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Abstract
Objective.Motor decoding is crucial to translate the neural activity for brain-computer interfaces
(BCIs) and provides information on how motor states are encoded in the brain. Deep neural
networks (DNNs) are emerging as promising neural decoders. Nevertheless, it is still unclear how
different DNNs perform in different motor decoding problems and scenarios, and which network
could be a good candidate for invasive BCIs. Approach. Fully-connected, convolutional, and
recurrent neural networks (FCNNs, CNNs, RNNs) were designed and applied to decode motor
states from neurons recorded from V6A area in the posterior parietal cortex (PPC) of macaques.
Three motor tasks were considered, involving reaching and reach-to-grasping (the latter under two
illumination conditions). DNNs decoded nine reaching endpoints in 3D space or five grip types
using a sliding window approach within the trial course. To evaluate decoders simulating a broad
variety of scenarios, the performance was also analyzed while artificially reducing the number of
recorded neurons and trials, and while performing transfer learning from one task to another.
Finally, the accuracy time course was used to analyze V6A motor encoding.Main results. DNNs
outperformed a classic Naïve Bayes classifier, and CNNs additionally outperformed XGBoost and
Support Vector Machine classifiers across the motor decoding problems. CNNs resulted the
top-performing DNNs when using less neurons and trials, and task-to-task transfer learning
improved performance especially in the low data regime. Lastly, V6A neurons encoded reaching
and reach-to-grasping properties even from action planning, with the encoding of grip properties
occurring later, closer to movement execution, and appearing weaker in darkness. Significance.
Results suggest that CNNs are effective candidates to realize neural decoders for invasive BCIs in
humans from PPC recordings also reducing BCI calibration times (transfer learning), and that a
CNN-based data-driven analysis may provide insights about the encoding properties and the
functional roles of brain regions.

1. Introduction

Motor decoding from neural signals consists in
finding the relationship that maps a multivariate
neural time series to motor outputs. Depending
on the nature of motor outputs to be decoded,
e.g. reach goal positions in 3D space or hand ges-
tures, the neural decoder searches for a particular

input-output relationship. This represents a crucial
stage for brain-computer interfaces (BCIs), which
translate the neural activity into commands to drive
external devices, e.g. for assistive or therapeutic
purposes [1, 2]. Crucially, accurate predictions with
a proper timing are desirable, to correctly translate
the neural activity while guaranteeing contingency
between the recorded neural activity and the control
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of the external device/feedback provided to the user
[3]. Moreover, in addition to practical implications
for BCIs, neural decoders may advance our under-
standing of how the information is encoded in the
brain: indeed, performance metrics of neural decod-
ing unveil the amount of information the neural sig-
nals contain about the decoded motor outputs, and
this can be evaluated across different brain regions
and/or across different time intervals over the course
of the sensorimotor task.

Voluntarymovement has been decoded in human
from invasively recorded signals (in patients), such
as electrocorticographic [4–6] or intracortical [7–10]
recordings, and from non-invasively recorded sig-
nals (in both healthy subjects and patients), such
as magnetoencephalographic [11–14] and electroen-
cephalographic (EEG) [11, 15–24] recordings. Spe-
cifically, simpler motor outputs, such as movements
performedwith different limbs, andmore challenging
motor outputs, such as fine movement trajectories or
positions reached in the space with the same limb,
were decoded. Due to the increased signal-to-noise
ratio [25], neural decoding from invasive recordings
is in general more accurate and might prevail in the
future in most BCI applications, e.g. to restore motor
functions [26]. Crucially, the research on invasive
motor decoding takes advantage from comparative
analyses on invasive procedures in animal models,
such as non-human primates (NHP), to better com-
prehend the neural activity at the cellular level and,
thus, better address the decoding of invasive record-
ings in humans.

Among the brain areas encoding reaching and
grasping properties, the posterior parietal cortex
(PPC) is a crucial node and has received much
attention in the recent neurophysiological literature.
Specifically, PPC in humans and NHPs hosts areas
involved in the sensorimotor processing required
to generate action plans [27–30]. The neural activ-
ity recorded from PPC areas was used to decode
reach endpoints and trajectories, as well as grasp-
ing parameters, both in NHPs [31–34] and human
patients [10, 35]. Among PPC areas, the V6A area (in
the dorsomedial stream) encodes reaching goals and
directions [36–39] in addition to grasp information
[40], and it was recently proved that reaching and
grasping properties can be reliably decoded fromV6A
in NHPs [41–44].

Machine learning approaches are widely used
for neural decoding [45], based on a pipeline that
processes the input neural activity via separate
stages including feature extraction, feature selection
and classification/regression. Deep neural networks
(DNNs) are recent advances of machine learning that
realize an end-to-end learning framework. That is, the
classic machine learning pipeline, implementing sep-
arate stages, is replaced with a single learning system

that learns to directly map the input neural activ-
ity to the desired output. Crucially, the DNN-based
learning system automatically learns the most rel-
evant neural features to realize the desired input-
output mapping. Over the past decade, DNNs were
successfully designed and applied for neural decoding
[46], performing on par or even outperforming state-
of-the-art machine learning approaches [16, 44–
51]. Furthermore, DNNs facilitate the adoption of
transfer learning. Transfer learning is inspired by
the human capability to use the knowledge learned
in a source domain/task to improve the perform-
ance and/or reduce learning time in a related target
domain/task [52]. This technique is growing interest
in neural time series decoding (e.g. see [49, 53, 54]
in case of EEG decoding, where a user-to-user trans-
fer is adopted), mainly with the aim of increasing the
decoding performance with few training examples, in
the perspective of reducing calibration time in BCI
applications.

DNNs are composed by many layers of artifi-
cial neurons. By learning simple non-linear functions
within each layer and by composing these functions,
DNNs learn to approximate a complex and non-
linear function which maps the input multivariate
neural activity to the proper output. Depending on
the connections established across artificial neurons,
recurrent neural networks (RNNs), feed-forward and
fully-connected neural networks (FCNNs), and feed-
forward and convolutional neural networks (CNNs)
can be designed. The weights defining the connec-
tions across artificial neurons are collected into a set
of trainable parameters that must be optimized dur-
ing a training process. In addition, the parameters
defining the functional form of the decoder (e.g. the
number of artificial neurons per layer, the numbers of
layers, etc.), also called ‘hyper-parameters’, need to be
set before the network training starts and should be
optimized using hyper-parameter tuning algorithms,
such as Bayesian optimization [55], as suggested by
Glaser et al [45] for neural decoding. In particular,
the interest on CNNs has rapidly increased in recent
years, especially in EEGdecoding in humans [47], and
these networks represent themost frequently adopted
DNNs for EEG, mainly for the following reasons: (i)
they are lighter, that is, they introduce less trainable
parameters to fit, proving to outperform significantly
other DNNs [51] also in case of limited-sized data-
sets; (ii) they are faster to train, thus, they are par-
ticularly suitable to be used as decoders in BCI prac-
tical scenarios [49, 53]. Furthermore, the interest in
CNNs has recently extended also to other recording
modalities as well, e.g. the CNNs proposed to pro-
cess EEG in humans have been modified and adap-
ted to decode magnetoencephalography [56] and
electrocorticography [57]. Conversely, decoding of
invasive neural recordings from NHPs, particularly
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motor decoding, widely relies on RNNs, based
on long-short-term memories (LSTMs) or gated-
recurrent units (GRUs), and on FCNNs, achieving
significant performance improvements over other
machine learning approaches, such as XGBoost, sup-
port vector machine (SVM), Kalman and Wiener fil-
ter, and Naïve Bayes (NB) classifiers [45, 46]. Only
recently we investigated the design and application
of CNNs for decoding the activity of single neur-
ons in NHP brain [44]. Specifically, that study [44]
was focused on motor decoding of reaching from
PPC recordings (including V6A recordings); how-
ever, CNNs were only compared with a machine
learning approach based on a NB classifier, without
evaluating other DNNs and other successful tradi-
tional machine learning approaches (e.g. XGBoost
and SVM), and addressed only the decoding of reach-
ing endpoints. It remains still unclear how different
DNNs perform in decoding motor states from single-
neuron activity, also considering different types of
motor outputs to be decoded, corresponding to dif-
ferent recording paradigms, e.g. involving reaching
movements only or reach-to grasp movements.

In this study, we aim at contributing to single-
neuron motor decoding from V6A by evaluating dif-
ferent families of DNNs (FCNNs, CNNs, and RNNs)
and by comparing them with traditional machine
learning approaches, including the NB classifier that
we already adopted in our previous studies [41–44]
and other two traditional approaches, XGBoost and
SVM, that proved to perform well in Glaser et al [45].
All neural decoders were trained using a sliding win-
dow approach, useful to reveal the temporal dynamics
of motor encoding in V6A. Neural network optimal
hyper-parameters were searched by using Bayesian
optimization. Analyses were conducted using three
different datasets collected from four macaque mon-
keys: one dataset, collected on two monkeys, refers
to a reaching task towards different endpoints in 3D
space and the other datasets, collected on the other
two monkeys, refer to a reach-to-grasping task of dif-
ferent grip shapes performed, by each of the twomon-
keys, in two different illuminance conditions (light vs.
dark). This was performed to provide broad andmore
robust evaluation of neural decoders using different
DNNs across different nature of recording paradigms
(i.e. decoding tasks). Furthermore, decoders were
evaluated by using a bank of experiments devoted
to inspecting decoding capabilities in different con-
ditions, that is, when using the entire dataset, when
reduced datasets are simulated, by reducing either the
number of recorded cells or recorded trials from the
whole datasets, and when applying transfer learning
from a task to another (task-to-task transfer learn-
ing within the samemonkey). These experiments aim
at providing a more complete evaluation of decoders,
also as a function of recorded cells and trials, and to

test the feasibility of transferring the knowledge from
neural networks trained in one task to another.

2. Materials andmethods

In this section, first, we describe the datasets
and formalize sliding window decoding of single-
neuron activity, introducing useful notations. Then,
we describe the DNNs used for decoding, the
hyper-parameter search approach, and the train-
ing strategies. Lastly, the performed statistical ana-
lyses are illustrated. DNNs were developed in Python
(version 3.8.5) using the PyTorch library (version
1.9.0) [58] and the optimizations were performed
on a workstation equipped with an AMD Threadrip-
per 1900X, NVIDIA TITAN V and 48 GB of RAM.
Codes are available at https://github.com/ddavidebb/
macaque-single-neuron-decoding.git. Since many
notations and equations will be introduced in the fol-
lowing subsections, all symbols are resumed in table 1
to ease the reading.

2.1. Data description
The learning systems were designed and applied on
signals recorded during two experimental paradigms,
involving a reaching task and a reach-to-grasping
task, respectively. For each experimental condition,
single-neuron activities were recorded extracellularly
from the posterior parietal area V6A (figure 1(a),
for more details on the location and reconstruction
of electrode penetration see [59]) in male Macaca
fascicularis monkeys. Two monkeys (m1, m2) were
recorded in the reaching task and other two mon-
keys (m3, m4) in the reach-to-grasping task. Over-
all, from these recordings three datasets were con-
sidered in this study (one from the reaching task,
two from the reach-to-grasping task), addressing
three different decoding problems. These were reach
decoding, reach-to-grasp decoding in good illumin-
ation condition, and reach-to-grasp decoding in
darkness. The study was performed in accordance
with the guidelines of EU Directives (86/609/EEC;
2010/63/EU) and Italian national law (D.L. 116-92,
D.L. 26-2014) for the care and use of animals for sci-
entific purposes. Experimental protocols have been
approved by the Ethical Committee of the University
of Bologna and by the Animal Welfare Body of the
University of Bologna.

2.1.1. Reaching
Signals recorded in [41] were used. Specifically, the
activity of 138 and 120 cells was recorded from
the two monkeys (m1 and m2) respectively, while
they performed a reaching task (more details about
recording procedure can be found in [41]); action
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Table 1. Summary of the introduced notations: symbols and descriptions.

Symbol Description

m1–m4 Monkey identifiers
Xt Multivariate neural activity recorded from the tth trial
N No. of recorded cells
T No. of time steps
Xt,i Multivariate neural activity contained in the ith chunk extracted from Xt while performing sliding

window decoding
Tz No. of time steps defining Xt,i for sliding window decoding
Ts No. of time steps used as stride factor for sliding window decoding
M No. of chunks that can be extracted from Xt using Tz and Ts

yt Class associated to the tth trial (Xt)
C Set of classes
ck kth class, contained in C
Nc No. of decoded classes
yt,i Class associated to the tth trial and ith chunk (Xt,i)
ϑ Set of trainable parameters
η Set of hyper-parameters
f(Xt,i;ϑ,η) Output of a classifier parametrized in trainable parameters (ϑ) and hyper-parameters (η) when Xt,i is

provided as input
W Weights: can have subscript superscript, also depending on the formalization (e.g.Wo weights of the

output layer)
b Biases: can have subscript superscript, also depending on the formalization (e.g. bo biases of the output

layer)
ypt,i Class predicted by the network when Xt,i is provided as input
y(l) Output of the lth layer in FCNNs and CNNs
Nu No. of artificial neurons used in each hidden layer in FCNNs
Nl No. of hidden layers used in FCNNs and RNNs
pdrop Dropout probability
Nb No. of convolutional blocks in CNNs
Nlb No. of hidden convolutional layers per block in CNNs
F Size of convolutional kernels along the time axis
K No. of convolutional kernels learned in each convolutional layer
Y(l) Multidimensional output of convolutional layers (once flattened, corresponds to y(l))
H No. of features of the hidden state in a GRU
zn Output of the update gate at time step n in a GRU
rn Output of the reset gate at time step n in a GRU
σ Sigmoid function

ĥn New memory content at time step n in a GRU
tanh Hyperbolic tangent function
⊙ Element-wise product
hn New state at time step n in a GRU
k(η) Objective function used to optimize η
j(ϑ) Loss function used to optimize ϑ
lr Learning rate used while optimizing the loss function j(ϑ)

potentials (spikes) were isolated and sampled at
100 KHz.

Monkeys sat on a primate chair with their head
restrained in front of a horizontal panel housing nine
LEDs located at three different directions and dis-
tances with respect to the eyes (but all at the eye level,
figure 1(b)). The directions were 0◦ (sagittal), −15◦

and +15◦ (respect the sagittal direction), while the
depths were 10, 15, and 25 cm from monkey eyes;
LEDs were placed in this way to enable the inclusion
ofmost of the peripersonal space in front of the anim-
als, from the nearest (10 cm) to the farthest (25 cm)
depths reachable by monkeys. Animals were trained
to perform reaching movements toward one of the

nine LEDs at a time in a randomized order, using the
arm contralateral to the recorded hemisphere.

For each position to reach, 10 recording tri-
als were recorded, overall resulting in 90 trials for
each monkey and neuron (randomized per position
to reach). Each trial consisted of different phases
(figure 1(c)) hereafter referred as ‘epochs’.

Specifically, the trial started when the monkey
pressed a ‘home button’ near to its chest in complete
darkness and then the animal waited for instructions
for 1 s (free epoch, epoch 0). One LED switched on
(green) and the monkey started maintaining the fixa-
tion on the target LED for 0.5 s (fixation epoch), while
keeping the home button pressed. Thus, during the
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Figure 1. Dataset description. Panel (a)—Dorsal view of the left hemisphere of macaque brain. The green highlighted area
represents V6A. The shown directions are A= anterior, L= lateral. Panel (b)—Reach and reach-to-grasp decoded classes. During
reach decoding, the reached endpoint (one among 9 targets in space) was classified; during reach-to-grasp decoding, the grip type
(one among 5 different grips) was classified. Panel (c)—Trial structure for both the reaching task and reach-to-grasping task. Top:
The epochs defining each trial, which have the same definition across recording paradigms, are illustrated for both the reaching
task and reach-to-grasping task (displaying both the LED to reach and the panel containing the object to reach and grasp).
Bottom: The epoch timings are described, separately for the reaching task and reach-to-grasping task.

0.5 s-fixation epoch the monkey focused attention on
the target LED to reach during the task. After 1.7–
2.5 s of rest with no arm or eye movements (delay
epoch), the target LED changed its color (from green
to red, go-signal), cueing the animal to start reach-
ing the foveated target LED, releasing the home but-
ton. The animal behavior in fixation epoch and delay
epochwas the same (fixation of the LED to reach); the
separation between these two epochs was kept to uni-
form reaching and reach-to-grasping tasks to ease the
comparison between tasks. The delay epoch was sub-
divided into two parts: the early delay epoch (epoch
1) and the late delay epoch (epoch 2), by extracting
a 1 s interval after the start of the delay epoch and a
1 s interval before the end of the delay epoch, respect-
ively. Once the delay epoch ends, a reaction time epoch
(epoch 3, between the onset of the go-signal and
the release of the home button) and movement epoch
(epoch 4, between the release of the home button and
the touch of the target LED) can be identified. Once
reached the target, the monkey had to hold the target

LED for 0.8–1.2 s (hold epoch, epoch 5) and finally,
the LED switched off, cueing the animal to return to
the home button and ending the trial.

2.1.2. Reach-to-grasping
Signals recorded in [42] were used. Specifically, the
activity of 93 and 75 cells was recorded from the two
monkeys (m3 and m4) respectively, while monkeys
performed a reach-to-grasping task (more details
about recording procedure can be found in [42]);
action potentials (spikes) were isolated and sampled
at 100 kHz.

Monkeys sat on a primate chair with their head
restrained in front of a rotating panel containing
five different objects (figure 1(b)). The objects were
chosen to evoke reach-to-grasp with different hand
configurations. These were: a ball (c0: whole-hand
prehension), ring (c1: hook), plate (c2: primitive
precision grip), stick-in-groove (c3: advanced preci-
sion grip), handle (c4: finger prehension). Objects
were presented to the monkey one at a time, in
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a randomized order. Animals were trained to per-
form reach-to-grasping movements toward the tar-
get object with the arm contralateral to the recorded
hemisphere.

Each animal performed two sessions, differing for
the illumination (present or absent) of the object to
grasp (see below). In each session, for each object to
grasp, 10 recording trials were recorded, overall res-
ulting in 50 trials for each monkey and neuron (ran-
domized per object to be reached and grasped). In the
following, the different phases (‘epochs’) of the trial
are descripted and are illustrated in figure 1(c).

The trial started when the monkey pressed a
‘home button’ near to its chest in complete dark-
ness and then, the animal waited for instructions for
1 s (free epoch, epoch 0). Subsequently, the fixation
LEDmounted on top of the rotating panel turned on
(green), and the monkey had to maintain the fixa-
tion on the LED without performing any movement.
After a fixation period of 0.5–1.0 s (fixation epoch),
the LEDs surrounding the object to grasp turned
on, illuminating the object to reach and grasp for
0.5 s (object visualization epoch). Thus, during the
0.5 s-object visualization epoch the monkey focused
attention on the specific shape to grasp during the
task. Then, depending on the experimental condi-
tion, all the following trial phases were performed
with (light condition) or without (dark condition)
illumination around the object to grasp (i.e. in dark
condition the LEDs surrounding the object turned
off). These two experimental conditions were per-
formed to also consider the effect of object visual
information (present vs. absent) while performing
the reach-to-grasp task. The monkey maintained the
fixation on the LED without releasing the home but-
ton for a period of 1–1.5 s (delay epoch). This epoch
was subdivided into the early delay epoch (epoch 1)
and late delay epoch (epoch 2), as done in the reach-
ing task. Then, the fixation LED changed its color
(from green to red), representing the go-signal for the
reach-to-grasp movement, and reaction time epoch
and movement epoch can be identified (epochs 3,4,
respectively). Once performed the movement, the
monkey had to keep holding (hold epoch, epoch 5)
the grasped object until the fixation LED switched off
(0.8–1.2 s). The LED switch-off cued the monkey to
release the object and press the home button again,
starting a new trial with a different object to reach and
grasp.

Reach-to-grasping performed with or without
illumination around the object to grasp were sep-
arately decoded in this study and are referred in
the following as ‘light’ and ‘dark’ reach-to-grasp
datasets, to also investigate modulations in decod-
ing performance due to the presence or absence
of object visual information immediately before

(delay epochs) and during the reach-to-grasp
movement.

2.1.3. Pre-processing and data splitting
All datasets were pre-processed as follows. For each
trial and neuron, spikes were initially binned within
a window of 5 ms (i.e. bin width of 5 ms). Generally,
the bin width is chosen as a trade-off between noise
reduction (the discharge activity of a biological net-
work is subject to noise by definition), exploitingwide
bin widths, and temporal resolution (depending on
the speed of the neural processes under investigation),
exploiting narrower bin widths. As we were interested
into leaving decoders free to learn also motor features
related to high-frequency dynamics [60, 61] which
can help neural decoding of motor states [21], in our
study the bin width was set to 5 ms. As epochs may
have a different duration across trials and neurons
(e.g. the movement epoch), epochs could differ in the
number of resulting bins. To obtain the same num-
ber of bins across trials and neurons, for each epoch
the average number of bins across trials and neur-
ons was computed. Then, the activity of each trial and
neuron was re-binned using a window that produces
the so obtained average number of bins per epoch
(thus, the window may slightly differ from the ini-
tial 5 ms-window). This procedure is the same adop-
ted in [44]. Firing rates were then computed on the
re-binned activity; thus, in this study the multivari-
ate neural activity was described bymeans of neurons’
firing rates. Firing rates recorded during the free, early
delay, late delay, reaction time, movement (reach
or reach-to-grasp), and hold epochs were collected
and used in this study. Ten-fold cross-validation was
applied to partition the dataset of each monkey into
training and test set; then, a 10% of examples from
the training set was held back as validation set. There-
fore, in case of the reaching dataset, for each monkey
and each fold, the data splits resulted: 9 trials (one per
target position) in the test set, 9 trials (one per target
position) in the validation set, and the remaining 72
trials (8 trials per target position) in the training set.
In case of the reach-to-grasp datasets (both light and
dark), for each monkey and each fold, the data splits
resulted: 5 trials (one per grip type) in the test set, 5
trials (one per grip type) in the validation set, and the
remaining 40 trials (8 trials per grip type) in the train-
ing set. Note that, the free epoch was included only in
the trials belonging to the test set (i.e. epochs from0 to
5 for testing, and epochs from 1 to 5 for training and
validation), i.e. algorithms were only trained on the
trial epochs in which the animal was engaged in the
task. It is worth noticing that, in this study we did not
apply a trial-level decoding, but we applied a sliding
windowdecoding approach, which inherently implies
data augmentation, thus overcoming the problem of
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Figure 2. Sliding window decoding. Overlapped chunks Xt,i of shape (N,Tz) were extracted from the multivariate neural activity
Xt using a stride of Ts time samples, where Tz is the number of time samples of each chunk. Each trial was associated with a motor
class yt ∈ C, and all chunks extracted from that trial were associated to the motor class the trial belonged to, i.e. yt,i = yt,∀i. Each
sampled chunk (Xt,i) represented the input for the neural decoder, while its associated class yt,i represented the desired output for
the neural decoder. Therefore, the neural decoder was trained to learn how to map each chunk Xt,i to the proper motor class yt,i,
via the function f(Xt,i;ϑ,η) : RN×Tz → C, parametrized in the trainable parameters (ϑ)and hyper-parameters (η).

datasets having a low number of trials (see section 2.2
below).

2.2. Sliding window neural decoding
Neural decoding was addressed adopting a sliding
window approach. This enables to realize learning
systems that decode small portions of neural signals
within the trial course (i.e. ‘chunks’ of neural activ-
ity comprising a few hundreds of ms, chunk-level
decoding), instead of the entire trial (i.e. trial-level
decoding). The sliding window decoding procedure
is often adopted in the literature [41–44, 62] since
it exhibits three main advantages. First, learning sys-
tems are forced to associate the proper label (in case
of classification tasks) to a few hundreds of milli-
seconds of signals instead of to the entire trial (single-
trial decoding), thus, providing a faster and earlier
inference over the trial course. Second, learning sys-
tems may be used to analyze the temporal dynamics
of motor encoding (in this case, reach and reach-to-
grasp encodings) by using chunk-by-chunk predic-
tion performance as measure of neural encoding over
time of the motor-related brain states. Third, com-
pared to trial-level decoding, this decoding proced-
ure is equivalent to augmenting data by applying a sli-
cing technique, which is commonly adopted for time
series classification [63] and is the most common
data augmentation strategy adopted for neural time
series (e.g. EEG [64]). The sliding window approach,
applied with the parameters described in the follow-
ing paragraph, allowed considerable augmentation of
examples in the training, validation and test set (see
the number of examples in table 2); for instance, the
training data were augmented by approximately 75
times, resulting in about 600 training examples per
condition (i.e. target position or grip type) on average
across reaching and reach-to-grasping tasks, rather
than 8 training examples per condition as it would be
in case of trial-level decoding.

To perform sliding window neural decoding,
neurons’ firing rates were processed as follows, for
each monkey (see figure 2).

Let Xt be the multivariate neural activity in the
tth trial, having shape (N,T), where N is the number
of recorded neurons (N= 138,120,93,75, inm1-m4,
respectively) and T is the number of time samples in
the trial. Overlapped chunksXt,i of shape (N,Tz)were
extracted with a stride of Ts, where Tz is the number
of time samples of each chunk, and were fed as input
to the neural decoder:

Xt,i = Xt [:, iTs : iTs +Tz − 1] , 0⩽ i ⩽M− 1, (1)

where i is the chunk index and M is the total num-
ber of chunks that can be extracted using Tz and
Ts as chunk size and stride, respectively, i.e. M=
(T−Tz)/Ts + 1. Tz and Ts are hyper-parameters of
this decoding approach and were set as in [44]. We
set Tz = 60 (=300 ms) and Ts = 10 (=50 ms) dur-
ing the training phase of the decoder, while Ts = 1
(=5 ms) during the testing phase. That is, during
training a higher stride was used to speed up the com-
putation, while during testing chunks were extracted
with the maximum overlap, producing an inference
with a high time resolution of 5 ms steps. Further-
more, the inference was performed also on the free
epoch (epoch 0), to check for random motor decod-
ing when the monkey was not engaged in the task.
Dataset details are summarized in table 2 together
with the total number of training, validation, and test
examples resulting for each dataset.

The addressed decoding problems were the clas-
sification of nine different target positions in space
(reaching task) and five different grip types (reach-
to-grasping task) from neuron firing rates. Each trial
Xt was associated to a single class, corresponding to
the target position to reach or the specific shape of the
object the monkey had to grasp in that trial, i.e. yt ∈
C= {ck} , 0⩽ k⩽ Nc − 1, where Nc = 9 or Nc = 5 is
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Table 2. Description of the datasets.

Reaching (m1/m2)
Reach-to-grasping:
light (m3/m4)

Reach-to-grasping:
dark (m3/m4)

No. of decoded classes (Nc) 9 5 5
No. of recorded cells (N) 138/120 93/75 93/75
Epochs Train. and valid. 1–5 1–5 1–5

Test 0–5 0–5 0–5
No. of time steps (T) Train. and valid. 780/773 812/816 815/818

Test 981/974 1013/1017 1016/1019
No. of examples Train. 5256/5184 3040/3040 3040/3040

Valid. 657/648 380/380 380/380
Test 8298/8235 4770/4790 4785/4800

the number of motor classes (see section 2.1). There-
fore, while performing sliding window decoding, the
class associated to each chunk (yt,i) was the one asso-
ciated to the trial the chunk was extracted from:

yt,i = yt, 0⩽ i ⩽M− 1. (2)

DNNs were used as classifiers f(Xt,i;ϑ,η) :
RN×Tz → C, parametrized in the trainable paramet-
ers and hyper-parameters contained in the arrays
ϑ, and η, respectively. Specifically, monkey-specific
decoders were designed, by using monkey-specific
datasets to tune trainable parameters and hyper-
parameters of DNNs. Hyper-parameters must be set
before the model training starts; these parameters
can be optimized on a separate validation set via a
hyper-parameter search procedure. Trainable para-
meters are the collection of weights (W) and biases
(b) that model connections across the artificial neur-
ons included in the network (see section 2.3.1); these
are learned on the training set during the network
training.

2.3. Neural decoders
2.3.1. Deep neural networks
In this study, three families of neural networks were
investigated, differing mainly in the type of con-
nections across artificial neurons; these included
networks with feed-forward and dense connec-
tions (FCNNs), feed-forward and sparse connec-
tions (CNNs) and recurrent connections (RNNs).
The designed neural networks are schematized in
figure 3. In the following, these neural networks,
including their main hyper-parameters, will be
described. In the proposed formulations, W and b
denote weight matrices and bias arrays introduced
by a layer, respectively; these may include different

subscripts and superscripts in the description of hid-
den connections depending on the specific formula-
tion, while the connections with the output layer are
denoted by Wo,bo. Lastly, ypt,i denotes the predicted
class associated to the ith chunk of the tth trial.

2.3.1.1. FCNN
In this network structure, layers of artificial neurons
are stacked realizing all possible connections between
the lth and (l-1)th layers. The input layer was com-
posed by N ·Tz artificial neurons and simply replic-
ated the flattened (i.e. reshaped to 1-D) input Xt,i.
The network includedNl hidden fully-connected lay-
ers, each composed by Nu artificial neurons, in addi-
tion to input and output layers. For each hidden
layer, activations were normalized via batch normal-
ization (BN) [65], passed through an exponential lin-
ear unit (ELU) non-linearity [66], i.e. f(x) = x, x> 0
and f(x) = exp(x)− 1, x⩽ 0 and dropout [67] was
applied with a dropout probability pdrop. Lastly, the
output layer was a fully-connected layer composed
by Nc neurons, activated via softmax non-linearity
to provide as output the conditional probabilities
p(ck|Xt,i). Finally, the predicted class ypt,i was com-
puted as the most probable one among theNc classes.
The FCNN structure is schematized in figure 3(a).

A single forward-pass through this network (dur-
ing inference, when dropout is not applied) can be
formalized as:

y(0) = flatten(Xt,i) ∈ RN·Tz (3)

y(l) = ELU
(
BN

(
W(l)y(l−1) + b(l)

))
, 1⩽ l⩽ Nl,

(4)

having indicated with y(l) the lth layer output.

{
f(Xt,i;ϑ,η) = softmax

(
Woy(Nl) + bo

)
= p(ck|Xt,i)

ypt,i = argmax
k

(p(ck|Xt,i)) , 0⩽ k⩽ Nc − 1 (5)
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Figure 3. Architecture structures. For brevity, all schematizations refer only to reach-to-grasp decoding (decoding of 5 different
grip types). Panel (a)—FCNNs. Panel (b)—CNNs. On the left, the fundamental convolutional block exploited to realize CNNs is
schematized visualizing its main layers; here, convolutional, and pooling kernels are represented by blue and red boxes,
respectively. Note that, for brevity only the first convolutional block is visualized; the subsequent ones only differ for the
convolutional kernel sizes, see section 2.3.1. On the right, the overall CNN structure is represented. Panel (c)—RNNs. On the left,
the fundamental Gated Recurrent Unit (GRU) used to realize RNNs is schematized. On the right, the overall RNN structure is
represented.

2.3.1.2. CNN
Unlikely the networks densely connected across arti-
ficial neurons (as in FCNNs), in CNNs neurons
could also be sparsely connected between the lth and
(l-1)th layers. That is, each hidden layer compute
convolutions between the local input and a set of ker-
nels, realizing sparse connections between its local
input and local outputs (also called ‘feature maps’).

The input layer was composed by artificial neur-

ons arranged in 2D replicating the input Xt,i. Then,

hidden layers performing 2D convolutions were

included. These were grouped into Nb convolutional

blocks (schematized on the left of figure 3(b)), each

including the stack of Nlb hidden convolutional lay-

ers. The very first convolutional layer performed
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convolutions in both space and time domains (mixed
spatio-temporal convolutions) using kernels of size
(N, F), while all other convolutional layer performed
convolutions in time domain using kernels of size
(1, F). F denotes the kernel size along the time axis.
Each convolutional layer learned K kernels and per-
formed convolutions with unitary stride and with
a padding of (0, F//2), where // is the floor divi-
sion operator. For each hidden layer, activations were
normalized via BN [65] and passed through an ELU
non-linearity [66]. Each block ended with an aver-
age pooling layer using a kernel size and stride of
(1, 2), halving the temporal dimension, and with
dropout [67] using a dropout rate pdrop. After the
sequence of the convolutional blocks, an output layer
withNc neurons, fully-connected to the feature maps
provided by the last layer of the convolutional mod-
ule, was included, and activated via softmax non-
linearity to provide as output the conditional prob-
abilities p(ck|Xt,i). Finally, the predicted class ypt,i
was computed as the most probable one among the

Nc classes. The CNN structure is schematized on the
right of figure 3(b).

The 2D convolution performed in the lth convo-

lutional layer between a kernel W(l)
f (0⩽ f ⩽ K− 1)

and its local input Y(l−1) can be seen as a matrix

multiplication between a sparse matrix W ′(l)
f and

the flattened local input y(l−1) = flatten
(
Y(l−1)

)
. The

sparsematrixW ′(l)
f is obtained fromToeplitzmatrices

computed on the zero-padded kernelW(l)
f [68]. From

this reformulation, sparse and shared interactions
between artificial neurons are better highlighted, due

to the sparsity of W ′(l)
f and to the reuse of the same

weights withinW ′(l)
f (i.e. many connections share the

same weight).
A single forward-pass through this network (dur-

ing inference, when dropout is not applied) can be
formalized as:

y(0) = flatten(Xt,i) ∈ RN·Tz (6)


y(l)f = ELU

(
BN

(
W ′(l)

f y(l−1) + b(l)
))

y(l)f = pool
(
y(l)f

)
, if mod(l,Nlb) = 0,

y(l) =
[
y(l)0 , . . . ,y(l)f , . . . ,y(l)K−1

] 1⩽ l⩽ Nlb ·Nb,0⩽ f ⩽ K− 1, (7)

where y(l) denotes the lth layer output (obtained
by concatenating the flattened activations contained

in y(l)f ,∀f) and mod(x,y) represents the modulo
operating division returning the remainder after divi-
sion of x by y.

{
f(Xt,i;ϑ,η) = softmax

(
Woy(Nlb·Nb) + bo

)
= p(ck|Xt,i)

ypt,i = argmax
k

(p(ck|Xt,i)) , 0⩽ k⩽ Nc − 1 (8)

2.3.1.3. RNN
This network structure exploits recurrent connec-
tions across artificial neurons. A GRU is a RNN
(schematized on the left of figure 3(c)), which can
be seen as a variant of LSTMs with comparable
performance while being less complex, more effi-
cient, and introducing less trainable parameters [69,
70]. A GRU keeps memory of the past using a hid-
den state hn and exploits update gate zn and reset
gate rn to control the propagation of the input
information at the time step n, in our study rep-
resented by the input features xn collected across
V6A neurons Xt,i = [x1, . . . ,xn, . . . ,xTz]. During for-
ward pass, these gates process the information as

follows, indicating with σ the sigmoid function,
and with i and h the local input and hidden state,
respectively.

zn = σ (Wizxn + biz +Whzhn−1 + bhz) (9)

rn = σ (Wirxn + bir +Whrhn−1 + bhr) (10)

The update gate will determine how much of the
past information needs to be passed, while the reset
gate will determine howmuch of the past information
to forget (with zn and rn varying between 0 and 1).
The gates take connections with the same artificial
neurons but differ in the weights and biases and in
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how these gates are used within the GRU. Next, a new
memory content ĥn is computed based on the inform-
ation passed through the reset gate:

ĥn = tanh
(
Wiĥxn + biĥ + rn ⊙

(
Whĥhn−1 + bhĥ

))
,

(11)

where ⊙ indicates the element-wise product. Lastly,
the information passed through the update gate is
used to determine what to collect from the new
memory content ĥn and from the previous step hn−1:

hn = (1− zn)⊙ ĥn + zn ⊙ hn−1. (12)

The input layer was composed by artificial neur-
ons arranged in 2D replicating the inputXt,i. The net-
work was composed by the sequence of Nl hidden

GRU layers (i.e. multilayer GRU or stacked GRU),
each having H features in the hidden state. After
each layer, dropout [67] with a dropout rate pdrop
was applied. Lastly, an output layer with Nc neurons,
fully-connected to the hidden state of the last layer

at the last time step (h(Nl)
Tz

) was included, and activ-
ated via softmax non-linearity to provide as output
the conditional probabilities p(ck|Xt,i). Finally, the
predicted class ypt,i was computed as the most prob-
able one among the Nc classes. The RNN structure is
schematized on the right of figure 3(c).

A single forward-pass through this network (dur-
ing inference, when dropout is not applied) can be
formalized as:

h(0) =
[
h(0)
1 , . . . ,h(0)

n , . . .h(0)
Tz

]
= Xt,i

= [x1, . . . ,xn, . . . ,xTz] (13)


ĥ(l)
n = tanh

(
W(l)

iĥ
h(l−1)
n + b(l)

iĥ
+ r(l)n ⊙

(
W(l)

hĥ
h(l)
n−1 + b(l)

hĥ

))
h(l)
n =

(
1− z(l)n

)
⊙ ĥ(l)

n + z(l)n ⊙ h(l)
n−1

, 1⩽ l⩽ Nl,1⩽ n⩽ Tz (14)

 f(Xt,i;ϑ,η) = softmax
(
Woh

(Nl)
Tz

+ bo
)
= p(ck|Xt,i)

ypt,i = argmax
k

(p(ck|Xt,i))
, 0⩽ k⩽ Nc − 1 (15)

2.3.2. Automatic hyper-parameter search
Automatic hyper-parameter search is devoted to find-
ing the optimal hyper-parameters of a learning sys-
tem on a validation set (different from the train-
ing and test sets). The optimal hyper-parameters η∗,
so that η∗ = argmin k(η)

η
, are searched automatic-

ally, where k(η) is an objective function being eval-
uated on the validation set. As objective function,
the same loss function used to optimize the train-
able parameters could be used or the objective func-
tion can be based on a specific performance meas-
ure (e.g. the accuracy or F1 score) [55, 71]. In this
study, we used k(η) = 1− acc(η) as objective func-
tion, where acc(η) is the average accuracy across all
time samples and across epochs, obtained with a spe-
cific hyper-parameter configuration η. Therefore, the
optimal hyper-parameters that maximize the decod-
ing accuracy were searched. The hyper-parameters
automatically searched for each network architecture
(FCNN, CNN, RNN) are described in table 3.

For each hyper-parameter configuration, a new
training stage and a new evaluation stagemust be per-
formed. Thus, depending on the number of hyper-
parameters to optimize and on the model com-
plexity (in general both high in DNNs), automatic

hyper-parameter search can be expensive. Hyper-
parameter search algorithms (e.g. grid search and
random search) generally look for η∗ without exploit-
ing results from past iterations to select the array η
to be evaluated in the next iteration (uninformed
algorithms), often wasting time on unpromising η
values.

Bayesian optimization overcomes this limitation,
by suggesting in an informed way, the next hyper-
parameters η to be evaluated. By investigating prom-
ising hyper-parameter configurations based on past
results, Bayesian optimization can find better config-
urations than other approaches within fewer itera-
tions compared to uninformed algorithms (e.g. grid
or random search) [55]. Specifically, a Bayesian stat-
istical model p(k|η) of the objective function (called
‘surrogate model’) is used and it is updated after each
iteration, by keeping track of past evaluation results,
i.e. each pair (η, k(η)). Crucially, this surrogatemodel
is easier to optimize than the actual objective function
k(η), and its optimization after each iteration is based
on a criterion called ‘selection function’. Then, after
each iteration the hyper-parameters that performbest
on the surrogate are used to update the structure of
the learning system, for the training and evaluation in
the next iteration. A more detailed description of this
automatic hyper-parameter search algorithmused for
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Table 3. Searched hyper-parameters: distributions and values. For each hyper-parameter, the value was sampled from a set of discrete
values during hyper-parameter search.

Hyper-parameter Distribution Values

FCNNs No. of hidden layers (Nl) Uniform [1, 2, 3, 4]
No. of units (Nu) Uniform [16, 32, 64, 128]
Dropout rate (pdrop) Uniform [0, 0.25, 0.5]
Use batch norm. Uniform [False, True]
Learning rate (lr) Log-uniform [10−4, 5·10−4, 10−3, 5·10−3, 10−2]

CNNs No. of blocks (Nb) Uniform [1, 2]
No. of hidden layers per block (Nlb) Uniform [1, 2, 3]
No. of kernels (K) Uniform [4, 8, 16, 32]
Kernel size in time axis (F) Uniform [11, 21, 31, 41]
Dropout rate (pdrop) Uniform [0, 0.25, 0.5]
Use batch norm. Uniform [False, True]
Learning rate (lr) Log-uniform [10−4, 5·10−4, 10−3, 5·10−3, 10−2]

RNNs No. of features in hidden state (H) Uniform [16, 32, 64, 128]
No. of hidden layers (Nl) Uniform [1, 2, 3, 4]
Dropout rate (pdrop) uniform [0, 0.25, 0.5]
Learning rate (lr) Log-uniform [10−4, 5·10−4, 10−3, 5·10−3, 10−2]

neural decoding can be found in our previous study
[44].

In this study, Bayesian optimization was per-
formed for 100 iterations by using tree-structured
Parzen estimator [55] as surrogate model and expec-
ted improvement as selection function. Considering
each specific network family (FCNN, CNN, RNN),
Bayesian optimizationwas performed for each decod-
ing problem, monkey, and cross-validation fold,
leading to 60 (=3·2·10) optimal hyper-parameter
configurations.

2.3.3. Training settings and strategies
The cross-entropy between the predicted probability
distribution (provided by the learning system) and
the empirical distribution (provided by the labelled
dataset) was used as loss function j(ϑ) to learn the
trainable parameters contained in ϑ. Adam [72] was
used as optimizer, searching for ϑ∗ = argmin j(ϑ)

ϑ

.

The learning rate (lr) was selected via Bayesian optim-
ization (see table 3) together with the other searched
hyper-parameters. The mini-batch size was set to 64
and the maximum number of training epochs to 250.
Lastly, the optimization stopped when the valida-
tion accuracy did not decrease after 50 consecutive
training epochs (early stopping). An example of loss
dynamic over training epochs during a single network
training (i.e. a single cross-validation fold) is shown
in figure S1 of supplementary materials with refer-
ence to the Bayesian-optimized CNN, in each decod-
ing problem and each monkey. The loss is displayed
up to the last performed epoch, as resulted from early
stopping.

Once the hyper-parameter search was con-
cluded (i.e. all 60 configurations of optimal hyper-
parameters were derived), the following analysis was
performed for each network family, separately. We
identified a single hyper-parameter configuration for

each network family, where each hyper-parameter
was set to the value occurring more frequently during
hyper-parameter search (as previously done in [44,
53] while decoding neural time series), across the dif-
ferent motor decoding problems. This unique hyper-
parameter configuration was used to design the net-
work. Then, for each decoding problem, each mon-
key and each cross-validation fold, the so designed
network was trained and tested under four different
training conditions. Three of them were conceived to
analyze decoding performance of this unique hyper-
parameter structure not only on the entire dataset but
also on reduced datasets obtained by dropping out
cells or training trials. Thus, we explored whether the
reach and reach-to-grasp decoding abilities fromV6A
still persist when the dataset was artificially reduced,
simulating scenarios where less cells or training trials
are available. The fourth training condition served
to test the effect of transferring the knowledge from
one task (source) to another (target) within the same
monkey (task-to-task transfer learning), by analyzing
whether fine-tuning on the target task a network pre-
trained on the source task was beneficial to improve
performance compared to training from scratch, as a
function of the number of training examples of the
target task.

i. No dropping (whole dataset). Neural decoders
were trained using the entire dataset available,
i.e. using all recorded cells and training trials.
Thus, only one training was performed for each
decoding problem, monkey, and cross-validation
fold. Here, neural networks were randomly ini-
tialized before training (networks were trained
from scratch).

ii. Cell dropping. Neural decoders were trained
using a subset of N ′ ∈ {10,20,30,40,50,60,70}
cells randomly sampled (10 times) from the
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entire population. That is, instead of using an
input feature map consisting of (N,Tz) spatio-
temporal samples, a reduced input feature map
of shape (N ′ < N,Tz)was used. Thus, 10·7 train-
ings (10 trainings for each of the seven values
of N ′) were performed for each decoding prob-
lem, monkey, and cross-validation fold. Here,
neural networks were randomly initialized before
training.

iii. Training trial dropping. Neural decoders were
trained using a subset of training trials corres-
ponding to the 12.5, 25, 37.5, 50, 62.5, 75, 87.5%,
randomly sampled (10 times) from the entire
training set. Thus, 10·7 trainings (10 trainings
for each of the seven percentages) were per-
formed for each decoding problem, monkey,
and cross-validation fold. Here, neural networks
were randomly initialized before training. It is
worth noticing that, for each percentage con-
sidered, the number of examples (i.e. chunks
of neural activity) used for training in this
training condition scaled down with respect to
the overall number of examples reported in
table 2.

iv. Task-to-task transfer learning. At first, neural
networks were trained in one reach-to-grasping
condition, light or dark (source decoding task),
using the entire training set as in point (i), for
each monkey and cross-validation fold. Then,
the networks were trained with training trials
belonging to the other reach-to-grasping task,
dark or light (target decoding task), but ini-
tializing the network with the trained paramet-
ers obtained in the source task within the same
monkey, instead of using random values. The
same was repeated by inverting the task used as
source task and as target task. To evaluate trans-
fer learning as a function of the number of train-
ing examples used in the target task, the training
set for the target task was randomly sampled (10
times) using a percentage from0% to 100%of the
entire dataset, with a step of 12.5% (overall, eight
percentages). The 0% condition corresponds to
using the pre-trained network with no training
on the target task. Therefore, here 10·8 train-
ings (10 trainings for each of percentage of train-
ing trials) were performed for each target task
(reach-to-grasping light and dark), monkey, and
cross-validation fold. Furthermore, to evaluate
the beneficial effect of using transfer learning, for
each percentage of training trials, we contrasted
the performance obtained with the pre-trained
network against the performance obtained using
the network trained from scratch, by exploiting
the results obtained in the previous points (iii)
(for intermediate percentages) and point (i) (for
100% of training trials).

2.3.4. Neural decoders based on traditional machine
learning
In addition to neural networks, a NB classifier was
considered as neural decoder, as it was previously
adopted to decode the same datasets used in this study
[41, 42]. Therefore, this classifier is referred in the
following as ‘reference’ machine learning algorithm,
to distinguish it from the other machine learning
approaches. This Bayesian decoder assumes condi-
tional independency across input features (V6A activ-
ity from different neurons) and uses Bayes’ rule
to create a decoding model. The effects of each
input neuron are combined linearly. Furthermore,
we considered also SVM and XGBoost classifiers, as
these algorithms resulted the best-performing tra-
ditional machine learning classifiers in a previous
benchmark analysis performed on neurons’ activity
by Glaser et al [45]. To this aim, we adopted the
same SVM and XGBoost classifiers as in Glaser et al
[45] (accessible at https://github.com/KordingLab/
Neural_Decoding). The traditional machine learning
decoders were trained only according to training con-
dition 2.3.3-i (i.e. considering the whole dataset), for
comparisonwithDNNs under the same training con-
dition (see section 3.2).

2.3.5. Processing of the evaluation metric
The accuracy was used as evaluation metric. The fol-
lowing processing was applied for each training per-
formed with the previous training strategies. Each
trained learning system (FCNN, CNN, RNN, NB,
SVM, XGBoost) was tested, computing the accuracy
chunk by chunk; note that in this way, we obtained a
temporal pattern of decoding accuracy over the trial
course thanks to the adopted sliding window decod-
ing approach, that enabled to highlight the dynam-
ics of reach encoding and reach-to-grasp encoding
in V6A with a high time resolution (5 ms). Further-
more, in condition 2.3.3-ii and 2.3.3-iii, the accuracy
was averaged, chunk by chunk, across the 10 random
extractions for each dropping value. Therefore, one
temporal pattern of accuracy per decoding problem,
monkey and fold was obtained in the condition 2.3.3-
i, while seven averaged temporal patterns of accuracy
were obtained per decoding problem, monkey and
fold in conditions 2.3.3-ii and 2.3.3-iii, each pattern
corresponding to a different dropping value. Simil-
arly, in the condition 2.3.3-iv, the accuracy was aver-
aged, chunk by chunk, across the 10 random extrac-
tions for each percentage of training examples of
the target task; overall, in this condition, nine aver-
aged temporal patterns of accuracy were obtained per
decoding problem, monkey and fold, each pattern
corresponding to a different percentage of training
examples.

Finally, as sliding window decoding highlighted
the motor encoding of V6A in the temporal domain,
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we considered the accuracies over time obtained with
the top-performing learning system on the entire
dataset (no dropping condition) to analyze the tem-
poral motor encoding in V6A for each of the three
motor paradigms.

2.4. Statistical analyses
The following tests were conducted on learning sys-
tems trained on the whole dataset (no dropping con-
dition):

i. Comparison between the accuracy temporal
dynamics scored with each neural network and
each traditional machine learning algorithms
(NB, SVM, and XGBoost), separately within
each decoding problem. Permutation cluster
tests (1000 iterations) with threshold-free cluster
enhancement [73] were performed.

ii. Comparison of accuracies averaged within each
epoch across decoders (NB, SVM, XGBoost,
FCNN, CNN, RNN), separately for each decod-
ing problem. Wilcoxon signed-rank pairwise
tests were performed between learning sys-
tems (6 decoders), testing all possible compar-
isons within each epoch (15 comparisons per
epoch). To correct for multiple tests (overall 15
tests/epoch·6 epochs= 90 tests), the Benjamini–
Hochberg correction [74] was used.

The following statistical tests are relative to neural
networks only, to further evaluate their perform-
ance in conditions simulating reduced datasets (point
(iii)), under transfer learning condition (point (iv)),
and when inferring information about motor encod-
ing in area V6A (point (v)).

iii. Comparison between accuracies scored by differ-
ent neural networks on reduced datasets, both
while dropping out cells and training trials.
Permutation cluster tests (1000 iterations) with
threshold-free cluster enhancement [73] were
performed. All combinations were tested (3 in
total).

iv. Comparison between accuracies scored by CNNs
while performing task-to-task transfer learn-
ing vs. training networks from scratch. Here,
we tested the feasibility of task-to-task trans-
fer learning for CNNs, as these networks res-
ulted the most accurate decoder across the dif-
ferent percentages of training examples when
dropping training trials (see section 3.2). Spe-
cifically, the temporal dynamics of the accuracy
scored by the CNNs trained with transfer learn-
ing (i.e. pre-trained network) and without trans-
fer learning (i.e. randomly initialized network)
were compared, separately for each percentage
of training trials considered. Permutation cluster
tests (1000 iterations) with threshold-free cluster
enhancement [73] were performed (9 total tests

for each target task, i.e. reach-to-grasping light
and reach-to-grasping dark).

v. Comparison of encoding measures—quantified
by the accuracies of the top-performing net-
work (i.e. CNNs, see section 3.2)—between reach
vs. reach-to-grasp with the same illumination
condition (light condition), and between reach-
to-grasp tasks in the two different illumination
conditions (light vs. dark). Permutation cluster
tests (1000 iterations) with threshold-free cluster
enhancement [73] were performed.

3. Results

3.1. Neural network structures resulting from
Bayesian optimization
The optimal networks resulting from hyper-
parameter search (see figures S2–S4 of supplement-
ary materials for the distributions of optimal hyper-
parameters for the three DNN families), consisted
in: a FCNN with two hidden fully-connected layers;
a shallow CNN with a single hidden convolutional
layer performing convolution both in the space and
time domains of the input multivariate neural time
series (i.e. corresponding to a mixed spatio-temporal
CNN); a deep RNN with three hidden GRU lay-
ers. Table 4 reports the computational complexity
and computational time for the Bayesian-optimized
neural networks. Computational complexity was
expressed in terms of number of trainable paramet-
ers, and computational time indices were the training
time per training epoch, number of training epochs
required to converge, and training time required to
converge (i.e. time per training epoch multiplied by
the number of training epochs).

Remarkably, CNNs resulted the lightest DNNs,
as they included approximately 73k trainable para-
meters (on average, across monkeys and decoding
problems) compared to about 191k and 287k train-
able parameters introduced by FCNNs and RNNs,
respectively. Furthermore, CNNs were approximately
as fast as FCNNs to be trained in each training epoch
(0.74 s/training epoch vs. 0.66 s/training epoch, on
average across monkeys and decoding problems),
while RNNs resulted the slowest (3.06 s/training
epoch). However, overall, FCNNs showed the low-
est time to converge (8.4 s, 19.3 s, 77.0 s, respectively
for FCNNs, CNNs, and RNNs), also due to their low-
est number of training epochs required to converge
(13, 26, 25 training epochs, respectively for FCNNs,
CNNs, and RNNs).

3.2. Decoding analyses
The decoding accuracy when using the entire dataset
(i.e. no dropping strategy) is reported in figure 4, that
shows the accuracy temporal dynamics of the decod-
ing of each DNN together with the accuracy of the
three traditional machine learning approaches (NB,
SVM, XGBoost).
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Table 4. Computational complexity (as measured by the number of trainable parameters) and computational time indices (as measured
by the training time per training epoch, number of training epochs required to converge, and training time required to converge) of the
Bayesian-optimized neural networks while addressing different motor decoding problems. The number of trainable parameters, strictly
tied to each monkey-specific decoder, are reported separately for each monkey, i.e. m1/m2 or m3/m4 for reaching and reach-to-grasping
(both light and dark illumination conditions), respectively. Computational time indices are reported averaged across monkeys and
cross-validation folds.

Reaching (m1/m2)
Reach-to-grasping:
light (m3/m4)

Reach-to-grasping:
dark (m3/m4)

No. of trainable parameters FCNNs 266 345/231 785 179 813/145 253 179 813/145 253
CNNs 101 417/89 321 67 333/55 237 67 333/55 237
RNNs 302 217/295 305 284 421/277 509 284 421/277 509

Time per training epoch
(s/training epoch)

FCNNs 0.83 0.57 0.57

CNNs 1.03 0.60 0.60
RNNs 4.20 2.5 2.5

No. of training epochs to converge FCNNs 9 12 19
CNNs 26 27 25
RNNs 24 21 31

Time to converge (s) FCNNs 7.5 6.8 10.8
CNNs 26.8 16.2 15.0
RNNs 100.8 52.5 77.5

Among the traditional machine learning
approaches, the highest accuracies were achieved by
SVM in case of reaching decoding, while in case of
reach-to-grasp decoding, XGBoost resulted the top-
performing traditional machine learning decoder
(especially during the movement epoch) for both
light and dark condition. All DNNs proved to sig-
nificantly outperform the reference machine learn-
ing algorithm previously adopted with these datasets
(NB) widely in time, in particular from the early
delay epoch (epoch 1) to hold epoch (epoch 5) while
decoding reaching movements, and especially from
the late delay epoch (epoch 2) to movement epoch
(epoch 4) while decoding reach-to-grasping. Further-
more, only CNNs among DNNs also outperformed
significantly the other two traditional approaches
(SVM and XGBoost), widely across epochs. This res-
ult was consistent across decoding problems, except
for reach-to-grasping in dark conditions, in which
XGBoost was significantly outperformed by CNN
only in epochs 3 (and not in other epochs).

Then, the neural decoders were compared in
figure 5, where accuracies were averaged within each
epoch to provide a more compact visualization of
this comparative analysis. For brevity and to improve
readability of figure 5, for each decoding task, only 6
out of 15 statistical results per epoch are displayed.
These results are relative to the six pairwise com-
parisons per epoch among the four decoders includ-
ing the three neural networks and the traditional
machine learning algorithm that performed best in
the specific decoding task among the three traditional
algorithms (resulting SVM in case of reach decod-
ing, and XGBoost in case of reach-to-grasp decoding,
see figure 4). However, it is worth remarking that the
displayed statistical results were obtained and correc-
ted for multiple tests considering all 15 pairwise com-
parisons per epoch (resulting from considering all six

decoders, see point (ii) in section 2.4), and not only 6
comparisons per epoch.

First, it is worth highlighting that the accuracies
scored by decoders within the free epoch (epoch 0)
were approximately at chance level, that is 11% and
20% for reach and reach-to-grasp decoding, respect-
ively; this was expected, as the animalwas not engaged
in the movement task yet during this interval. That is,
the free epoch represents a control interval in which
classifiers should behave as random classifiers while
decoding motor-related properties. Second, this ana-
lysis further emphasizes the significant improvement
in performance of the DNNs compared to NB (ref-
erence machine learning algorithm), widely across
task-related epochs (i.e. epochs following epoch 0), as
already emerged from figure 4. Third, CNNs not only
outperformed significantly both RNNs and FCNNs
in all decoding problems in late delay, reaction time,
and movement epochs (from epochs 2 to 4) but
outperformed significantly also the top-performing
machine learning algorithm (SVM for reaching and
XGBoost for the two reach-to-grasping tasks) in all
previous intervals and also in the hold epoch (overall,
from epochs 2 to 5).

Moreover, in figure 6 neural networks were com-
pared not only in terms of accuracy (as in previous
figures), but also in terms of computational com-
plexity (the number of trainable parameters, table 4)
and computational time (here quantified by the train-
ing time to converge, table 4). In this figure, the
decoding accuracy was extracted from the epoch
with the highest performance (movement interval,
i.e. epoch 4).

Across all decoding problems, the CNNs res-
ulted the networks with best decoding accuracies
and lowest computational complexity, while FCNNs
were the ones with lowest computational time. From
figure 6, CNNs represented a good compromise
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Figure 4. Accuracies over time of each DNN (red, in each panel) and the traditional machine learning algorithms, i.e. Naïve Bayes
(NB, black), support vector machines (SVM, orange), and XGBoost (green). Each panel (from (a) to (c)) reports the accuracies
over time scored with a DNN (FCNN, CNN, RNN, respectively) and the other machine learning decoders when decoding reach
and reach-to-grasp (under the 2 different illumination conditions). Decoding accuracies over time are displayed by their mean
values (thick lines) and standard error of the mean (overlayed area) across monkeys and cross-validation folds. In each plot, the
vertical stripes on the bottom display the results of the performed permutation cluster test (see section 2.4), denoting the time
intervals in which the DNN differed significantly (p< 0.05) compared to each machine learning approach. The stripes are
color-coded as: black: NB vs. DNN, orange: SVM vs. DNN, green: XGBoost vs. DNN. Only significant comparisons are marked.
The epochs outlining the time sequence of the task are color-coded as: purple: free; blue: early delay; red: late delay; magenta:
reaction time; green: movement; grey: hold.

between decoding performance, computational com-
plexity, and computational time, overall.

The performance analysis of DNNs was further
extended by analyzing how their decoding capab-
ilities change with variable-sized datasets, to fur-
ther validate decoders with comparative analyses on
smaller datasets. Figures 7 and 8 display the decod-
ing accuracies obtained when the number of input
cells and number of training trials were artificially
reduced, respectively.

Even though neural networks were trained with
less cells and training trials, they achieved accuracies
well above the chance levels in the addressed decoding
problems widely across the analyses with simulated

reduced datasets. For example, accuracies were >0.6
within the movement epoch (the interval with max-
imum discharge in V6A neurons), on average, when
using ⩾30 cells (40 cells in FCNNs) and ⩾25%
of training trials. However, when reducing both
the number of cells to decode and the number of
training trials, CNNs resulted the top performing
DNN. Indeed, CNNs significantly outperformed
FCNNs with accuracy differences (dropping out cell-
s/dropping out training trials) up to 15.6%/18.8%,
17.5%/22.1%, 19.1%/22.3%, and outperformed
RNNs with accuracy differences up to 8.4%/12.6%,
11.4%/14.8%, 9.5%/13.5%, on average for reach-
ing, reach-to-grasping (light) and reach-to-grasping
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Figure 5. Accuracies averaged within epochs. The representations report the average accuracies within each epoch of the trial (see
section 2.1) for all the neural decoders in case of reach decoding and reach-to-grasp decoding (in light and dark illuminations).
Bigger dots represent the mean value, while the error bars represent the standard deviation across monkeys and cross-validation
folds. Smaller dots represent the accuracy scored for each monkey and each cross-validation fold (i.e. 20 data points). The results
from the performed Wilcoxon signed-rank tests are reported too (see section 2.4); p-values are corrected for multiple
comparisons via the Benjamini–Hochberg procedure and only the significant comparisons are marked (∗p< 0.05, ∗∗p< 0.01,
∗∗∗p< 0.001). In addition, note that, for brevity and to provide a more compact visualization, only the results relative to the
three neural networks and the machine learning algorithm performing best among the three ones (NB, SVM, XGBoost) in each
decoding task (SVM for reaching, XGBoost for both reach-to-grasping tasks) are reported.

(dark), respectively. These differences were obtained
mainly within epochs 1–5 when decoding reaching
and within epochs 2–5 when decoding reach-to-
grasping with both illumination conditions (i.e. both
light and dark), and were scored mainly when using
>10 cells (see figure 7) and widely across the percent-
ages of training trials evaluated (see figure 8). Gen-
erally, CNNs achieved significantly higher accuracies
compared to RNNs largely in epochs 2, 3 and 5, while
this improvement did not always hold within the
movement epoch (epoch 4) across the paradigms
and performed analyses. In particular, in the cell

dropping analysis with the lowest number of cells
(10 cells), RNNs significantly outperformed CNNs
when decoding reach-to-grasp (but not when decod-
ing reach endpoints). However, this was the only
condition where RNNs overcame CNNs. Lastly,
FCNNs resulted the worst performing DNNs, as they
obtained significantly lower accuracies compared to
CNNs and RNNs (see figures 7 and 8), especially in
the movement and hold epochs (epochs 4–5).

Overall, the performance improvement scored by
CNNs when using the entire dataset (i.e. no dropping
strategy, see figures 4 and 5), was maintained also
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Figure 6. Comparison of neural networks in the plane performance (i.e. decoding accuracy in the movement
epoch)—computational complexity (i.e. number of trainable parameters). Each network trained for each decoding task is
denoted by a circle, and the circle size is modulated by the training time required to converge. All measures were averaged across
monkeys and cross-validation folds. Note that reach-to-grasping was shortened to ‘R-to-G’ to increase readability.

while simulating smaller datasets in terms of recorded
cells and recorded trials used to train decoders.

CNNs were additionally tested by evaluating the
effect of task-to-task transfer learning in the reach-to-
grasping tasks. Figures 9 and 10 display the decoding
accuracies over time with (green) or without (black)
transfer learning from reach-to-grasping in light con-
dition (source task) to reach-to-grasp in dark con-
dition (target task) and vice versa, respectively, as a
function of the amount of training trials used in the
target task.

From figures 9 and 10, task-to-task transfer learn-
ing resulted beneficial especially when using low per-
centages of training trials, with significant improve-
ments in decoding performance at 0% (no training
at all, pre-trained networks only tested on the tar-
get task) in both tested cases (from light to dark and
from dark to light, figures 9 and 10) and at 12.5% in
case of knowledge transfer from light to dark condi-
tions (figure 9); at the same percentage, slight (but
not significant) improvements were observed in the
reversed condition (figure 10). It is worth noticing
that slight (but not significant) improvements were
observed also at higher percentages, e.g. when trans-
ferring knowledge from light to dark at 25%, 37.5%
and 50% conditions, especially in the late delay epoch
and reaction time epoch (epochs 2 and 3).

According to the previous results, the decoding of
the two tasks appeared to largely rely on shared fea-
tures, as the pre-trained network, even in absence of
any training on the target task, perform well above
chance. To inspect commonalities between the fea-
tures learned in the two different reach-to-grasping
tasks, we performed a correlation analysis between

the convolutional filters learned by the CNN for
decoding reach-to-grasping in light condition and
in dark condition when using the whole training
set (as in case of the source task in transfer learn-
ing). Since each CNN learned 32 filters, these were
averaged together before computing correlation. The
Pearson’s correlation coefficients between the average
filters learned in the two tasks were computed sep-
arately for each cross-validation fold and each mon-
key and are reported in figure 11(a). All correlations
resulted statistically significant (p< 0.001). For most
of the trained models (across monkeys and cross-
validation folds), strong correlations were observed
(between 0.7 and 1.0), and only for 2 out of 20 mod-
els the correlations were only moderate (between 0.4
and 0.7). These results confirm that, even though the
models were trained independently on two different
tasks, similar features were learned on the samemon-
key. Thus, transfer learning did benefit from these
commonalities between features and improved the
performance of decoders, especially when using a low
amount of training examples (0% and 12.5%of train-
ing examples). Lastly, we also provide a visualiza-
tion of the convolutional filters learned in reach-to-
grasping in the two illumination conditions for mon-
key m4 (as an example), in a representative cross-
validation fold, to qualitatively inspect similarities
between filters. Filters were averaged together in their
absolute value and normalized between 0 and 1, and
the result is reported in figure 11(b), separately for
light and dark conditions. By reporting the abso-
lute value, we are highlighting the discriminatory
power in space and time of these filters, as commonly
performed in literature (e.g. see [53, 75] in case of
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Figure 7. Accuracies over time while dropping out cells from the input multivariate neural activity. Results when decoding
reaching, reach-to-grasping (light) and reach-to-grasping (dark) are reported in panels (a)–(c), respectively. The maps on top of
each panel report the average accuracies of each type of DNNs as a function of the number of cells included in the input (from 10
to 70 with a step of 10 cells) and as a function of time. The maps on the bottom of each panel report the average performance
differences between each pair of DNN types considering all possible combinations. In the difference maps, the results from the
statistical analysis are embedded in the visualization, by coloring the significant (p< 0.05) differences resulting from the
performed permutation cluster tests (see section 2.4) and leaving in grey the unsignificant ones. In all panels, the decoding
accuracies and accuracy differences are displayed as heatmaps reporting the number of cells by row and the time steps by column
and were obtained by averaging across monkeys and cross-validation folds. The epochs outlining the time sequence of the task are
color-coded as: purple: free; blue: early delay; red: late delay; magenta: reaction time; green: movement; grey: hold.

EEG decoding). From these representations, it results
that most cells had similar spatio-temporal dynam-
ics of grip discriminatory power di between the two
tasks, presumably representing neurons responding
most to motor information (i.e. motor neurons of
V6A), while few cells presented differences between
tasks that could arise from the presence in V6A also
of visuomotor neurons, modulating their activity
depending on the light condition [76].

3.3. Encoding of reaching and reach-to-grasping in
V6A
Based on the previous analyses (section 3.2), CNNs
resulted the top-performing learning system for
decoding the three motor tasks. Thus, we used
the CNNs decoding accuracy over time to analyze
how much movement information was represen-
ted by area V6A, i.e. to analyze neural encoding
of V6A motor information. Figure 12 reports, for
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Figure 8. Accuracies over time while dropping out training trials while optimizing DNN trainable parameters. Results when
decoding reaching, reach-to-grasping (light) and reach-to-grasping (dark) are reported in panels (a)–(c) respectively. The maps
on top of each panel report the average accuracies of each type of DNNs as a function of the percentage of training trials used
(from 12.5% to 87.5% with a step of 12.5%) and as a function of time. The maps on the bottom of each panel report the average
performance differences between each pair of DNNs types, considering all possible combinations. In the difference maps, the
results from the statistical analysis are embedded in the visualization, by coloring the significant (p< 0.05) differences resulting
from the performed permutation cluster tests (see section 2.4) and leaving in grey the unsignificant ones. In all panels, the
decoding accuracies and accuracy differences are displayed as heatmaps reporting by row the percentage of training trials and by
column the time steps and were obtained by averaging across monkeys and cross-validation folds. The epochs outlining the time
sequence of the task are color-coded as: purple: free; blue: early delay; red: late delay; magenta: reaction time; green: movement;
grey: hold.

comparison, the decoding accuracy scored by the
CNN in each of the threemotor tasks, when the entire
dataset was used (i.e. these waveforms replicate the
red ones in figure 4(b)).

From figure 12, it is evident that the neural
encodings (as measured by the decoding accuracy)
shared a common trend across the three motor
tasks: the encoding measure remains stable at the

chance level during the free epoch (epoch 0), then
starts increasing during the delay epochs (epochs 1
and 2), reaching a plateau within movement epoch
(epoch 4) and decreases within the hold epoch
(epoch 5). Despite these similarities in the over-
all temporal dynamics, significant differences can be
observed within the early delay epoch between reach-
ing and reach-to-grasping encodings with the same
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Figure 9. Accuracies over time while performing task-to-task transfer learning from reach-to-grasping in the light condition to
the dark condition. Each panel reports the accuracies over time scored by the CNN while decoding reach-to-grasping in the dark
condition (target task) in case of a specific percentage of training examples, both when the CNN was randomly initialized (black)
and when it was pre-trained on reach-to-grasping in the light condition (source task, green). Decoding accuracies over time are
displayed by their mean values (thick lines) and standard error of the mean (overlayed area) across monkeys and cross-validation
folds. Vertical black stripes on the bottom display the results of the performed permutation cluster test (see section 2.4), denoting
the time intervals where the performance scored by the CNN differed significantly (p< 0.05) between training from scratch
(random initialization) and transfer learning (pre-trained network). Only significant comparisons are marked. The epochs
outlining the time sequence of the task are color-coded as: purple: free; blue: early delay; red: late delay; magenta: reaction time;
green: movement; grey: hold.

illumination condition (i.e. light), and within the late
delay epoch between reach-to-grasping encodings in
the two different illumination conditions (i.e. light vs.
dark).

4. Discussion

Overall, this study presents a unique benchmark ana-
lysis of neural decoders on multiple motor decoding
problems (3 different recording paradigms), exploit-
ing signals collected in four macaque monkeys from
area V6A, a pivotal parietal area of the dorsomedial

visual stream of macaque brain. Specifically, neural
networks (FCNNs, CNNs, RNNs) with Bayesian-
optimized architectures were developed and applied
to decode reaching and reach-to-grasping from the
activity of V6A neurons and were compared to
traditional machine learning approaches. Moreover,
decoding capabilities of the neural networks were
analyzed under different conditions, i.e. while using
reduced datasets, both in terms of number of cells
and of training trials, and while applying transfer
learning. To the best knowledge of the authors, here,
for the first time, transfer learning was applied to
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Figure 10. Accuracies over time while performing task-to-task transfer learning from reach-to-grasping in the dark condition to
the light condition. Each panel reports the accuracies over time scored by the CNN while decoding reach-to-grasping in the light
condition (target task) with a specific percentage of training examples, both when the CNN was randomly initialized (black) and
when it was pre-trained on reach-to-grasping in the dark condition (source task, green). All conventions are as in figure 9.

single-neuron decoding, for transferring the know-
ledge from a task to another, with prospective implic-
ations for BCI usages. Lastly, by exploiting the slid-
ing window approach, decoders enabled the analysis
of V6A motor encoding in the temporal domain.

4.1. Decoding analyses
All neural networks significantly outperformed NB,
representing in this study the reference machine
learning approach since previously applied on the
same datasets [41, 42]. Thus, neural networks were
able to capture more relevant features to discriminate
between different motor properties (either reach- or
grip-related) compared to NB, widely over the entire
task course (figure 4). It is worth and fair remark-
ing that in the previous study by Filippini et al [42],
while decoding the same reach-to-grasping dataset

with a NB classifier and a sliding window decoding
approach, accuracies up to and above 80% over time
were obtained, hence, NB achieved higher perform-
ance than the ones reported in our study. While the
study of Filippini et al [42] was of high importance to
evidence the possibility of decoding grasping inform-
ation from V6A neurons, their adopted procedure
involves profound differences compared to the one
adopted here. First, only a subset of cells of the entire
dataset (79 cells across the two monkeys), previ-
ously identified as being grip-modulated via ANOVA,
were used for decoding. Second, NB was separately
trained and tested for each step of the sliding win-
dow approach (i.e. ∀i, see equations (1) and (2)),
thus generating different decoders over time, i.e. a
different decoder for each analyzed 300 ms chunk.
Third, the dataset was binned at 20 ms. Here, all the
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Figure 11. Commonalities between convolutional filters learned by the CNN in reach-to-grasping in light condition and dark
condition. Panel (a)—Correlation analysis between light and dark conditions. Here, the Pearson’s correlation coefficients (r) are
reported (bar height) for each model, i.e. for each cross-validation fold and monkey (m3 in grey and m4 in red). For each
decoding task (light and dark), each cross-validation fold, and each monkey, the 32 filters learned by the CNN were averaged
together and the correlation was computed between the average filter obtained in light condition and dark condition, within each
fold and each monkey. All correlations were statistically significant (p< 0.001). Panel (b)—Visualization of the average filters
learned in the light (left) and dark (right) conditions for monkey m4 for a representative cross-validation fold. The average
pattern (with shape (75, 21)) is visualized as an heatmap, with neurons along rows (75 cells for m4) and filter time steps along
columns (21 time steps, see figure S3 of supplementary materials). In the figure, reach-to-grasping is shortened in ‘R-to-G’, to
increase readability.

Figure 12. Encodings of reaching and reach-to-grasping in V6A as measured by the decoding accuracy scored by the
top-performing learning system (i.e. the CNN). Note that these temporal patterns correspond to the ones reported in figure 4(b).
The decoding accuracy over time is reported, displaying the mean value (thick lines) and standard error of the mean (overlayed
area) across monkeys and cross-validation folds. Results from the performed permutation cluster tests (see section 2.4) are
reported too. Orange vertical stripes: time intervals in which the V6A encoding of reaching was significantly (p< 0.05) different
compared to reach-to-grasping with the same illumination condition (i.e. light). Black vertical stripes: time intervals in which the
V6A encoding of reach-to-grasping differed significantly (p< 0.05) between the two illumination conditions (i.e. light vs. dark).
Only significant comparisons are marked. The epochs outlining the time sequence of the task are color-coded as: purple: free;
blue: early delay; red: late delay; magenta: reaction time; green: movement; grey: hold. The vertical dashed lines denote the
separation between the epochs.

cells of the dataset were used, without any a priori
selection, thus, leaving the learning systems the ability
to explore all the available information for decoding
and to learn to discard task-unrelated information.

Furthermore, in this study, the decoders were trained
and tested considering all chunks at once, a procedure
more parsimonious in terms of number of trained
decoders (one decoder per fold, instead ofM decoders
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for each cross-validation fold, see section 2.1), but
more challenging, as being time-aspecific. Remark-
ably, the sliding window training adopted here rep-
resents a more appropriate way to train and valid-
ate offline decoders for real-life BCI applications, as
training a new decoder for each time step during the
trial course is not feasible in practical applications. In
addition, here, signals were binned within a shorter
window (5 ms vs. 20 ms); therefore, the learning
system could exploit also higher frequency compon-
ents in gamma bands, which were suggested playing a
key role during movements [60, 61]. All these points
represent more challenging conditions for the neural
decoder and the neural networks proved to outper-
form NB with these settings. Performance differences
between neural networks and NB may be associated
to the ability of neural networks to better capture
temporal dynamics (e.g. via mixed spatio-temporal
convolutions) and non-linearities encoded in neural
activity, better extracting relevant features from the
input neural activity, and discarding task-unrelated
information.

These results confirm and extend the ones we
obtained in a recent paper [44], where under the
same settings of training and testing as used here, we
found that the CNNs significantly outperformed the
NBdecoder in decoding reaching endpoints. Here, we
significantly expanded our previous analysis by con-
sidering different families of neural networks and of
traditional machine learning approaches (SVM and
XGBoost), and different motor decoding problems
(not only decoding reaching endpoints). From our
results, the significant performance improvement in
motor decoding previously observed in [44] using
CNNs vs.NB classifier did hold across differentmotor
decoding tasks and also across othermachine learning
algorithms (SVM and XGBoost). Conversely, consid-
ering the other networks (FCNNs, andRNNs) the sig-
nificant improvement did hold only vs. NB but not
vs. SVM and XGBoost, as these families of networks
achieved only comparable accuracies with these last
two traditional decoders. Therefore, CNNs resulted
not only the top-performing neural network but also
the top-performing algorithm, overall, across all the
tested motor decoding problems.

It is worth noticing that in our previous study
[44], CNNs were realized using separable convolu-
tions, as we focused on a parsimonious structure in
terms of trainable parameters, while here we used
traditional convolutional layers for a more general
evaluation. Interestingly, in both cases, by adopting
Bayesian optimization, the most frequently selected
CNN structure was shallow (with a single convo-
lutional layer) and wide (i.e. with a large number
of filters, here 32), suggesting that this CNNs struc-
ture was the most appropriate to address these motor
decoding problems, independently on how convo-
lutions are specifically implemented. To gain clearer
evidence of this result, we also performed ablation

tests (consisting in training and testing different vari-
ants of a network architecture by changing 1 hyper-
parameter at a time). Ablation tests were applied to
the depth of the CNN to investigate the effect of
the number of convolutional layers on the decoding
accuracy. Starting from theCNN structure selected by
Bayesian optimization (baseline version) we trained
and tested other two CNN variants, differing from
the baseline only by the number of total convolu-
tional layers, which was set to 3 (i.e. 1 convolutional
block composed by 3 convolutional layers) or 6 (i.e. 2
convolutional blocks, each composed by 3 convolu-
tional layers). Results of ablation tests are reported
in figure S5 of supplementary materials. The baseline
CNN with only one convolutional layer was signific-
antly more accurate (p< 0.01) than the other two
variants in all the three decoding problems, further
suggesting that shallower CNN architectures general-
ize better than deeper ones for motor decoding from
neurons’ activity.

Among the different types of neural networks
tested here, CNNs were the best performing, espe-
cially from late delay up tomovement epochs (epochs
2, 3, 4, see figures 4 and 5). Crucially, CNNs resul-
ted the most accurate classifiers during the intervals
in which the discharge of V6A neurons is most prom-
inent, i.e. during the action execution and once the
action is executed [39, 41, 42]. Even though decod-
ing was performed independently for each 300 ms
chunk of neural activity (see section 2.2), CNN pre-
dictions not only resulted accurate but also consistent
through the trial course (see figure S6 of supplement-
ary materials), the decoded class being stable in time
during motor tasks.

In addition to the previous results on the whole
datasets, CNNsoverall outperformed the other neural
networks from late delay up to movement epochs
(epochs 2, 3, 4) also when dropping out training
examples and cells (>10 cells) from the dataset (see
figures 7 and 8). Only when a very small number
of cells (10 cells) were retained in the input time
series, RNNs outperformed CNNs while decoding
reach-to-grasping (but not while decoding reaching
endpoints). Indeed, in this interval RNNs resulted
slightly more robust to a reduction in the number of
input cells compared to CNNs (and also compared
to FCNNs), as highlighted in figure S7 of supple-
mentarymaterials showing the difference in perform-
ance between no dropping and dropping out cells,
for each architecture (for completeness, figure S8 of
supplementary materials shows the difference in per-
formance between no dropping and dropping out tri-
als, for each architecture). The advantage of RNNs
in case of very small numbers of cells might be due
to the different effect of the number of input cells
on the network capacity (i.e. the ability of approx-
imate functions) across the different networks (see
figure S9 of supplementary materials). Specifically, by
reducing the number of input cells, the model size
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and, thus, the capacity of CNNs and FCNNs, resulted
substantially reduced compared to RNNs. As a con-
sequence, as model capacity reduced to a less extent
in RNNs, these networks might be advantaged, espe-
cially in the interval in which the discharge of V6A
neurons is maximum [39, 41, 42].

CNNs (overall behaving as top-performing
decoders) were used also to transfer the knowledge
from one reach-to-grasping task to another. Trans-
fer learning proved to improve the performance of
the neural decoder especially in the low data regime
(e.g. 0% and 12.5%) and particularly when the tar-
get task is more challenging, i.e. reach-to-grasping
decoding in darkness. This suggest that in prospect-
ive, BCI applications based on invasively recorded
signals may also benefit from CNNs trained with
task-to-task transfer learning to reduce the number
of calibration examples and thus the calibration time
to achieve high performance. Overall, the reduction
of BCI calibration times might improve the practic-
ality and usability of the interface, possibly increasing
the engagement and learning during feedback.

The presented experiments aimed at providing
a comprehensive evaluation of the principal DNNs
(FCNNs, CNNs, RNNs) for motor decoding from
single-neuron activity (here from V6A area). How-
ever, neural networks have been already widely pro-
posed and tested for neural time series decoding,
mainly using non-invasive modalities, especially EEG
[47, 77, 78] due to its high portability, low cost and
BCI applications. In the field of EEG decoding, CNNs
are the most adopted networks [47], and share some
common elements in their structure across studies
[15, 16, 48, 49, 53, 79]. Typically, they first learn fea-
tures in the temporal domain and then in the spatial
domain, via separate convolutions in time and space
of the multivariate EEG input. Then, more abstract
features in the temporal domain are learned in sub-
sequent deeper layers. Among these architectures,
EEGNet (consisting of three convolutional layers and
one fully-connected layer) [79] and DeepConvNet
(five convolutional layers and one fully-connected
layer) [48], represent the first successful and general-
purpose designs (also for motor decoding), and are
used as reference designs. However, the following
main pitfalls should be addressed, when trying to
transpose DNNs proposed for a non-invasive decod-
ing application (e.g. from EEG) to an invasive decod-
ing application (e.g. from single-neuron activity).
First, when applied to EEG decoding, CNNs include
more than one convolutional layer in their struc-
ture; conversely, from our results, CNNs for decod-
ing motor states from single neurons seem to benefit
from extremely shallow architectures with only one
convolutional layer. Second, CNNs applied to EEG
have proved to result more accurate when temporal
convolutions are performed first and then spatial con-
volutions. However, when addressing single-neuron
decoding, the optimal sequence for domain-specific

convolutions should be deeply investigated ex novo,
due to the different recording modality (invasive
vs. non-invasive) and different nature of the neural
time series (e.g. neuron spiking rate vs. scalp elec-
tric potentials). Therefore, neural networks specific
for EEG could be transposed in the future to decode
single-neuron activity by: (i) considering a reduction
in the number of convolutional layers; (ii) assessing
the optimal sequence for convolutions operating in
separate domains (e.g. temporal followed by spatial
convolutions vs. spatial followed by temporal convo-
lutions).

4.2. Encoding of reaching and reach-to-grasping in
V6A
The sliding window approach adopted here permits
the neural decoders to provide a straightforward visu-
alization of V6A motor encoding in the temporal
domain. Here, the accuracy temporal dynamic of
CNNs, resulting the top-performing decoders, was
considered for analyzing V6A motor encoding. Cru-
cially, the temporal dynamics reported in figure 12
exhibited a common ramp-up (during the delay
interval), plateau and ramp-down (from the end of
movement execution) trend across paradigms, high-
lighting that also the delay interval (both in its early
and especially in the late parts) strongly encodes both
reaching and reach-to-grasping properties, in addi-
tion to the reaction time and movement intervals.
That is, also the interval associated to movement
planning proved to be a good candidate for decoding
spatial reaching positions and grip types from V6A
neurons. This interval is close to motor execution,
but it is not already influenced by possible afferent
feedback signals (known to be present in V6A [80–
82]), thus, it could reflect action planning and pre-
dictive motor control [28]. In particular, an inter-
mediate visuomotor transformation stage occurs, in
which the visual information is converted into motor
commands [83]. Overall, the temporal dynamics of
the encodingmeasure reflected the neural population
discharges [39, 41, 42]. Indeed, V6A was found dis-
criminating among the different reached endpoint-
s/grip shapes as soon as the motor plan can be for-
mulated because of the illumination of the target
LED to reach (fixation epoch)/illumination of the
object to grasp (object visualization epoch). Then,
the discrimination power of V6A population only
slightly increases/remains constant while the monkey
is preparing the reaching/reach-to-grasping action
and peaks when the action is performed [39, 41, 42].

Regarding reach encoding in V6A, the position
of the reached endpoints appeared to be encoded
already from about the middle (or even before) of
the early delay epoch (i.e. 300–500 ms after cue-
ing the animal). From the beginning of the fixa-
tion epoch, the animal was already fixating at the
position to be reached and waiting for the visual
cue. V6A neurons are known to be modulated not
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only by the spatial positions of reaching [82], but
also by gaze position [59] and spatial attention [84].
Therefore, these factors may have also contributed
at providing high discriminative power of the neural
decoder early during the delay epoch. Conversely,
in the reach-to-grasp encoding in V6A, considering
the same illumination condition as in the reaching
task (light condition), the encoding of grip properties
became pronounced at the very end of the early delay
epoch, closer to action execution. Thus, the interme-
diate visuomotor transformation appeared delayed
in reach-to-grasping tasks. This could be due to a
more complex motor planning required to trans-
late the specific object shape into the corresponding
grip code, or to the lower spatial processing require-
ments compared to reaching. Furthermore, grip-
related properties appeared less encoded in the dark
condition, overall resulting in (see the red curve com-
pared to the blue curve in figure 12): (i) a slower ramp
of encoding measure during the delay epoch, espe-
cially in epoch 1, where the steep increase observed in
the light conditionwas absent; (ii) a lowered encoding
especially during the late delay and movement inter-
vals. That is, without accessing the visual attributes in
the delay epoch, the visuomotor transformation not
only resulted weaker (mainly due to the visuomotor
nature of V6A area) but also slower. This further sub-
stantiates the importance of visual information for
movement preparation in V6A. Indeed, V6A neurons
are on average less active (lower firing rates) if move-
ment preparation and execution are performed in the
dark, and this was attributed to the attentional effort
in keeping the object to grasp in memory which pro-
duces an inhibition in V6A neurons [85].

Similar temporal dynamics in accuracies were
obtained in Filippini et al [41, 42, 44] on the same
data using sliding window decoding. Remarkably, at
a variance with the method applied in the previ-
ous studies [41, 42, 44], here neural encodings were
investigated with a finer temporal resolution of 5 ms
instead of 20 ms.

Overall, the results on offline motor decoding
obtained in this study suggest that CNNs repres-
ent potential candidates to realize neural decoders
for BCI applications in humans from recordings in
medial PPC. In fact, these networks improved the
recognition rate of motor properties already from
motor planning (late delay epoch) compared to the
other examined learning systems. Indeed, as CNNs
achieved higher accuracies particularly during motor
preparation across all recording paradigms (even
under challenging conditions of less input neurons
and less training trials), these decoders could be
adopted in BCI systems to accurately decode motor-
related properties. Moreover, due to the anticipated
nature of decoding, CNNs can also cope with the
delays that occur in BCI systems and that negat-
ively affect the contingency between the recording of
the neural activity and the feedback provided to the

BCI user [3] (e.g. delays in processing neural activ-
ity into output commands and in driving the external
device). Crucially, this performance improvement
was also accompanied with a lower computational
time and complexity (see table 4). Thus, CNNs not
only provided an accurate prediction but also resul-
ted in a model being more parsimonious (among all
DNNs) and faster to train (especially when compared
to RNNs). Therefore, CNNs may also help to keep
limited the BCI calibration time, required to adapt the
BCI system to the specific user.

Besides the previous prospective impacts of the
present study in BCI practical applications, the
obtained results also indicate that a data-driven
approach based on DNNs applied to the analysis
of V6A motor encoding provides promising insights
and may contribute to deepen our knowledge of the
functional role of this area. In future, this approach
can be applied to single-neuron recordings obtain in
other paradigms and brain areas, extending behind
motor tasks, to sensory or perceptual tasks, with fur-
ther potential implications both for neurophysiolo-
gical knowledge and for practical advancement.

Of course, the present study is also affected by
some limitations, that will be addressed in future
studies. First, the data-driven analysis of V6A motor
encodingwas performedonly in the temporal domain
and should be extended also to the other domains
characterizing multivariate neural signals, such as
spatial and frequency domains. In this regard, future
developments could benefit from the adoption of
post-hoc explanation techniques [86] (e.g. saliency
maps or layer-wise relevance propagation), devoted
to highlight useful features in a domain under invest-
igation, as recently obtained in CNNs for EEG
processing [15, 16, 49, 53, 62, 87–89]. Second, all the
performed analyses were conducted offline; thus, the
insights provided from the performed offline invest-
igations should be validated online in future studies.

5. Conclusion

In conclusion, in this study we investigated both
design and application of neural networks for motor
neural decoding from V6A activity, using a sliding
window decoding approach. Signals were recorded
from area V6A of four macaque monkeys, overall,
during three different recording paradigms involving
reaching and reach-to-grasping, and a comparative
analysis was performed on three different neural net-
work families.

Neural networks were optimized in their archi-
tecture by using Bayesian optimization across the
addressed motor decoding problems, separately for
FCNNs, CNNs, RNNs. The resulting optimal net-
work structures may provide useful indications to
researchers when designing neural networks for
motor decoding. For both reach and reach-to-grasp
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decoding (the latter with two different illumina-
tion conditions), neural networks significantly out-
performed the reference machine learning algorithm
(NB); furthermore, CNNs significantly outperformed
also other traditional machine learning approaches
(XGBoost, SVM), and the other neural networks
(FCNNs and RNNs) in all motor decoding problems.
Notably, the performance gain obtained in CNNs,
especially during motor preparation, was maintained
also while simulating practical scenarios in which
less neurons/trials are recorded. Moreover, task-to-
task transfer learning using CNNs proved to increase
the decoding performance especially in the low data
regime, suggesting that neural networks (specifically
CNNs) can be also used, in prospective, in practical
BCI scenarios providing not only the most accurate
translation of the neural activity, but also a reduction
of BCI calibration times.

Time pattern of motor encoding in V6A can
be analyzed from the decoding accuracy thanks to
the adopted sliding window approach. By analyz-
ing motor encoding from CNN decoding accuracies,
a different latency in the intermediate visuomotor
transformation was observed between the encoding
of reached spatial positions and grip types; further-
more, the visuomotor transformation involving grip-
related motor plan resulted slower and weaker while
the monkey was waiting for the go-signal in complete
darkness.

Overall, the high decoding capabilities of CNNs
on a variety of training scenarios (notably, during
motor planning), together with their light and fast-
to-train nature, suggest that future studies might take
advantage from the design and application of CNNs
not only for offline evaluations but in prospective also
in online evaluations, while decoding human medial
PPC to control external devices for patients (e.g. with
tetraplegia or with neurodegenerative disorders).
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