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Abstract. In this paper we describe a heuristic for decomposing a directed graph
into factors according to the direct product (also known as Kronecker, cardinal or tensor
product). Given a directed, unweighted graph G with adjacency matrix Adj(G), our
heuristic aims at identifying two graphs G1 and G2 such that G = G1 ×G2, where
G1 ×G2 is the direct product of G1 and G2. For undirected, connected graphs it has
been shown that graph decomposition is “at least as difficult” as graph isomorphism;
therefore, polynomial-time algorithms for decomposing a general directed graph into
factors are unlikely to exist. Although graph factorization is a problem that has been
extensively investigated, the heuristic proposed in this paper represents – to the best
of our knowledge – the first computational approach for general directed, unweighted
graphs. We have implemented our algorithm using the MATLAB environment; we
report on a set of experiments that show that the proposed heuristic solves reasonably-
sized instances in a few seconds on general-purpose hardware. Although the proposed
heuristic is not guaranteed to find a factorization, even if one exists; however, it always
succeeds on all the randomly-generated instances used in the experimental evaluation.

1 Introduction

Decomposition of complex structures into simpler ones is one of the driving principles of mathemat-
ics and applied sciences. Everybody is familiar with the idea of integer factorization, a topic that is
actively studied due to its number-theoretic as well as practical implications, e.g., in cryptography.
The concept of factorization can be applied to other mathematical objects as well, such as graphs.
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Once the concept of “graph product” is defined, one may naturally ask whether a graph G can be
decomposed into the product of two (or more) smaller graphs.

Graph products are an active area of research because they are involved in a number of com-
puter science applications, such as load balancing in distributed systems [2], network analysis [11],
symbolic computation [4], and quantum computing [9]. The most common types of graph products
that have been investigated in the literature are: Cartesian product, Direct product, Strong product
and Lexicographic product. Of these, the Direct product, also known as Kronecker or Cardinal
product, is widely used and will be the focus of this paper. For example, the Kronecker prod-
uct of graphs has applications related to graph coloring, decomposition, embedding and match-
ing [1, 8], automata theory [5], concurrency modeling in multiprocessor systems [10] and computer
networks [11]. We use the symbol × to denote the direct product, e.g., G = G1 ×G2.

It has recently been shown in [3] that deciding whether an undirected, unweighted, non-bipartite
graph G is composite according to the direct product, i.e., whether there exist nontrivial graphs
G1, G2 such that G = G1 ×G2, is at least ”as difficult as” deciding whether two graphs are isomor-
phic (a graph is nontrivial if it has more than one node). More formally, the graph isomorphism
problem is polynomial-time many-one reducible to the graph compositeness testing problem (the
complement of the graph primality testing problem). A consequence of this result is that the graph
isomorphism problem for undirected, non-bipartite graphs is polynomial-time Turing reducible to
the primality testing problem. It is therefore unlikely that there exists a polynomial-time algo-
rithm for graph factorization according to the direct product, unless graph isomorphism is in P ,
i.e., graph factorization is graph isomorphism-hard.

The problem of graph factorization has been extensively studied [6] from the theoretical point of
view: mathematical properties of graph products are known, as well as factorization algorithms for
a few special cases. For example, it is known that prime factorization of an undirected, connected
and non-bipartite graph with n nodes and m edges can be found in time O(mn2) [7]. However,
in [3] it is shown that prime factorization of an undirected, unconnected, non-bipartite graph is
graph isomorphism-hard, suggesting that the lack of connectedness plays a major role in making
direct product primality testing and factorization harder.

Despite the large volume of theoretical work, the problem of graph factorization has not received
yet much attention from the experimental research community. Indeed, to the best of our knowl-
edge, no implementation of graph factorization algorithms for general directed graphs is available.
The problem is exacerbated by the fact that the existing algorithms only work on special kinds
of graphs, and it is not known whether they can be generalized to arbitrary directed graphs, or
whether different algorithms exist for general graphs. In this paper we begin to bridge the gap
between theory and practice by proposing a heuristic for direct-product factorization of general
graphs: given a directed, unweighted graph G with n nodes and two positive integers n1, n2 such
that n = n1 × n2, our algorithm looks for two nontrivial graphs G1, G2 with n1 and n2 nodes,
respectively, such that G = G1 ×G2, provided that such graphs exist. Our heuristic is based on
gradient-descent local search. As such, it is not guaranteed that it finds a solution, even if one
exists; however, we carried out a set of computational experiments that show that our algorithm
does find a valid solution quickly in many cases.

To the best of our knowledge, the heuristic described in this paper is the first computational
solution to the problem of factorization of general unweighted graphs, i.e., graphs whose structure
is not subject to any constraint.
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2 Notation and Basic Definitions

A directed graph G = (V,E) is described as a finite set V of nodes V = {v1, . . . , vn} and a finite
set of edges E ⊆ V × V , where an edge e ∈ E is an ordered pair e = (u, v), u, v ∈ V ; an edge of
the form (v, v) is called self loop or simply loop. Given a graph G, V (G) and E(G) are the set of
nodes and edges of G, respectively. We denote by G1∪G2 the disjoint union of graphs G1 and G2,
i.e., the graph with node set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2); disjoint means that
V (G1) ∩ V (G2) = ∅.

Four types of graph products have been investigated in the literature: Cartesian product, Direct
product, Strong product and Lexicographic product. In all cases, the product of two graphs G1, G2

is a new graph G whose set of nodes is the Cartesian product of V (G1) and V (G2):

V (G) = V (G1)× V (G2) = {(u, v) | u ∈ V (G1) ∧ v ∈ V (G2)}

For the Cartesian product G1 □G2, the edge set is defined as

E(G1 □G2) = {{{x, y}, {x′, y′}} | (x = x′ ∧ {y, y′} ∈ E(G2)) ∨ ({x, x′} ∈ E(G1) ∧ y = y′)}

For the Strong product G1 ⊠G2, the edge set is defined as

E(G1 ⊠G2) = E(G1 □G2) ∪ E(G1 ×G2)

For the Lexicographic product G1 ◦G2, the edge set is defined as

E(G1 ◦G2) = {{{x, y}, {x′, y′}} | {x, x′} ∈ E(G1) ∨ (x = x′ ∧ {y, y′} ∈ E(G2))}

In this paper we are concerned with the Direct product, also known as Kronecker or cardinal
product. The direct product of two graphs G1, G2 is denoted as G = G1 ×G2, where the edge set
is defined as

E(G1 ×G2) = {((x, y), (x′, y′)) | (x, x′) ∈ E(G1) ∧ (y, y′) ∈ E(G2)}

Figure 1 shows an example of the direct product of two graphs G1, G2.
The edge set of an unweighted graph G can be represented as an adjacency matrix Adj(G).

If G has n nodes, its adjacency matrix M = Adj(G) is an n× n binary matrix, where mij = 1 if
and only if (vi, vj) ∈ E. We denote the set of binary matrices of size n×m as Bn×m, B = {0, 1}.

The algorithm described in the paper relies on the fact that the direct product G1 ×G2 of two
graphs can be expressed in terms of the Kronecker product of their adjacency matrices [6, 14].
Given an n×m matrix B and a p× q matrix C, the Kronecker product A = B⊗C is an np×mq
matrix that is composed of n ×m blocks of size p × q, each block being the product of elements
of B and the whole matrix C:

A = B⊗C =


b11C b12C . . . b1mC
b21C b22C . . . b2mC
...

...
. . .

...
bn1C bn2C . . . bnmC

 (1)

Note that if B,C are binary matrices, then A = B⊗C will be as well. The relation between
the direct product of graphs and the Kronecker product of their adjacency matrices is expressed
by the following Lemma.
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Figure 1: Direct product G = G1 ×G2

Lemma 2.1 Given two directed, unweighted graphs G1 and G2, then

Adj(G1 ×G2) = P⊺ (Adj(G1)⊗Adj(G2))P

where P is a suitable permutation matrix.

We recall that a permutation matrix P ∈ Bn×n is a square binary matrix with exactly a single 1
on each row and column. In other words, the adjacency matrix of the direct product of G1, G2 is
equal to the Kronecker product of the adjacency matrices of G1 and G2, up to a rearrangement
(relabeling) of the nodes of the resulting graph G1 ×G2.

For example, for the graphs in Figure 1 we have:

Adj(G1) =

( 1 2

1 0 1

2 0 1

)
Adj(G2) =


a b c

a 0 1 0

b 1 1 0

c 0 1 0



Adj(G1 ×G2) =



1, a 1, b 1, c 2, a 2, b 2, c

1, a 0 0 0 0 1 0

1, b 0 0 0 1 1 0

1, c 0 0 0 0 1 0

2, a 0 0 0 0 1 0

2, b 0 0 0 1 1 0

2, c 0 0 0 0 1 0
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Symbol Meaning

B The set {0, 1}
Adj(G) The adjacency matrix of graph G
P Permutation matrix
× The direct graph product operator
⊗ The Kronecker matrix product operator
ϕ(AB,C) Metric that shows ”how well” A can be written as the Kronecker product

B⊗C (lower is better)

Table 1: Summary of notation.

In this case the permutation matrix is the identity matrix, since we are assuming the mapping
(1, a) → 1, (1, b) → 2, (1, c) → 3, . . . of nodes into indices. A different mapping would require
relabeling the nodes of G1 ×G2.

A nontrivial graph G is a graph with more than one node (|V (G)| > 1). We say that a graph G
is prime according to a given graph product ⊙ if G is nontrivial and G = G1 ⊙ G2 implies that
either G1 or G2 are trivial, i.e., one of them has exactly one node.

Finally, we introduce the concept of block matrix that will be used in the following to discuss
several subroutines of our heuristic.

Definition 2.2 Let us consider a binary matrix A made of dimB × dimB submatrices (or blocks)
Cij of size dimC × dimC each. Let µ be the average number of ones over all blocks1, and let sij
be the number of ones in Cij; we say that A is a block matrix if and only if for each block Cij:

sij =

{
x, if x > µ

0, otherwise

In other words, a block matrix is made of blocks such that each block is either entirely zero,
or has a number of 1s that is strictly above the average number of 1s over all blocks. Fore ease of
clarity, some examples of block matrices are provided in Figure 3f and in Figure 4c.

Table 1 summarizes the notation used in this paper.

3 A Heuristic for Direct Product Factorization

In this section we describe a heuristic for searching for a nontrivial decomposition G = G1 ×G2

of a directed, unweighted graph G. The heuristic is not guaranteed to find such a decomposition,
even when one exists. We assume that the size (number of nodes) of G1 and G2 is known; if this is
not the case, then by the definition of direct product it must hold that n = n1×n2 where n, n1, n2

are the number of nodes of G,G1, G2 respectively; therefore, both n1 and n2 must be nontrivial
divisors of n. Since the number of divisors of n is bounded from above by n, we can brute-force
all combinations of n1, n2, whose number grows polynomially w.r.t. n. Therefore, the algorithm
performance would be impacted by (at most) a polynomial factor in n.

The basic idea is to take advantage of Lemma 2.1 to find a suitable permutation matrix P so
that the (permuted) adjacency matrix of G is in block form and can therefore be written as the

1The average number of ones over all blocks is computed considering, for each block, the number of elements set
to one. Each of these values is then summed together and finally divided by the number of blocks.
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Kronecker product of two smaller matrices B and C; these matrices can then be interpreted as
the adjacency matrices of two graphs G1, G2 with the property that G = G1 ×G2. The problem is
equivalent to finding a graph G′ isomorphic to G such thatAdj(G′) = B⊗C; this is not surprising,
given the relationship between graph isomorphism and compositedness testing proven in [3].

One more ingredient is needed to complete the heuristic, i.e., a way to decide whether a binary
square matrix can be written as the Kronecker product of two smaller matrices. This is an instance
of the more general nearest Kronecker product (NKP) problem [13, 12]: given A ∈ Rm×n with
m = m1m2, n = n1n2, find B ∈ Rm1×n1 and C ∈ Rm2×n2 such that

ϕ(A,B,C) = ∥A−B⊗C∥ (2)

is minimized, according to some norm ∥ · ∥. If A is the Kronecker product of B and C, then
the minimum norm would be zero (ϕ(A,B,C) = 0). The NKP problem (2) can be solved by
computing a Singular Value Decomposition (SVD) of a suitably reshaped and permuted version of
matrix A (see [13] for details).

To recap: to decompose a directed, unweighted graph G with adjacency matrix M = Adj(G),
we need to find a permutation of M, say P⊺MP, and two square matrices M1 = Adj(G1) and
M2 = Adj(G2) of given sizes such that:

0 = ϕ(P⊺MP,M1,M2)

= ∥P⊺MP−M1 ⊗M2∥

Algorithm 1: Direct product decomposition

Input: A ∈ Bn×n, n = n1 × n2, K, tol
Output: P ∈ Bn×n, B ∈ Bn1×n1 , C ∈ Bn2×n2 or ”no solution found”
P = Identity matrix of size n× n;
repeat

for i = 1, . . . ,K do
Let Pi be obtained from P by exchanging a random pair of rows/columns;
Find Bi ∈ Bn1×n1 ,Ci ∈ Bn2×n2 s.t. ri = ϕ(P⊺

i APi,Bi,Ci) is minimized;

end
Let j = argmini{ri};
P = Pj ;

until (rj < tol) ∨ (number of iterations ≥ threshold);
if rj < tol then

return P,Bj ,Cj ;
else

return “no solution found”;
end

With a slight abuse of notation, in the following we write ϕ(A) to denote the minimum value
of ϕ(A,B,C) that can be achieved by suitably choosing B,C; in other words, ϕ(A) shows how
well matrix A can be expressed as the Kronecker product of smaller matrices B,C of given sizes.
ϕ() is a lower-is-better metric: if ϕ(A) = 0, the matrix A is in Kronecker form.
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Note that we must impose the additional constraint that M1 and M2 must be binary matrices,
which is not guaranteed by the algorithm for Kronecker factorization described in [13]. For this
reason we developed a novel algorithm for solving the NKP problem on binary matrices, described
below.

Algorithm 1 shows a very high-level overview of the proposed heuristic. The algorithm uses
the gradient-descent technique to find the permutation P such that the matrix P⊺AP can be
decomposed according to the Kronecker product.

Matrix P is built incrementally, starting from the identity permutation, by exchanges of rows
and columns. At each step, the algorithm tries to decrease the value of ϕ(P⊺AP) so that either
the value becomes zero (in which case we have found a decomposition of the input graph), or no
optimal permutation is found within the allotted number of steps.

To limit the search space, at each step the algorithm generates K random permutations of the
current matrix P; for each permutation Pi, the algorithm solves the NKP problem by identifying
two binary matrices Bi,Ci such that

ri = ϕ(P⊺
i APi,Bi,Ci) = ∥P⊺

i AP−Bi ⊗Ci∥

is minimized. If the minimum value rj is not zero (within a user-defined tolerance tol), the process
is repeated starting from the ”best” permutation matrix Pj found so far. If no solution is found
after some maximum number of iterations, the procedure assumes that matrix A can not be
expressed as the Kronecker product of two matrices of size n1 × n1 and n2 × n2.

Despite its appealing simplicity, a direct implementation of Algorithm 1 is not effective in
solving the graph decomposition problem. First of all, gradient-descent procedures may become
stuck in a local minimum, with the result that they fail to find a global optimum (in our case,
the global optimum is a permutation Pj for which rj = 0, provided that such a permutation
exists). Another issue, already stated above, is that we need to solve a modified version of the
NKP problem, in which the factors B and C must be binary matrices.

Algorithm Details We now provide the detailed description of our graph decomposition heuris-
tic, where both these issues will be addressed. The complete pseudocode of the heuristic is provided
in the following, while a MATLAB implementation along with the source code can be downloaded
from https://github.com/calderonil/kron.

As already shown in (1), the Kronecker product A = B⊗C of two binary matrices B and C
has a block structure: if bij = 0 then the corresponding block bijC will contain only zeros. The
algorithm consists of a main procedure — alternateLocalSearch — and by three subroutines. The
main procedure, detailed in Algorithm 2, swaps rows/columns and evaluates if the swaps lead
to an improvement (reduction) in the value of function ϕ() (2). We employ two different met-
rics var and frob to evaluate ϕ().

https://github.com/calderonil/kron
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Algorithm 2: Alternate local search
Input: A, dimB, dimC
Output: solvedA, solvedB, solvedC
bestA = A;
metric = var;
A = kronGrouping(A);
blockMatrix, cornerizedMatrix = false;

/* Main loop */
while iter ≤ maxiter do

iter++;
if ∼blockMatrix then

bestSwaps = outsiders(bestA);
end
if ∼cornerizedMatrix ∧ blockMatrix then

if ∼balancedBlocks then
/* Blocks have a different number of 1s, unfeasible factorization */
bestA = randPerm(bestA,75%);
bestA = kronGrouping(bestA);
blockMatrix = false;
continue;

end
/* Matrix A has is a block matrix and the number of 1s is balanced, start the onionSearch

subroutine */
[bestA, success] = onionSearch(bestA);
if success then

break;
else

continue;
end

end
swaps = [bestSwaps,baseSwaps]; // baseSwaps: all comb. of {1...dimA} two at a time
for i=1 to len(swaps) do

if bestSwaps exhausted then
baseSwaps = randPerm(baseSwaps,100%);
if metric == frob then

bestA = randPerm(bestA,45%);
bestA = kronGrouping(bestA);
blockMatrix = false;
cornerizedMatrix = false;

end
if metric == var then

metric = frob;
end

end
curSwap = swaps(i);
testA = swap(bestA, curSwap);
if improved then

bestA = testA;
if metric == var ∧ curVal ≥ threshold then

metric = frob
end
break;

end
end
[solvedB, solvedC] = nearestKronProduct(bestA);
if ∼improved then

nRestarts++;
if nRestarts mod perturbateEvery == 0 then

/* Each perturbateEvery times the metric is swapped, A is completely perturbed */
bestA = randPerm(bestA,100%);
bestA = kronGrouping(bestA);
blockMatrix = false;
cornerizedMatrix = false;
metric = var;

else
swapMetric();

end
end
if nRestarts > maxRestarts ∗ perturbateEvery ∨ error < 0.000001 then

break;
end

end
return bestA, solvedB, solvedC;
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(a) (b) (c)

Figure 2: kronGrouping procedure. In this example we show the rows/cols selection with pivot = 1 according to
the best permutation found by the algorithm. (a) and (b): The current pivot (yellow) is compared with each other
row and column of the matrix. (c) For each pivot, the dimC − 1 rows and columns that are most similar to it
are selected as pivot neighbours in the current permutation (best viewed in color) and the permutation is finally
applied. Es evident from (c), the resulting matrix is similar to a block matrix as desired. Please note that in this
figure and the following ones, black squares stand for an element set to zero, and white squares stand for an element
set to one.

Let sij be the number of 1s in the block Cij , and let var denote the variance of the number of
1s of each block, i.e., σ2 = V ar{sij | 1 ≤ i, j ≤ dimB}. If matrix A approaches block matrix form,
then the variance decreases because, intuitively, A has “almost full” and “almost empty” blocks
(refer to Definition 2.2). Indeed, a matrix already in block form is made of two types of blocks:
empty blocks, that contain only 0s, and full blocks that are nonzero and share a considerable
amount of 1s. Conversely, the metric frob measures how much the nonempty blocks of A fit the
Kronecker form, i.e., whether or not the content of the blocks is the same; this metric is based on
the one used in [13] for solving the MKP problem: the rows of the same block of size dimC ×dimC
of A are concatenated, and become a row of a new matrix F. F is then multiplied with F⊺ element
by element. Metric frob is the squared sum of the elements of this product.

The local search procedure starts with metric var, and switches back and forth to frob when
no significant improvement in the value of ϕ() is observed for a given number of iterations. The use
of two different metrics is motivated by the empirical observation that it speeds up convergence
towards the solution, and helps to escape local minima. When we find a swap that improves the
value of function ϕ(), we apply the swap to the current permutation matrix P and proceed with
the next iteration. The main loop terminates when the number of iterations exceeds a user-defined
threshold, or when a decomposition is found.

Before swapping rows and columns, matrix A is processed by the kronGrouping procedure
(Algorithm 3).
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Algorithm 3: Kron grouping

Input: A
Output: groupedA
for i=1 to dimA do

for j=1 to dimA do
if i==j then

MR(i,j)=MC(i,j)=0;
else

/* Simil computes the similarity between two rows/cols using the dot
product. To weight zero-based and one-based similarity, both A and 1-A
are considered. */

MR(i,j) = simil(A(i,:),A(j,:)) + simil(1-A(i,:),1-A(j,:));
MC(i,j) = simil(A(:,i),A(:,j)) + simil(1-A(:,i),1-A(:,j));

end
end

end
/* Six different permutations are tested, each one relying on a linear combination

of rows similarity and columns similarity. */
for w=0 to 1 step 0.2 do

MS = w * MR + (1-w) * MC;
for i=1 to dimA do

pivot = first unused index;
scan MS(pivot,:) for the (dimC-1) best indexes and add them to the current permutation;

end
end
return best permutation according to metric = frob

This procedure tries to permute A in such a way that it becomes similar to a block matrix. The
intuition is that A should be permuted in such a way that it consists of blocks that contain as many
1s as possible, and others that are all zero. kronGrouping tries to exchange rows/columns in such a
way that nonempty blocks (i.e., blocks of A that contain 1s) either lose or acquire 1s. To this end,
kronGrouping evaluates the similarity between rows/columns; given two vectors v = (v1, . . . , vn)
and w = (wi, . . . , wn), the similarity of v and w is a value that is proportional to the number
of elements for which vi = wi. More specifically, as understandable from the last for loop of the
algorithm, six different permutations are tested, each one relying on a linear combination of rows
similarity and columns similarity. Refer to Figure 2 for an example. This information is used to
produce a permutation that groups similar rows/columns in the same submatrix.

At each iteration of the main loop, alternateLocalSearch performs several operations before
starting to test each possible swap. First of all, the procedure checks whether A is a block matrix.
If not, subroutine outsiders is applied to A (Algorithm 4). While kronGrouping tries to rearrange
the whole matrix at a glance, outsiders follows a fine tuning perspective and derives an ordered
list of swaps that seem to be more convenient. This procedure allows to detect those rows and
columns that are evidently misplaced with respect to the block structure we desire to reach.

To derive the swaps list, outsiders verifies which block of A should preferably be filled (i.e. it
has a number of 1s above average) and which block should preferably be emptied. This condition
always occurs when A is not a block matrix, as the number of elements set to one in nonempty
blocks is unbalanced. The density of each block to be filled is considered as well: the best swap
is supposed to be the one that moves 1s from a block to be emptied replacing zeros in a block
to be filled. However, moving elements in blocks that already have a high density would produce
overfilled blocks that are unlikely to appear in a feasible factorization.
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(a) (b) (c)

(d) (e) (f)

Figure 3: outsiders procedure. The procedure detects those blocks that should gain or lose 1s. In (a) blocks that
are going to acquire 1s are highlighted. In (b) we show the best swap is among rows/columns 2 and 24. The main
loop will use this swap as first, resulting in an improvement with respect to the current metric. As such, the swap is
effectively performed (c). The function outsiders is called again at the next iteration and it selects (15, 16) as best
swap (e). The swap is then applied; the matrix is now divided in blocks (f).
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Figure 4: onionSearch procedure, part 1. The binary block matrix EF (a) is permuted to maximize the dot product
performed against the weight matrix W (b). When the local search reaches 75% of the optimum, the block matrix
is deemed to be sufficiently rearranged in a top-left fashion and the procedure terminates (c). As evident from (b)
–where onion layers’ boundaries are highlighted in red– weights are set up to push the maximum number of filled
blocks in those layers of the onion that are processed first.
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Algorithm 4: Outsiders

Input: A
Output: bestSwaps
BL = blockMatrix(A); // derive the dimB x dimB block matrix
S = blocksSum(BL); // count the total number of 1s in each block
D = blocksDensity(BL); // computes the density of 1s in each block
foreach B in BL do

for k=1 to dimC do
sumRow = sum(B(k,:));
sumCol = sum(B(:,k));
if S(B) < avg(S) then

/* The block is likely to be emptied, count the number of 1s */
WR(((row(B)-1)*dimC)+k,col(B)) = sumRow;
WC(row(B),((col(B)-1)*app.dimC)+k) = sumCol;

else
/* The block is likely to be filled, count the number of zeros */
WR(((row(B)-1)*dimC)+k,col(B)) = -(dimC-sumRow);
WC(row(B),((col(B)-1)*app.dimC)+k) = -(dimC-sumCol);

end
end

end
for i=1 to dimA do

p = blockIdx(i);
for j=1 to dimA do

q = blockIdx(j);
if i and j fall in different blocks then

for b=1 to dimB do
if BL(p,b) is a block to be emptied and BL(q,b) a block to be filled then

MS(i,j) = MS(i,j) + (WR(i,b) * WR(j,b) * (1-D(q,b))2);
end
if BL(p,b) is a block to be filled and BL(q,b) a block to be emptied then

MS(i,j) = MS(i,j) + (WR(i,b) * WR(j,b) * (1-D(p,b))2);
end
if BL(b,p) is a block to be emptied and BL(b,q) a block to be filled then

MS(i,j) = MS(i,j) + (WC(b,i) * WC(b,j) * (1-D(b,q))2);
end
if BL(b,p) is a block to be filled and BL(b,q) a block to be emptied then

MS(i,j) = MS(i,j) + (WC(b,i) * WC(b,j) * (1-D(b,p))2);
end

end
end

end
end
if sum(MS)==0 then

blockMatrix = true;
return null;

else
return a list of swaps (i,j) in ascending order of MS(i,j);

end
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= ⊗

(a) (b) (c)

(d) (e) (f)

Figure 5: onionSearch procedure, part 2. An example of the onionSearch procedure. The block matrix is factorized
layer-by-layer. The first layer, composed by a single block B11, is implicitly factorized as B11 = I1 ⊗B11 (a).
It is thus used as template during the local search performed on the 2 × 2 blocks submatrix, composed of four
blocks (b). As rows and columns swaps may only range in the second layer, the sole feasible solution is the one
that permutes each block in accordance to the one serving as template. The procedure steps forward through the
third (c), fourth (d) and fifth layer (e). As the local search on the last layer succeeds, the problem is globally solved.
The solved factors are shown in (f).

When the procedure terminates the bestSwaps list is prepended to the randomized list of each
legal swap (baseSwaps) that is used in the main loop as fallback. If the list of swaps is empty, there
are no elements set to one in each of the blocks that are likely to be emptied. Thus, according
to Definition 2.2, the matrix is now a block matrix. The basic principles of outsiders procedure
are outlined in Figure 3. At the beginning, outsiders identifies which block of A should receive 1s
(because it already has more 1s than average) and which block should lose 1s. Then, two matrices
are produced, WR and WC. WR contains the number of 1s found in each portion of a row of
length dimC — the portion of the row corresponding to a given block. If the block should receive
1s, the number of zeros is counted instead. The second matrix WC contains the same information
computed column-wise. A third matrix MS is computed in order to find the best swap: the
procedure loops on each row/column on a block-by-block basis and multiplies the elements of WR
and WC corresponding to blocks that are in opposite conditions, i.e. one receives and the other
loses 1s. The larger the values of MW, the better.

This product is tuned according to the density of the block that receives 1s. However, moving
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elements in blocks that already have a high number of 1s would produce blocks with too many 1s,
which are unlikely to appear in a feasible factorization. Elements of MS are scanned and ordered
to form the list of more promising swaps. If MS has zero elements only, there are no 1s on the
blocks that should lose 1s. Therefore, according to Definition 2.2, the matrix is a block matrix.

Algorithm 5: Onion search

Input: A
Output: A
/* --- PART1: rearrange the filled blocks in a top-left fashion --- */
BL = blockMatrix(A);
EF = checkFilledBlocks(BL); // derive a boolean block matrix; 0: empty block, 1:
o.w.

W = weightMatrix(dimB); // the max weight corresponds to the top-left block
cornerizeVal = sum(dotProduct(EF,W));
for iter = 1 to maxiterCornerize do

for i=1 to len(swaps) do
curSwap = swaps(i);
testEF = swap(EF, curSwap);
testVal = sum(dotProduct(testEF,W));
if testVal > cornerizeVal then

cornerizeVal = testVal;
EF = testEF;
BL = swap(BL, curSwap);
break;

end
end
if cornerizeVal > 0.75 * cornerizeOptVal then

break;
end
if ∼improved then

BL = randPerm(BL,55%);
Apply the same permutation to EF;

end
end
cornerizedMatrix = true;
/* --- PART2: perform a layer-by-layer Kron factorization on submatrices --- */
A = fromBlocks(BL);
settledLayers = 1;
for curlayer = 2 to dimB do

/* In localSearchSubmatrix swaps are limited to the range of blocks
[settledLayers+1, curLayer]. Moreover, only the Frobenius metric is used.
*/

[success, A] = localSearchSubmatrix(A, curLayer, settledLayers);
if success then

settledLayers = curLayer;
end

end
return success, A;

WhenA becomes a block matrix, alternateLocalSearch checks the number of 1s in each nonempty
block. If the blocks have a different number of 1s, then matrix A is not (yet) in Kronecker form.
If this happens, the local search got stuck in a (non optimum) local minimum; to escape the
minimum, the program permutes 75%2 of the rows/columns of A and the alternateLocalSearch
procedure starts again. On the other hand, if the blocks of A do have the same number of 1s, then
the matrix is in Kronecker form if and only if all blocks are the same. If the blocks are different,

2This value was determined empirically.
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A is processed by the onionSearch subroutine.
The procedure onionSearch is divided in two parts (Algorithm 5). First, the block matrix is

rearranged to push the maximum feasible number of blocks to the top-left corner, then, starting
from the top-left corner, it performs a submatrix factorization in a layer-by-layer fashion. This
second step is designed to adopt the first nonempty block as template and to reproduce the same
layout in each other nonempty block.

Following the principles depicted in Figure 4, a binary block matrix is derived from A through
permutations so that the dot product with a weight matrix is maximized. To find a convenient
permutation, random swaps are applied following the same principle of the main local search. When
the procedure reaches the 75% of the optimum (cornerizeOptVal), the block matrix is deemed to be
sufficiently rearranged in a top-left fashion and the procedure terminates. Weights are defined to
increase the maximum number of filled blocks in those layers of the onion that are processed first.
We use the term “onion” to refer to the fact that the factorization works by examining matrix A
layer-by-layer. When A reaches this form, we also refer to it as a cornerizedMatrix (see Algorithm
2 for reference).

We should now imagine the block matrix as being made of dimB layers, starting from the top-
left corner. The first layer contains one block, the second layer contains three blocks, and so forth.
The last layer is made of blocks that belong to the last row and column of the block matrix; refer
to Figure 4b. The second part of onionSearch tries to find a feasible factorization for submatrices
following a layer-by-layer perspective, as shown in Figure 5. The local search follows the same
principles of alternateLocalSearch but uses metric frob only. Moreover, rows/columns swaps are
allowed in a limited range only. Specifically, swaps are limited to those indices corresponding to
rows and columns that fall in the unsorted layers.

It is important to note that the single block B11 representing the first layer is implicitly fac-
torized as B11 = I1 ⊗B11. The special case where B11 is empty does not represent an issue. In
this case, indeed, the procedure treats the first layer of the onion as already sorted and proceeds
to the next layer. B11 is thus used as template during the local search performed on the successive
2 × 2 blocks submatrix, composed of four blocks. As rows and columns swaps may only range
in the second — unsorted — layer, the sole feasible solution is the one that permutes each block
in accordance to the one serving as template. If the local search performed on the 2 × 2 blocks
submatrix succeeds, onionSearch steps to the third layer. Blocks falling in the first and in the
second layer will stay untouched as they are sorted already. The procedure steps forward until the
last layer is processed. If the local search on the last layer succeeds, the problem is globally solved.
Otherwise, alternateLocalSearch proceeds testing swaps randomly to find a feasible solution.

Finally, to handle local minima, random permutations are applied in two more cases. First, it
is possible that the list of best swaps returned by the outsiders procedure is exhausted without
improvements. If this condition occurs through several iterations, a random permutation is applied
to 45% of rows/columns of A. Second, if alternateLocalSearch fails to reduce the value of function
ϕ() after a maximum number of iterations (i.e. both best swaps and default swaps are exhausted),
a complete random permutation is applied (the local search restarts from scratch).

Note that, each time alternateLocalSearch applies a random permutation to escape from local
minima, independently of its extent, the procedure kronGrouping is called again.
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Figure 6: A sample snapshot of the MATLAB application implementing the heuristic.

4 Computational experiments

We implemented the heuristic described in Section 3 in the MATLAB programming environment;
the source code is available online at https://github.com/calderonil/kron. The program pro-
vides a graphical user interface (Figure 6) that allows the user to generate a random binary ma-
trix A of given size dimA = dimB × dimC ; the program then looks for a permutation P such that
A = P⊺(B⊗C)P where B and C are binary matrices of size dimB × dimB and dimC × dimC ,
respectively. A is generated starting from random P,B,C, which are then ”forgotten” and must
therefore be computed from scratch; this ensures that a factorization of A always exists. The user
must provide the densities ρB , ρC (fraction of 1s) of matrices B,C; the density ρA of A will there-
fore be ρA = ρB × ρC . Although our application allows the user to impose additional constraints
on the graph represented by the matrices (e.g., non-bipartitedness and/or non-connectedness), we
did not impose any constraint for the experiments described in this section.

The combinations of parameters used in the experiments are shown in Table 2. The density
(fraction of 1s) of A,B,C are denoted as ρA, ρB and ρC , respectively. We consider several

https://github.com/calderonil/kron


JGAA, 27(7) 581–601 (2023) 597

ρB , ρC , ρAρB , ρC , ρAρB , ρC , ρA Size of B ααα Size of C Size of A failure % tmintmintmin t′avgt′avgt′avg tavgtavgtavg tmaxtmaxtmax

0.5, 0.5, 0.25

5× 5
1 5× 5 25× 25 0.00% 0.02 0.03 0.06 0.31
2 10× 10 50× 50 0.00% 0.07 0.09 0.13 0.82
3 15× 15 75× 75 0.00% 0.18 0.21 0.27 0.81

7× 7
1 7× 7 49× 49 0.00% 0.08 0.11 0.24 1.28
2 14× 14 98× 98 0.00% 0.35 0.43 0.67 2.55
3 21× 21 147× 147 1.00% 1.00 1.30 2.85 35.72

10× 10
1 10× 10 100× 100 0.00% 0.52 0.59 1.42 11.59
2 20× 20 200× 200 0.00% 2.50 2.77 3.49 16.57
3 30× 30 300× 300 0.00% 6.71 7.54 8.47 10.89

0.6, 0.6, 0.36

5× 5
1 5× 5 25× 25 0.00% 0.01 0.03 0.06 0.52
2 10× 10 50× 50 0.00% 0.06 0.08 0.24 3.14
3 15× 15 75× 75 0.00% 0.16 0.19 0.27 1.41

7× 7
1 7× 7 49× 49 0.00% 0.07 0.12 0.45 2.33
2 14× 14 98× 98 3.00% 0.39 0.45 1.20 15.30
3 21× 21 147× 147 0.00% 0.90 1.05 1.80 35.97

10× 10
1 10× 10 100× 100 0.00% 0.36 0.51 0.85 8.42
2 20× 20 200× 200 0.00% 2.14 2.67 7.14 87.05
3 30× 30 300× 300 0.00% 6.58 7.98 16.79 210.95

0.7, 0.7, 0.49

5× 5
1 5× 5 25× 25 1.00% 0.01 0.04 0.09 1.06
2 10× 10 50× 50 1.00% 0.07 0.17 0.63 6.22
3 15× 15 75× 75 4.00% 0.14 0.34 0.84 10.32

7× 7
1 7× 7 49× 49 0.00% 0.06 0.18 0.50 3.21
2 14× 14 98× 98 7.00% 0.32 1.18 1.97 18.71
3 21× 21 147× 147 9.00% 0.88 6.21 8.56 102.26

10× 10
1 10× 10 100× 100 0.00% 0.25 0.45 1.84 19.42
2 20× 20 200× 200 9.00% 2.16 5.84 14.91 128.62
3 30× 30 300× 300 0.00% 5.84 6.65 19.91 243.12

Table 2: Each row summarizes the performance of our heuristic on 10 different initial random matrices A; for each
matrix A we executed the heuristic 10 times, each one starting from a random permutation of A. α = dimC/dimB
is the ratio between the sizes of C and B. t′avg is the average of the minimum execution times of each different
problem. The time spent on instances for which no solution has been found have been excluded from average,
minimum and maximum execution times.

combinations of sizes dimB , dimC according to a parameter α that denotes the ratio between the
size of C and B (α = dimC/dimB). Intuitively, high values of α denote that the size of the factors
ofA are different. As this assumption does not cause a loss of generality, we also set dimC ≥ dimB .
As dimB also defines the number of blocks of A, limiting this parameter improves the algorithm
speed, as many procedures loop through the blocks of A.

Each row of the table summarizes the result of one run: a run consists of 10 random problem
instances with the chosen parameters. Since our heuristic is sensitive to the initial conditions,
for each instance we consider 10 initial random permutations of the matrix A; this is equivalent
to fixing B,C and choosing ten different random permutation matrices P. Therefore, each row
summarizes 10× 10 executions of our program.

The program has been executed on a desktop PC with an Intel Xeon CPU running at 3.30 GHz
with 16 GB of RAM running Windows 10 (Matlab R2021a). Both a single instance mode and a
batch mode are provided; the former solves a single problem, while the latter generates a set of
random instances with the same parameters (dimA, dimB , dimC ). To collect the results we show
in the following, the program was executed in batch mode.
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ρB , ρC , ρAρB , ρC , ρAρB , ρC , ρA Size of B ααα Size of C Size of A failure % tmintmintmin t′avgt′avgt′avg tavgtavgtavg tmaxtmaxtmax

0.5, 0.5, 0.25

5× 5 8 40× 40 200× 200 0.00% 1.08 1.31 5.15 22.38
10× 10 2 20× 20 200× 200 0.00% 0.97 1.09 1.19 3.01
14× 14 1 14× 14 196× 196 0.00% 0.98 1.16 1.48 3.35

5× 5 12 60× 60 300× 300 0.00% 4.36 5.05 12.45 67.66
10× 10 3 30× 30 300× 300 0.00% 3.15 3.37 3.70 4.48
17× 17 1 17× 17 289× 289 0.00% 4.16 4.39 5.34 9.90

5× 5 16 80× 80 400× 400 0.00% 40.18 40.85 44.29 52.01
10× 10 4 40× 40 400× 400 0.00% 11.59 12.09 13.12 14.76
20× 20 1 20× 20 400× 400 0.00% 14.41 14.52 16.23 18.62

5× 5 20 100× 100 500× 500 0.00% 59.95 63.83 65.69 68.37
10× 10 5 50× 50 500× 500 0.00% 27.79 29.09 30.95 35.36
22× 22 1 22× 22 484× 484 0.00% 24.47 25.33 26.30 27.40

5× 5 25 125× 125 625× 625 0.00% 154.32 155.68 165.12 177.86
10× 10 6.2 62× 62 620× 620 0.00% 81.20 81.96 141.13 304.69
25× 25 1 25× 25 625× 625 0.00% 66.46 66.70 70.73 80.20

Table 3: This table shows another set of experiments conducted on bigger matrices. Each row summarizes the
performance of the heuristic on 10 different initial random matrices A; for each matrix A we executed the heuristic
10 times, each one starting from a random permutation of A. Five groups of experiments are listed, ranging from
200 × 200 matrices to 625 × 625 matrices, with respect to the size of A. For each group of experiments, the size
of A was fixed, varying the ratio α. Each group includes the α = 1 case, i.e., the case where the size of B and C is
the same.

For a single instance, our program executes alternateLocalSearch for at most 500 iterations (see
the main loop of Algorithm 2); when no feasible factorization is found after the maximum allowed
number of iterations, the procedure stops and the failure count is incremented.

For each run we collect five metrics: the percentage of executions at the end of which no
factorization was found (failure %); the minimum and maximum execution times in seconds (tmin

and tmax , respectively); the average execution time across all executions that did find the optimal
solution (tavg); the average of the minimum execution time for each different problem (t′avg). More
precisely, t′avg is computed as follows:

1. For each combination of parameters, we generate 10 random instances consisting of matrices
A,B,C of the appropriate size and content;

2. For each instance, we generate 10 random permutation matrices P; we get 10 variations
A = P⊺(B⊗C)P that only differ by the permutation P

3. We compute the minimum time to get the solution of the 10 variations from the previous
step;

4. t′avg is the average of the minimum times computed at the previous step.

t′avg is useful because there is a significant variance across the execution times of the 10 variations of
the same problem (see below). Indeed, as stated above, there might be a huge variation in the time
required to factorize a matrix A = P⊺(B⊗C)P depending on the permutation P. Therefore, t′avg
is the average time to solve a problem instance if we were able to parallelize the heuristic across 10
independent execution units, so that the first one that gets the solution stops the computation.

As can be observed from Table 2, the minimum time to compute a solution is very low (a few
seconds) for all problems. The largest matrix A (size 300× 300) can be factored in tmin = 6.71s.
It should be observed that as the density of A increases, the problem becomes more difficult for
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Figure 7: Dependence of the execution time on the number of 1s of A. Given ρA = 0.25 and dimB = 10, this chart
shows the linear growth for tavg and t′avg depending on the size of C. Showing the matrix dimension in the x-axis
could be misleading, the number of edges in A is used instead.

our heuristic as witnessed by the increasing fraction of unsolved instances. We also observe that
there is a large variability between the minimum and maximum times required to solve an instance;
indeed we observe that the gap between tmin and tmax becomes more than an order of magnitude,
especially for large matrices A that are decomposed into factors of unbalanced sizes (α = 3). This
is due to the fact that the heuristic is sensitive to both the permutation P, and to the sequence of
swaps that are applied during the computation (the swaps are in part generated pseudo-randomly).

To strengthen the study, we also carried out a set of tests on wider matrices, following the very
same approach. In this second set of tests, we kept the density fixed. Five groups of experiments
were considered, ranging from 200 × 200 matrices to 625 × 625 matrices, with respect to the size
of A. For each group of experiments, the size of A was fixed, varying the ratio α. Experiment
results are listed in Table 3.

We now turn our attention to the study of the dependence of the execution time on the number
of edges of the graph whose adjacency matrix is A; the number of edges is simply the number
of 1s in A. To this aim, we performed 90 additional experiments (9 separate problem instances
with 10 random initial permutations each). We set ρA = 0.25 and dimB = 10, and we increased
the dimension of C according to the following steps: dimC = {10, 15, 20, 25, 30, 35, 40, 50, 62}. As
shown in Figure 7, tavg and t′avg grow more or less linearly with respect to the number of edges
of A until dimC reaches the value of 50 (i.e., until A has approximately 65000 edges). When this
value is exceeded, the execution time increases at a faster rate.
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5 Conclusions and Future Works

In this paper we presented a heuristic for decomposing a directed graph into factors according
to the direct product: given a directed, unweighted graph G with adjacency matrix Adj(G), our
heuristic searches for a pair of graphs G1 and G2 such that G = G1 ×G2, where G1 ×G2 is the
direct product of G1 and G2. The heuristic proposed in this paper represents – to the best of
our knowledge – the first computational approach for general directed, unweighted graphs. We
provided a MATLAB implementation that we used to run a set of computational experiments to
assess the effectiveness of our approach. Our implementation can factorize a graph of size 300×300
in a few seconds. In a few worst-case scenarios the time grows to a few minutes, and is due to
the fact that our heuristic is sensitive to the structure of the input; although it may fail to find a
solution, in our experiments we observed failures in just a few instances. The complete source code
of the Matlab implementation can be downloaded from https://github.com/calderonil/kron.

We are planning to extend the heuristic along two directions: first, to handle weighted graphs
instead of just unweighted ones; second, to compute the approximate Kronecker decomposition of
unweighted graphs, where (a suitable permutation of) the input matrix A can be expressed as a
Kronecker product of two smaller matrices B and C, plus an additional binary error term E, i.e.,
A = P⊺(B⊗C)P+E.
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