different. First, the notion of locality is not the same. In
QIT, there is no underlying geometry, so QIT usually refers
to operations that act on a qubit (or subset of qubits)
independent of their location. In QMBP, instead, there is an
underlying geometry (typically a lattice), and locality refers
to operations or Hamiltonians acting on subsystems close
to each other. In addition, in QIT measurements and
communication are allowed, while these are not tradition-
ally considered in QMBP scenarios (although, recently,
much attention has been devoted to unitary dynamics in
many-body systems subject to repeated measurements; see,
e.g., [7–13]).
The advent of noisy intermediate-scale quantum devices

[14] has attracted the interest of the QIT and QMBP
communities, providing a unique framework to share

methodologies and pursue common goals. Those devices
operate quantum circuits (QCs), where quantum gates act
on nearest neighbors according to some lattice geometry.
Additionally, single qubit measurements can be performed
and local gates applied depending on the outcomes. Thus, it
is very natural to consider the classification of states, phases
of matter, or actions in general under a new paradigm that
includes both the local operations appearing in QMBP and
the LOCC of QIT. This has clearly practical motivations:
for instance, accounting for LOCC could improve the
efficiency of recent preparation protocols of topologically
ordered states with quantum devices [15], possibly scaling
to a larger number of qubits. At the fundamental level, this
problem provides a common ground for QIT and QMBP,
with the potential to motivate a fruitful cross fertilization
of ideas.
In this work, we establish a framework to address this

question. We consider state transformations and unitary
operations via finite-depth QCs assisted by LOCC, high-
lighting how this leads to new possibilities. We show that
paradigmatic examples, such as the toric-code (TC) [16],
the Greenberger-Horne-Zeilinger (GHZ), and W states
[17,18], appear in the trivial phase. Furthermore, we
provide a full classification of phases in 1D in the context
of matrix product states (MPS) [19–21], extending that
analyzed in [2,22]. For operations, LOCC enhances the
potential of QCs, enabling the implementation of unitary
transformations that would require complex QCs, which
may become useful in the design of future quantum
computers.
Quantum circuits and LOCC.—We consider spins

arranged over an N × � � �N≕ΛN;D regular lattice in D
spatial dimensions. The associated Hilbert space is
H ¼ H⊗M

d , with M ¼ ND spins. The local space is Hd,
has dimension d, and we will call fj0i;…; jd − 1ig the
computational basis. We denote by U the set of unitary
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transformations acting on the spins. We begin by intro-
ducing the class of QCs as the operators V ∈ U that are
decomposed as a sequence of unitaries V ¼ Vl…V2V1,
where each “layer” Vn contains quantum gates acting on
disjoint pairs of nearest-neighbor spins [23]. We call l the
circuit depth.
Definition 1 (depth-l quantum circuits): QCl ⊂ U is

the set of unitaries that can be expressed as quantum
circuits of depth l.
In the context of QIT, it is often useful to extend certain

operations to include extra resources [24]. Here, we
consider adding ancillas (initialized in a product state) of
identical Hilbert space Hd to each lattice site. We then
introduce the set of local unitaries (LU), denoted by LU, as
follows: U ∈ LU ⊂ U if U ¼⊗M

i¼1 ui, where ui acts only
on the ith local spin and its associated ancillas. We will
consider ancillas and local unitaries as “free resources,” i.e.,
we will be allowed to add as many ancillas as needed and
perform arbitrarily many local unitary operations.
When ancillas are available, we may modify the action of

V ∈ QCl by adding local operations between single layers
of unitaries, that is, V 0 ¼ UlVl…U2V2U1V1U0, where
Un ∈ LU. Note that, in general, V 0 is not a unitary operator
on H since Un also acts on the ancillas. Finally, we will
consider an additional extension of the allowed operations,
including LOCC: after a QC (which may include additional
ancillas), we allow for local (orthogonal) measurements on
the ancillas, and LU depending on the outcomes of the
measurements, which are classically communicated among
all the qudits. Classical communication will always be
considered a “free” operation.
State transformations with QCs and LOCC.—The addi-

tion of measurements gives rise to randomness. Thus, by
adding LOCC to QCs, it might seem difficult to extend the
class of states that can be prepared deterministically, but it
is indeed possible. This is not surprising since in the context
of QIT there are several instances where measurements, if
followed by LOCC, can lead to deterministic transforma-
tions [25]; see, e.g., [26–28].
We address the question: when can a product state j0i ¼

j0i⊗M ∈ H be (deterministically) transformed into another
one, jφi ∈ H, using only QCs or QCs together with
LOCC? For the first case, there exists U ∈ QCl such that
jφi ¼ Uj0i. For the latter, we restrict ourselves to the
following scheme. We first apply a depth-l circuit, with
possibly local unitaries acting in between different layers
of gates, as explained previously. Then, we sequentially
measure each ancilla ai in some orthonormal basis, fjφkiiig
and apply U ∈ LU depending on the outcomes of all
previous measurements (so, overall, we perform up to M
measurements and apply M LU). Note that in this protocol
we perform a single measurement per site. One could also
define a more general scheme with multiple rounds of
LOCC [29]. While this would not change our conclusions,
we restrict ourselves to the above definition.

Definition 2 (transformations under QCs and LOCC):
We say that a state jφi can be prepared by X ¼ QCl, QCccl
if it can be obtained, respectively, byU ∈ QCl orU ∈ QCl
together with LOCC, using the above procedures. We will

write j0i!X jφi.
Let us analyze the power of LOCC. For that we give a

simple necessary condition for transformations using QCs.
In the following, we define the distance between two
regions A;B ⊂ Λ as dðA; BÞ ¼ mini∈A;j∈Bdði; jÞ, where
we denote by dði; jÞ the minimal number of edges con-
necting the vertices i and j in the graph associated with the
lattice Λ.
Proposition 1: Let A; B ⊂ Λ with dðA;BÞ > 2l and

XA, YB operators supported on A and B, respectively. If

j0i!QCljφi, then

hφjXAYBjφi ¼ hφjXAjφihφjYBjφi: ð1Þ

See [30] for a proof. This proposition is useful to prove
that some states cannot be prepared by QCs, as we now
exemplify.
Example 1 (the GHZ and W states): Let us consider

qubits in a 1D lattice (M ¼ N) with periodic boundary
conditions (PBC). The GHZ and W states are [17,18]

jGHZi ¼ 1ffiffiffi
2

p ðj0i⊗N þ j1i⊗NÞ; jWi ¼ 1ffiffiffiffi
N

p
XN

k¼1

σ−k j0i⊗N:

ð2Þ
For both states, it is simple to find XA, YB with dðA;BÞ ¼
N=2 such that Eq. (1) is not verified. Let us show that they
can be prepared by QCcc2. For jGHZi, we attach one
ancilla per site, except for the first one. We define a unitary
acting on the nth qubit and the nþ 1 ancilla as unj0isn ⊗
j0ianþ1

¼ jΦþisn;anþ1
(jΦþisn;anþ1

: maximally entangled
Bell state) as well as U ¼ ð⊗N−1

n¼1 unÞ ⊗ vN , where v ¼
ð1 − iσyÞ= ffiffiffi

2
p

. ApplyingU to j0is;a (which can be donewith
a QC of depth 2), it generates ð⊗N−1

n¼1 jΦþisn;anþ1
Þ ⊗ jþisN ,

where jþi ¼ ðj0i þ j1iÞ= ffiffiffi
2

p
. This state can be transformed

into jGHZi viaLOCC.To see this, we apply a local controlled
NOT gate between each qubit and its ancilla, yielding
jΦi ¼ P

fkng jk1is1ð⊗N
n¼2 jknisn ⊗ jkn−1 ⊕ knianÞ, where

kn−1 ⊕ kn ¼ kn−1 þ kn (mod 2), and measure all ancillas
in the computational basis. Given the output fkjgNj¼2, we

finally apply ⊗N
n¼2 ðσxnÞ

P
n
m¼2

km to the spins. With a similar

construction, we can also prove j0i⟶QCcc2jWi [30].
We mention that related constructions for the GHZ state

appeared before [48]; see also [49].
Example 2 (fixed points in 1D): In order to show the

power of QCcc, we consider the fixed points of the
renormalization group procedure introduced in Ref. [50],
representing a very general class of states in 1D. To define

PHYSICAL REVIEW LETTERS 127, 220503 (2021)

220503-2



them, we take a chain of N sites with PBC, where each site
is associated with three qudits: Cn, Ln, and Rn (center, left,
and right, respectively). Up to LU transformations, renorm-
alization group fixed points take the form [21]

jΨi ¼
XB

k¼1

αk ⊗N
n¼1 jkiCn

jψiRn;Lnþ1
; ð3Þ

where B ∈ N, αk ∈ C, while jψiRn;Lnþ1
is an entangled state

between Rn and Lnþ1. Let us show that Eq. (3) can be
prepared by QCcc4. We introduce ancillas C0

n, L0
n, R0

n and
create maximally entangled states between R0

n and Lnþ1

with a depth-2 QC. Next, we prepare the qudits Cn in
the state

P
k αk ⊗n jkiCn

, which can be done by QCcc2,
using ancillas C0

n and following the steps of Example 1.
Using LU, we then prepare the state jψiL0

n;Rn
between

ancillas L0
n and Rn, conditioned to the state of Cn,

i.e., jkiCn
j0iL0

n
j0iRn

↦ jkiCn
jψiL0

n;Rn
. Finally, we use the

entangled pairs between R0
n and Lnþ1 to teleport L0

n to
Lnþ1, which can be done via LOCC [26].
Example 3 (the toric code): Finally, let us consider

qubits in a 2D lattice with PBC (M ¼ N2), where i ∈ Λ
has two coordinates, i ¼ ði1; i2Þ, and focus on the toric-
code state jTCi [16]. For N even, the TC can be defined by
placing the qubits at the vertices of a square lattice. Let P
be the set of all plaquettes composed of four contiguous
vertices forming a square.We divide them into two types,PA
andPB, following a chessboard pattern. For eachA plaquette
p ∈ PA, we introduce Xp ¼⊗i∈p σxi , and define jTCi ∝Q

p∈PA
ð1þ XpÞj0i⊗M. We also set Sαj ¼⊗N

k¼1 σ
α
j;k for

j ¼ 1;…; N. It is well known that the TC can not be
prepared by QCl for l independent of N [51]. This can
also be seen by noticing that Eq. (1) is not satisfied choosing

XA ¼ Sx1, YB ¼ SxN=2þ1. Let us show j0i⟶QCcc16 jTCi. We do
this following [52] (see also [53]). For each p ∈ PA, we
include an ancilla, ap, in the vertex at the upper-left corner
of p. Next, we define the unitary V ¼ Q

p∈PA
Vp, with

Vp ¼ 1
2
½ð1þ XpÞ ⊗ 1ap þ ð1 − XpÞ ⊗ σxap �. Vp may be

implemented using8 nearest-neighbor gates: (i)we introduce
4 additional ancillas at the upper-left corner ofp, denoted by
Q; (ii) we swap themwith the qubits at the vertices ofp (with
4 gates); (iii) we apply (locally) Vp to the five ancillas inQ;
(iv)we swapback thequbits inQwith thevertices ofp. Then,
dividingPA into two subsets,P0

A,P
00
A, such that all plaquettes

in each subset share no common qubit, we can implement V
by acting in parallel on all p ∈ P0

A, then on all in p ∈ P00
A,

resulting in a QC of depth 16. After applying V, we measure
σz in all the ancillasapwith outcomes kp ¼ �1. The fact thatQ

p∈PA
Xp ¼ 1 implies that the product of all kp equals 1

[54]. The resulting state is

jψki ∝
Y

p∈PA

ð1þ kpXpÞj0i⊗M: ð4Þ

Finally, it is easy to see that given a set of kp ¼ �1

whose product equals 1, it is always possible to find Zk,
a product of σz operators, such that Zkð1þ kpXpÞZk ¼
ð1þ XpÞ, ∀p. Thus, by applying the LU Zk we recover
the TC deterministically.
In summary, LOCC enlarges the set of states that can be

prepared deterministically. One could wonder whether all
states may be realized in this way. This is not the case, and
only states satisfying an entanglement area law, similar to
that characterizing ground states of local Hamiltonians
[55], may be prepared. To see this, we have to consider a
sequence of states fjψiMgM on lattices of increasing size.
We assume that jψiM is prepared by QCccl, where l is
independent of M, and denote by Sψ0 ðA∶AcÞ the max
entropy between A ⊂ V and its complement Ac ¼ V=A,
which upper bounds the von Neumann entropy [24]. We
also call ∂A the boundary of A and denote by jAj the
number of qudits in A.
Definition 3 (entanglement area law): A sequence of

states fjψMigM obeys an entanglement area law if for all
A ⊂ V, SψM

0 ðA∶AcÞ ≤ cj∂Aj, where c is a constant inde-
pendent of M.
Proposition 2: Any sequence of states fjψMigM pre-

pared by QCccl (with l independent of M) satisfies an
entanglement area law. See [30] for a proof.
Phases of matter.—QCs appear naturally in the standard

classification of topological phases of matter [2–6]. Collo-
quially, for ground states of gapped, local Hamiltonians, it
is known that if two states are in the same phase (i.e., their
parent Hamiltonians are connected by a differentiable path
of gapped, local Hamiltonians), then they are mapped onto
one another by a “low-depth” QC. Inverting the logic, one
could use QCs to define equivalence classes. However,
some care must be taken: indeed if jψ2i ¼ Ujψ1i, and
jψ3i ¼ Vjψ2i with U;V ∈ QCl, then to transform jψ1i to
jψ3i may require an operation in QC2l, meaning that one
has to allow for the depth to change. One way to do this is
to define an equivalence relation between state sequences,
Ψ ¼ fjψMi ∈ HMg∞M¼M0

, for lattices of increasing size,
where M0 ∈ N: one can say that Ψ ∼Φ if ∃UM ∈ QCfðMÞ

such that jjjψMi −UMjφMijj⟶M→∞
0. Here, fðMÞ is a

function that grows sufficiently slowly in M. For example,
ground states of gapped, local Hamiltonians in the same
phase are equivalent by this definition choosing fðMÞ to
be a polylogarithmic function of M [56,57] (where one
also allows for a number of ancillas polylogarithmic inM);
see also Refs. [58–61].
We wish to extend this definition by replacing QCs with

QCcc (and without restricting to ground states). To do that,
we allow for approximate preparation protocols, where a
pure state may be mapped onto a mixed state ρ, as we now
explain [62]. A given preparation protocol in QCccl (where
ancillas are traced out at the end) defines a quantum
channel C [24]. If a pure initial state jφi can be mapped
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onto the (mixed) state σ for some C defined in this way, we

will write jφi !QCcclσ. Wewill also use the symbol QCccðkÞl to
denote transformations obtained by composing k channels
defined by preparation protocols in QCccl fCjgkj¼1. Then,
we may define an equivalence relation as follows. First,
given two sequences, Ψ, Φ, we write Ψ ↦ Φ if ∃ k ∈ N
and a sequence of (mixed) states fσMg∞M¼M0

, such that

jψMi⟶
QCccðkÞ

fðMÞ
σM and jjσM − jφMihφMjjj1⟶

M→∞
0, where

jj · jj1 is the trace norm. Here, analogously to the case
of QCs, we choose fðMÞ to be a polylogarithmic function
of M. Finally, we say that Ψ is QCcc-equivalent to Φ if
Ψ ↦ Φ and Φ ↦ Ψ. Note that this more complicated
definition is needed to ensure symmetry and transitivity
(which simply follows from the contractivity of the trace
norm).
Solving the full classification problem is expected to be

very hard. However, based on Example 2, we can give a
strong result in 1D, proving that all translational invariant
MPS with fixed bond dimension belong to the trivial
class [30].
Theorem 1: In 1D, all translational invariant MPS with

fixed bond dimension are in the same phase as the triv-
ial state.
A proof of this theorem is given in [30]. QCcc classes

are strictly larger than those in the standard classifica-
tion of topological phases, as exemplified by the TC.
In fact, it is natural to conjecture that the same is true for
all nonchiral topologically ordered states, although this
problem goes beyond the scope of this work. The
suggested classification is expected to have practical
ramifications in preparation protocols with noisy inter-
mediate-scale quantum devices, as states in the trivial
phase may be prepared efficiently with operations already
at hand: geometrically local gates and on-site measure-
ments. At the same time, from the fundamental stand-
point, QCcc provide a unified framework where the
locality-based classification of states in QMBP and QIT
meet.
Unitary operations.—It is known that allowing for

postselection processes the power of quantum computers
increases [63,64]. Postselection, however, has practical
limitations due to the large number of times that a
computation must be performed. Here, we take a different
point of view and ask whether, combining LOCC and QC,
one can implement “deterministically” a larger set of
unitary operations beyond QCs [25]. This is different from
the state-transformation protocols since now we want
unitary actions on all possible input states.
Let us now introduce a general scheme to implement

unitary operators that involves QCs and LOCC [65].
First, we prepare a state jϕia on the ancillas, using only
QCs and LOCC as in the state-transformation protocol
discussed before. Then, given an input state jψi, the
procedure consists of applying a depth-l quantum circuit

V (including ancillas and LU) to the pair system ancilla,
followed by LOCC. In particular, we consider operations

jψiU!α
s ð⊗k hαkjÞVsaðjψis ⊗ jϕiaÞ: ð5Þ

The subscripts s and a label system and ancilla, jαki is an
element of a local orthonormal basis for the ancillas, while
Uα

s ∈ LU, which might depend on the outcomes αk. We are
interested in the special cases where the action [Eq. (5)]
defines a unitary operation.
Definition 4 (LOCC-assisted quantum circuits):

QCccl ⊂ U is the set unitary operators that can be
implemented (deterministically) by a QC of depth l with
the help of ancillas using the protocol [Eq. (5)].

Note that in the above we also require j0i !QCccljϕi.
Trivially,QCl ⊆ QCccl. In fact, the inclusion is strict, as

we illustrate with a specific construction that, on the one
hand, ensures that the map [Eq. (5)] is unitary, while, on the
other, allows us to implement operators beyond QCs.
Before that, we need to recall two notions in QIT.
The first one is that of Clifford operators [66,67]. To
define them, we introduce the set Q of tensor products of
Pauli operators, i.e.,Q ¼ f⊗M

i¼1 σ
αi
i ; αi ¼ 0; x; y; zg, where

σ0j ¼ 1j. Then, U ∈ U is a Clifford operator if for any
s ∈ Q, U†sU ¼ s0 ∈ Q (possibly up to a factor). The
second one is that of locally maximally entangled states
[68]. They are defined as the states jφis for which there
exist LU that create a maximally entangled state between
the spins and the ancillas, i.e., there exist ui ∈ LU such that
jRi ¼⊗M

i¼1 uiðjφis ⊗ j0iaÞ fulfills traðjRihRjÞ ¼ 1s.
Now, our construction is as follows. First, we append one

ancilla per site, an, and prepare jϕia by QCccl. We require
that jϕi is a stabilizer state, i.e., the unique common
eigenstate of a set of commuting elements of Q. This
implies that jϕi is also locally maximally entangled [68].
Thus, adding one additional ancilla per site, a0n, there
exists V ∈ LU such that jRia;a0 ¼ Vjϕiaj0ia0 is maxi-
mally entangled. This implies that the map jψis ↦
dMs;a0 hΦþjRia;a0 ⊗ jψis equals the action of a unitary
operator U [69] (where jΦþis;a is the maximally entangled
Bell state between system s and ancillas a). Furthermore,
since jϕi is a stabilizer, one can choose V such that U is a
Clifford operator [30]. Then, for any input jψi,Ujψi can be
implemented deterministically using LOCC. To do this,
we perform a Bell measurement on the qubits sn and a0n.
This produces Uð⊗n σ

αnÞjψia, where αn depend on the
values of the measurement. Since U is a Clifford operator,
Uð⊗n σ

αnÞ ¼ wU, with w ∈ Q and hence w ∈ LU, so that
Ujψi is recovered applying w† ∈ LU.
Example 4 (the GHZ and TC unitaries): Consider the

GHZ state. It is a stabilizer state prepared by QCcc2, and
thus it may be used to implement a unitary operator. To see
this explicitly, starting from jGHZis, we first apply a single
phase gate to one of the state qubits. Then, we prepare a
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maximally entangled state with an ancillary system where
all ancillas are initialized in jþi by simultaneously apply-
ing controlled NOT gates to each system-ancilla pair (with
the system being the target), thus obtaining a state jRis;a. It
is easy to see that the action jψia0 ↦ dMa;a0 hΦþjRis;a ⊗
jψia0 corresponds to the unitary UGHZ ¼ ð1þ iσ⊗M

x Þ= ffiffiffi
2

p
.

Importantly, UGHZ is a Clifford operator and thus may be
implemented by LOCC. Also, UGHZ ∉ QCl for l < N
because U†σz1U is a string of Pauli matrices over the whole
system. Similarly, starting from the TC, we can construct a
unitary UTC ∈ QCcc16 such that UTCj0i is locally equiv-
alent to jTCi [30], implying that UTC ∉ QCl for l < N=4.
Outlook.—In this Letter, we have introduced a paradigm

to classify states and operations based on a notion of
locality inspired by both QIT and QMBP, arguing for its
fundamental relevance and potential practical importance.
Our work raises several questions. First, we have seen
examples of topologically ordered states in the trivial class,
but an obvious question is whether all representatives of
nontrivial phases may be prepared by QCcc. A similar
problem holds for chiral states, which we have not
addressed. Moreover, we have considered here QCs com-
posed of local gates; it is natural to wonder how our
conclusions are modified using nonlocal gates instead.
Finally, ideas related to those presented here may lead to a
classification for unitary operators: although this requires
getting around some subtleties, we expect that such a
classification will be different from the one for the
corresponding Choi-Jamiolkowski states [24]. We leave
these questions for future work.
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