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Abstract: A new explicit form is provided for the solution of optimal stopping problems involving
a multidimensional geometric Brownian motion. A free-boundary value approach is adopted and
the value function is obtained via fundamental solution methods. There are many applications
for the valuation of perpetual options of American style, which are of interest for finance and
managerial decisions.
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1. Introduction

Despite the huge progress on the pricing methods for American options, an explicit
solution for their value is known only for options with infinite maturity written on a single
underlying asset. Under classical assumptions on the underlying assets, the problem can be
formulated as a free-boundary value for a Black–Scholes-type PDE. When the underlying
stochastic processes are geometric Brownian motions (hereafter GBM) the value-matching
and smooth-fit conditions apply, but finding the exercise threshold in explicit form remains
an elusive research question. Early exercise boundary approximation techniques have
been developed in many articles to obtain the option price and hedge ratio (see the Refs.
Ait-Sahlia and Lai (2001); Huang et al. (1996); Kim (1990), among others). It is almost
impossible to summarize all approaches to approximate the price of American options,
starting from the first attempts to replace the exercise boundary with a finite set of discrete
points (Geske and Johnson 1984) or to resort to finite-difference schemes (Brennan and
Schwartz 1977).

While multi-asset European options have been priced extensively in the literature even
in a non-Gaussian Black–Merton–Scholes framework (see the Ref. Agliardi (2012), for a
comprehensive approach), there are few studies on the American option written on several
assets. For these options, an explicit solution is not available even in the perpetual case.
Various payoff functions for American options on two assets have been considered in the
Ref. Broadie and Detemple (1997), which remains a fundamental work for the multiasset
case. On the other hand, the regularity of the free boundary for multi-asset American
options has been studied in the Ref. Laurence and Salsa (2009).

Recently, some traditional numerical schemes and simulation-based approaches have
been applied to price these American-style options. In particular, finite difference schemes
are used to discretize the complementarity problem involving Black–Scholes-type equations
(see, e.g., the Ref. Nielsen et al. 2008; O’Sullivan and O’Sullivan 2011, and a comonotonic
finite difference method in the Ref. Hanbali and Linders 2019), radial basis techniques
are used in the Ref. Egorova et al. (2018), while least-square Monte Carlo algorithms
extending the Ref. Longstaff and Schwartz (2001) are another popular approach in this
field (see the Ref. Chan et al. 2006; Samimi and Mehrdoust 2018). Overall, the pricing of
multi-asset American options is recognized in the literature as a quite difficult issue from a
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computational point of view; on the other hand, the lack of analytical expressions for the
solution renders the judgement of the accuracy of the approximation a hard task.

For single-asset models, there exist several articles studying the pricing problem
under more general stochastic processes than GBM, such as Lévy processes (Boyarchenko
and Levendorskiı̆ 2002; Gukhal 2001; Levendorskiı̆ 2004; Mordecki 2002). For multi-asset
options the pricing problem has no explicit solution in general, even in the GBM case. In
some special cases (e.g., two-dimensional exchange options) an explicit solution can be
obtained in an elementary way. When the options are written on a basket of risky assets
and the payoff function is non-homogeneous, only numerical methods are available (e.g.,
finite difference schemes). The most difficult task remains to identify the optimal exercise
boundary. Thus, in this paper, we concentrate on this case, which still deserves investigation.
We use an analytical approach to solve the pricing problem for perpetual American options
in the multidimensional case. We obtain an explicit expression for the option value which is
written as an integral involving modified Bessel functions of the second kind (see Section 3).
A proof relating modified Bessel functions and the n-dimensional modified Helmoltz
equation is provided in the Appendix A, which is of theoretical interest for other possible
applications.

Although perpetual options are rare, they can be used in efficient numerical procedures
to approximate the price of American options with finite maturity, for example, Carr’s
randomization method (Carr 1998). More importantly, perpetual options provide a technical
tool to attack several problems arising in real option theory (see the Ref. Boyarchenko and
Levendorskiı̆ 2007; Dixit and Pindyck 1994), and thus their scope of application spans far
beyond financial derivatives.

2. Problem-Setting and Motivating Examples

In what follows, we assume that the value of the underlying asset, Xt, follows an
n−dimensional geometric Brownian motion with respect to a given filtration, F, represent-
ing the available information. (See Section 3 for the detailed notation).

Given a positive payoff function G : Rn
+ −→ [0,+∞), usually a continuous function,

and a risk-free interest rate r > 0, the rational price of a perpetual American option with
instantaneous payoff G(Xt) is obtained as

V0(x) = sup
t

Ex[e−rtG(Xt)] = Ex[e−rt∗G(Xt∗)] (1)

where the supremum is taken over all stopping times w.r.t. F. Here, Ex denotes the
expectation operator conditional on X0 = x. The optimal stopping time t∗ represents
the optimal exercise time. In the Ref. Shiryaev (2008), existence of V0 is obtained when
Ex[supt≥0 e−rtG(Xt)] < ∞ and t∗ is the first entry time of Xt into a stopping region, S (or
exercise region) where V0 equals G, that is, it is optimal to exercise the option immediately.
On the contrary, V0 > G is in the so-called continuation region, C. The boundary between
the two regions is the optimal exercise boundary, ∂C. The boundary-value formulation of
this optimal stopping problem is as follows:{

[r− L]V = 0 in C
V = G in S

(2)

with V ≥ G in C and [r− L]V ≥ 0 in S. Here, L is the differential operator associated
with Xt, which is defined in (6).

Some examples of payoff functions for multi-asset American options are reported
below. Let G(x) = max

{
Ĝ(x), 0

}
and let ω = ±1 denote the call/put attribute, with +1

denoting a call option and −1 a put option.

Basket (or index) options: Ĝ(x1, . . ., xn) = ω[∑n
i=1 wixi − K]

where the w′is are the weights in the basket.
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A special case is represented by the

Arithmetic average option: Ĝ(x1, . . ., xn) = ω[ 1
n ∑n

i=1 xi − K]

Spread options: Ĝ(x1, x2) = ω[x2 − x1 − K].

The special case of exchange options is obtained setting K = 0.

Option on the product with random exercise price:
Ĝ(x1, x2) = ω[x1x2 − Kx2]

1.

Power-product options: Ĝ(x1, . . ., xn) = ω[(∏n
i=1 xi)

p − K] for some p > 1.

Options on the max: Ĝ(x1, . . ., xn) = ω[max(x1, . . ., xn)− K].

Multiple strike options: Ĝ(x1, . . ., xn) = max[ω1(x1 − K1), . . .ωn(xn − Kn)].

Note that in (1) we can safely replace G with Ĝ because it is not optimal to exercise
the option when its payoff is negative. Moreover, arguing as in the Ref. Boyarchenko and
Levendorskiı̆ (2002), we will assume that Ĝ(Xt) can be written in terms of a cash flow
g(Xt), so that the valuation problem reduces to maximizing the following expected value:

Ex[

+∞∫
t

e−rτ g(Xτ)dτ] (3)

where g represents the revenue flow which is acquired by exercising the option. In the
case of regular payoff functions, this method can be easily motivated as follows. If Ĝ is C1

with absolutely continuous first derivatives (and other technical conditions), Ito’s formula
implies that

e−rtĜ(Xt) = Ĝ(x) +
∫ t

0 e−rτ(L− r)Ĝ(Xτ)dτ

and we denote (L− r)Ĝ by −g. Note that g is a distribution rather than a function if Ĝ is
not sufficiently regular, so this method can be used also for less regular functions. If we

assume that Ex[

∞∫
0

e−rτ g(Xτ)dτ] < ∞, then

Ex[

∞∫
t

e−rτ g(Xτ)dτ] = Ex[

∞∫
0

e−rτ g(Xτ)dτ] + Ex[

t∫
0

e−rτ(−g(Xτ))dτ].

Thus the expected value of e−rtĜ(Xt) equals Ĝ(x)−Ex[

∞∫
0

e−rτ g(Xτ)dτ]+Ex[

∞∫
t

e−rτ g(Xτ)dτ]

and the optimal exercise problem reduces to maximizing (3). Alternatively, one can maxi-
mize

Ex[

t∫
0

e−rτ(−g(Xτ))dτ] (4)

Then we can confine the analysis to the optimal stopping problem for (4). If V is the
value function for the optimal stopping problem for (4), then V0 = V + G is the option
price. The boundary-value formulation of problem (4) is as follows:{

[L− r]V + g = 0 in C
V = 0 in S

A typical assumption on g is that g is measurable and satisfies an integrability condition of
the form:

Ex[

+∞∫
0

e−rt|g(Xt)|dt] < ∞ for any x.
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Note that if g ≤ 0, then the optimal stopping time is ∞, while if g ≥ 0 it is optimal to
stop immediately. To avoid such trivial situations one needs to assume that g changes sign.

Let δi denote the instantaneous dividend yield which is paid on the ith risky asset.
Then, in view of the argument above, some examples of payoff streams, g, associated with
American options are:

ω[∑n
i=1 δiwixi − rK] for a basket option;

ω[δ2x2 − δ1x1 − rK] for a spread option;
ω[∑2

i=1 δixi1{xi>xj ,j 6=i} − rK − 1
2 ∑i,j σijx2

1υ] for a max-option in R2 where υ is the
Lebesgue measure on the line x1 = x2.

For convex payoff streams, the following property can be proved.

Proposition 1. Let g be a convex function. Then the stopping set for

sup
t

Ex[

t∫
0

e−rτ g(Xτ)dτ]

is convex.

Proof. Let us prove that V, the value function for this problem, is convex. Let x′ =
(x′1, . . . x′n), x

′′
= (x

′′
1 , . . . x

′′
n), θ ∈ [0, 1] and denote θx′ + (1− θ)x

′′
by x. Let Xi

t(xi) denote
the stochastic process Xi

t started at xi. In view of convexity of g for any stopping time τ
we have:

E[
τ∫

0

e−rtg(X1
t (x1), . . . Xn

t (xn))dt]

≤ θE[
τ∫

0

e−rtg(X1
t (x′1), . . .)dt] + (1− θ)E[

τ∫
0

e−rtg(X1
t (x

′′
1), . . .)dt]

≤ θV(x′) + (1− θ)V(x
′′
).

Then taking the sup of the left-hand side we get

V(x) ≤ θV(x′) + (1− θ)V(x
′′
),

which implies that V is convex. Let us show that the stopping set is convex arguing by
contradiction. If x′, x′′ ∈ S and x /∈ S then 0 < V(x) ≤ θV(x′) + (1− θ)V(x

′′
) = 0 which

yields a contradiction.

3. Valuation Formula

Assume that the option is written on n risky assets and let r denote the risk-free interest
rate. Each risky asset pays a continuously compounded dividend yield, δi, per unit of time.
The risk factors are modelled throughout an n-dimensional geometric Brownian motion,
Xt, where the dimension represents the number of components in the underlying portfolio.
Its components are of the form

X(i)
t = X(i)

0 exp[(r− δi −
σ2

i
2
)t + σiW

(i)
t ] (5)

where (W(1)
t , . . ., W(n)

t ) is an n-dimensional Wiener process with respect to a given filtration,

F, and with E[W(i)
t W(j)

t ] = ρijt where the non-negative definite matrix (ρij)i,j=1,...n has
ρii = 1. Let σij denote σiσjρij for all i, j = 1, . . .n. Assume that Σ = (σij)i,j=1,...,n is a

Hermitian positive definite matrix. In what follows, r− δi −
σ2

i
2 will be denoted by mi.
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The differential operator associated with the process Xt is the following differential
operator in Rn

+:

L =
1
2

n

∑
i,j=1

σijxixj∂
2
xixj

+
n

∑
i=1

(r− δi)xi∂xi (6)

where xj ≥ 0, 1 ≤ j ≤ n.
Let g denote the payoff stream associated with a perpetual option. The boundary-value

formulation of the problem is as follows:{
[L− r]V + g = 0 in C
V = 0 in S

(7)

where C ⊂ Rn denotes the continuation region, where it is not optimal to exercise the option,
while S ⊂ Rn denotes the early exercise region. The early exercise boundary, ∂S, separating
the two regions should be determined as part of the problem. In the sequel we will consider
explicitly the case where it can be represented as a function xn = b(x1, . . ., xn−1) and we
refer to Peskir (2019) and to Peskir and Shiryaev (2006) for the continuity property of the
exercise boundary.

In order to solve problem (7), first we make the following change of variables:

yj = ln xj, j = 1, . . .n, V(x1, . . ., xn) = e−α1y1−...−αnyn v(y1, . . .yn),

g(x1, . . .xn) = − f (y1, . . .yn)e−α1y1−...αnyn ,

where we choose α =

 α1
. . .
αn

 such that Σα = m =

 m1
. . .
mn

.

The continuation region is mapped into C̃ and problem (7) becomes:{
L̃v = f in C̃
v = 0 in S̃

(8)

where

L̃ =
n

∑
i,j=1

σij

2
∂2

∂yi∂yj
− k2. (9)

Here k2 = r + 1
2 αtΣα ≥ 0 and k is a real nonnegative number.

Let us now consider the Cholesky decomposition for the matrix Σ, that is, Σ = TT∗

where T is a lower triangular matrix (with positive diagonal entries). For example, in the
two-dimensional case we can write:

T =

(
σ1 0

ρσ2 σ2
√

1− ρ2

)
.

Changing to variables Y = TZ and denoting v(Y) = u(Z) the differential equation
L̃v = f is transformed into:

1
2

∆Zu− k2u = ϕ(Z), (10)

where ∆Z is the n-dimensional Laplace operator in the variable Z and ϕ(Z) = f (TZ) =
f (Y). The continuation region is transformed into Cz. For example, if C is of the form

{(x1, . . .xn) ∈ Rn
+; xi < x∗i , i = 1, . . ., n− 1 and xn < b(x1, . . ., xn−1)},

then Cz takes the form{
Z ∈ Rn; zi < ∑i

k=1 t̂ik ln x∗k , i = 1, ..., n− 1, zn < ∑n−1
k=1 t̂n−1,k ln x∗k + t̂nn ln b((TZ)n−1)

}
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where t̂ij are the entries of T−1 and (TZ)n−1 denotes the first n− 1 rows of TZ.
Then we can write the solution for this modified Helmholtz-type equation in terms of

its fundamental solution, En, as follows:

u(Z) =
∫
· · ·

∫
Cz
En(η)ϕ(Z)dη.

The n-dimensional Green kernel En can be computed in terms of modified Bessel
functions of the second kind, Kν. (See Appendix A). More precisely:

En(η) =
−2

(2π)n/2 [
|η|√

2k
]1−n/2K1− n

2
(
√

2k|η|).

Changing back variables, we can write:

V(x1, . . .xn) =
∫
· · ·

∫
Cx
− En(η)g(x1et11η1 , . . .xneΣn

k=1tknηk )

exp[α1t11η1 + . . .αnΣn
k=1tknηk]dη

where, in the above-mentioned case,

Cx =

{
η ∈ Rn; ηi < ∑i

k=1 t̂ik ln(
x∗k
xk

), i = 1, . . ., n− 1,

ηn < ∑n−1
k=1 t̂n−1,k ln(

x∗k
xk

) + t̂nn ln
b(x1et11η1 , . . .xneΣn

k=1tknηk )

xn

}
.

If we insert the optimal boundary xn = b(x1, . . ., xn−1) into the above-obtained expres-
sion for the value function then we get

V(x1, . . .xn−1, b(x1, . . ., xn−1)) = 0,

that is, we get an equation for the unknown function b(x1, . . ., xn−1). We need a guess for
b and then we improve it through numerical iteration. For example, one can start with a
hyperplane joining the points (if any) where the optimal boundary meets the Cartesian
axes, as these points can be obtained solving one-dimensional problems in explicit form.

The advantage of having the equation for the unknown threshold derived above lies
in the possibility of controlling for the approximated expression for b, which provides
guidance for the numerical procedure. As Bessel functions are included in built-in-function
packages in various numerical softwares, the formula above can be easily computed
numerically and thus the procedure can be implemented in practice. In the next section we
connect our analytical procedure to its probabilistic interpretation.

4. Probabilistic Interpretation

In this Section we provide a probabilistic interpretation for the expression of the value
function obtained in Section 3. It is known (see the Ref. Revuz and Yor 1999) that the
transition density of a Bessel process of order ν can be expressed throughout modified
Bessel functions of order ν, that is:

p(ν)t (x, y) =
yν+1

t(x)ν
e−(x2+y2)/(2t) Iν(

xy
t
)1{y>0}.

On the other hand, Bessel processes can be connected to multi-dimensional Wiener
processes. More precisely, in view of a relationship between n-dimensional Brownian
motions and Bessel processes of order ν = n

2 − 1, one can compute the resolvent kernel
for the operator in (10) in terms of modified Bessel functions of order ν. Consider an n-
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dimensional Wiener process, {Wt}, where ft(z) = 1
(2πt)n/2 e−|z|

2/(2t) denotes the probability
density function of Wt. Then the Green kernel

Gk2(z, η) =
∫ ∞

0
e−k2t ft(z)dt

can be computed as

2
(2π)n/2

(
|z− η|√

2k

)1−n/2
K1− n

2
(
√

2k|z− η|), k > 0,

using an identity for this integral transform which is found, for instance, in the Ref. Erdélyi
et al. (1953).

As this Green kernel is the inverse of the operator k2− 1
2 ∆Zu, we obtain the expression

for the fundamental solution En(z) which is derived in Section 3 through a different method.
(See the Appendix A).

5. Discussion and Concluding Remarks

The problem of finding an exact solution for American options on a multiple un-
derlying asset has never been solved, even in the case of a perpetual option. As Firth
(2005) claims, “Pricing single asset American options is a hard problem in mathematical
finance.. . . Pricing multi–asset (high-dimensional) American options is still more difficult”.
As we discussed in the introduction, numerous simulation-based methods and numerical
schemes have been proposed to find an approximate solution to this challenging pricing
problem. The problem can be formulated starting from the stochastic differential equa-
tions modelling the underlying assets and then employing Monte Carlo simulations to
derive approximate solutions; alternatively, one can consider the problem in its partial
differential formulation and construct a discretization with good properties and accuracy.
These approximation methods are based on traditional techniques which have been suc-
cessfully employed with European-type derivatives, but need extra effort when applied to
American-type derivatives, which require additional information about the future paths of
all underlying assets.

One popular methodology employs the least-square Monte Carlo approach introduced
by Longstaff and Schwartz (2001). While Monte Carlo methods are widely known and
easy to implement in principle, they require simulation of the paths of each single stock;
the combination with least-square estimations for American options further slows down
the algorithm. Thus, the execution can become prohibitively time-consuming when the
basket size underlying the option is large and various technical improvements have been
developed to reduce the computational effort (e.g., multi-level Monte Carlo simulation
along with proper numerical schemes, regression at the end of each time step, splitting of
the simulation into several processes and parallel implementation, quantization methods).

Another class of approximation methodologies is based on finite difference approx-
imations of the differential operator which also contains second-order mixed derivative
terms. Thus, the classical finite difference methods lead to some off-diagonal entries in
the matrix associated with the discretized operator, which determines oscillations in the
computed solution and the difference approximation may become unstable. When the
size of the underlying basket is large, the numerical scheme may become unstable, the
results inaccurate, and sometimes pricing multi-dimensional derivatives may even be
impossible. Some improvements have been devised to cope with these deficiencies related
to multi-dimensionality (see Hanbali and Linders 2019; Wu 2013).

In any case, in the absence of an analytical solution, benchmarking the numerically
computed solutions is a hard task and testing the accuracy of the approximation requires
ad hoc theorems for each algorithm.

In this paper, instead of proposing another numerical procedure, we follow an an-
alytical approach to solve the pricing problem for perpetual American options in the
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multidimensional case. We obtain an explicit expression for the option value which is
written as an integral involving modified Bessel functions of the second kind. Although
these functions are non-elementary ones, they are included in built-in-function packages in
various numerical softwares, and thus can be computed numerically in practice.

At the end of Section 3 we provided an equation to determine the optimal exercise
threshold. One limitation of this result is that this equation requires an n-dimensional
integration, which makes effective evaluation difficult to perform for high dimensions. For
low dimensions, the results is of practical use; for higher dimensions, it can be combined
with a numerical solution and may serve as a benchmark to test the reliability of the
numerically computed solution.

Finally, our analysis is limited to the case of perpetual options. Although they are of
limited usage in the financial markets, the analysis of perpetual options suggests methods
for pricing American options with finite maturity (Carr 1998). More importantly, our
results are applicable to real options where usually no expiration date is prescribed to
the decision process. For the real option theory, our result is valuable as it solves a long-
standing open problem: how to express the value function of a multi-factor optimal decision
problem in a mathematically rigorous form. This opens the way to further applications in
management science.
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Appendix A. Bessel Functions and Modified Helmoltz Equation

Let Kν denote a modified Bessel function of the second kind, which satisfies

Kν(x) =
∫ ∞

0 e−x cosh(t) cosh(νt)dt, x > 0.

Kν solves the differential equation:

y
′′
+

1
x

y
′ − (1 +

ν2

x2 )y = 0. (A1)

Moreover, the following properties hold:

Kν(x) ∼
√

π

2x
e−x for x → +∞ (A2)

Kν(x) ∼ Γ(|ν|)
2

(
2
x

)|ν|
and K0(x) ∼ ln

1
x

for x → +0 (A3)

2K′ν(x) = −Kν+1(x)− Kν−1(x). (A4)

Now we show that En(x) = −2
(2π)n/2 [

|x|√
2k
]1−n/2K1− n

2
(
√

2k|x|) is the fundamental solution of

1
2

∆xu− k2u = 0, x ∈ Rn.
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Let ψ ∈ C∞
0 (Rn). Then〈
[
1
2

∆x − k2]En, ψ

〉
=

cn

2
∫

Sn−1

∫ ∞
0 ρ1− n

2 K1− n
2
(
√

2kρ)[
∂

∂ρ
− 2k2](ρn−1 ∂ψ

∂ρ
)dρdΘ

where the integral is written in polar coordinates, cn = −2
(2π)n/2 [

1√
2k
]1−n/2, dΘ = sinn−2 θ1. . .

sin θn−1dθ1. . .dθn−1, and the contribution of ∆Sn−1 is null as the function En is radial. In
view of Equation (A1) we have

∂

∂ρ
[ρn−1 ∂

∂ρ
(ρ1− n

2 K1− n
2
(
√

2kρ)] = 2k2ρ
n
2 K1− n

2
(
√

2kρ)

and thus integration by parts in
∫

dρ yields:〈
[
1
2

∆x − k2]En, ψ

〉
=
−1
2
∫

Sn−1
[ρn−1 ∂En

∂ρ
ψ]∞0 dΘ.

Using (A2) and (A3) the last integral can be written as

−cn

2
(

2√
2k

)n/2−1Γ(
n
2
)ψ(0)

∫
Sn−1

dΘ = ψ(0).

Then [ 1
2 ∆x − k2]En is the Dirac distribution.

Note
1 see the Ref. Broadie and Detemple (1997), for a real-world interpretation
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