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ABSTRACT
We use a sample of 17 strong gravitational lens systems from the BELLS GALLERY survey
to quantify the amount of low-mass dark matter haloes within the lensing galaxies and along
their lines of sight, and to constrain the properties of dark matter. Based on a detection criterion
of 10σ , we report no significant detection in any of the lenses. Using the sensitivity function at
the 10σ level, we have calculated the predicted number of detectable cold dark matter (CDM)
line-of-sight haloes to be μl = 1.17 ± 1.08, in agreement with our null detection. Assuming
a detection sensitivity that improved to the level implied by a 5σ threshold, the expected
number of detectable line-of-sight haloes rises to μl = 9.0 ± 3.0. Whilst the current data find
zero detections at this sensitivity level (which has a probability of P5σ

CDM(ndet = 0) = 0.0001
and would be in strong tension with the CDM framework), we find that such a low-detection
threshold leads to many spurious detections and non-detections and therefore the current lack
of detections is unreliable and requires data with improved sensitivity. Combining this sample
with a subsample of 11 SLACS lenses, we constrain the half-mode mass to be log (Mhm) <

12.26 at the 2σ level. The latter is consistent with resonantly produced sterile neutrino masses
ms < 0.8 keV at any value of the lepton asymmetry at the 2σ level.
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1 IN T RO D U C T I O N

As much as 85 per cent of the matter content of the Universe is made
of an unknown elusive component known as dark matter, and its
nature represents one of the most long-standing and most studied
problems in physics (Bosma 1981; Rubin et al. 1985; Frenk &
White 2012). In the standard cold dark matter (CDM) cosmological
model, this exotic matter component is described as made up of
weakly interacting particles, such as axions and neutralinos, which
have negligible thermal velocities at early times and are collisionless
at scales smaller than ∼1 kpc (e.g. Baer et al. 2015; Ringwald
2016). Detailed observations of the cosmic microwave background
have shown that not long after the big bang the distribution of
matter in the Universe was smooth and homogeneous except for
small density perturbations (Planck Collaboration XI 2016b; Planck
Collaboration XIII 2016c; Schneider et al. 2017). Due to their
negligible thermal velocity, CDM particles are confined within these
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fluctuations, which evolve under the influence of gravity and survive
down to the smallest scales (Davis et al. 1985; Yoshida et al. 2000).
The distribution and evolution of these fluctuations determine the
statistics of the dark matter distribution in the present Universe
and constitute the backbone upon which baryonic matter builds
up galaxies and galaxy clusters (Ostriker, Peebles & Yahil 1974;
White & Rees 1978).

The �CDM model is the cosmological framework that on
large scales has provided the best agreement with observa-
tions to date (e.g. Springel 2005; Planck Collaboration LI
2016a). However, on smaller scales (less than a few kpcs), this
agreement is less certain, and discrepancies between observa-
tions and predictions from high-resolution simulations arise (e.g.
Kauffmann, White & Guiderdoni 1993; Moore 1994; Boylan-
Kolchin, Bullock & Kaplinghat 2012). In an attempt to alleviate
these tensions, alternative dark matter models have been considered,
for example, self-interacting and warm dark matter (e.g. Lovell
et al. 2014; Vogelsberger et al. 2016; Iršič et al. 2017; Robles et al.
2017). In particular, following the possible detection of a 3.5 keV
line in the outskirts of the Perseus cluster, other nearby galaxy
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clusters (Bulbul et al. 2014), the Andromeda galaxy (Boyarsky
et al. 2014) and the Milky Way centre (Boyarsky et al. 2015),
sterile neutrinos with masses of a few keV have been proposed as
one of the favoured alternative candidates (however see Anderson,
Churazov & Bregman 2015; Jeltema & Profumo 2016; Aharonian
et al. 2017).

A critical difference between warm dark matter (WDM) and
CDM models is the evolution of structure at galactic and sub-
galactic scales. Thanks to their non-negligible velocities, WDM
particles can freely stream out of small mass density perturbations
in the early Universe, and are responsible for the suppression of
the number density of low-mass dark matter haloes and subhaloes
relative to CDM (e.g. Lovell et al. 2012). The mass scale at which
this suppression happens depends on the momentum distribution
of the dark matter particle and therefore its production mechanism.
Quantifying the relative number of small-mass haloes is, therefore,
an essential probe to the nature of dark matter. However, most
of these haloes are expected to be very faint or even completely
dark, and they can only be detected via their gravitational signature
on the multiple images of gravitationally lensed quasars (Mao &
Schneider 1998; Dalal & Kochanek 2002; Nierenberg, Oldenburg &
Treu 2013; Gilman et al. 2018) and lensed galaxies (Koopmans
2005; Vegetti & Koopmans 2009; Vegetti et al. 2010, 2012, 2014;
Hezaveh et al. 2016; Chatterjee & Koopmans 2018; Despali et al.
2018; Vegetti et al. 2018), and the stellar distribution of globular-
cluster streams in the Milky Way (e.g. Ngan & Carlberg 2014; Erkal
et al. 2016).

In this paper, we apply the gravitational imaging technique
developed by Koopmans (2005) and Vegetti & Koopmans (2009)
to a sample of 17 gravitational lenses from the BOSS Emission-
Line Lens Survey (BELLS) for GALaxy-Lyα EmitteR sYstems
(BELLS GALLERY; Shu et al. 2016). We combine the detections
and non-detections of low-mass haloes to derive new statistical
constraints on the dark matter mass function and compare our
results with predictions from CDM and different sterile neutrino
dark matter models. This paper is structured as follows: in Section 2
we describe the data and in Section 3 we present an overview
of the adopted analysis scheme and summarize the gravitational
imaging method. In Section 4, we present the statistical approach
used to infer the parameter of the subhalo and halo mass func-
tions and the free-streaming properties of dark matter. We give
our results in Sections 5 and 6, and present our conclusions in
Section 7.

We assume the following cosmology throughout the paper,
H0 = 71 km s−1 Mpc−1, �m = 0.27, and �� = 0.73.

2 DATA

The sample analysed in this paper consists of 17 galaxy-scale
gravitational lens systems that were spectroscopically selected
from the BELLS GALLERY of the Sloan Digital Sky Survey-
III (Shu et al. 2016). The sample is both lens and source se-
lected: 1.4 × 106 spectra were analysed to search for Lyman
α emission lines at a redshift higher than the foreground early-
type-galaxy emission (Shu et al. 2016). Twenty-one lens candi-
dates were then observed with the WFC3-UVIS camera and the
F606W filter on board the Hubble Space Telescope (HST) between
2015 November and 2016 May (Cycle 23, program ID 14189,
PI: A. Bolton).

Our final sample consists of 17 Lyman α emitting galaxies at
redshifts from 2.1 to 2.8 that are gravitationally lensed by massive
early-type galaxies at a mean redshift of 0.5. For more details about

Table 1. Details of the gravitational lens systems analysed in this paper.
For each system we list here the SDSS name, the lens, and source redshifts,
the rest-frame wavelength of the UV emission observed through the F606W
filter, the observation exposure time, and the Einstein radius from Ritondale
et al. (2019). For lens systems with multiple lenses we list the Einstein radius
for each deflector.

Name (SDSS) zlens zsrc λrest Exp. time Rein

(Å) (s) (arcsec)

J0029+2544 0.587 2.450 1706 2504 1.295
J0113+0250 0.623 2.609 1631 2484 1.226

0.065
0.172

J0201+3228 0.396 2.821 1540 2520 1.650
J0237–0641 0.486 2.249 1812 2488 0.687
J0742+3341 0.494 2.363 1751 2520 1.197
J0755+3445 0.722 2.634 1620 2520 1.926
J0856+2010 0.507 2.233 1821 2496 0.960
J0918+4518 0.581 2.344 1730 2676 0.444

0.409
J0918+5104 0.581 2.404 1730 2676 1.600
J1110+2808 0.607 2.399 1732 2504 0.992
J1110+3649 0.733 2.502 1682 2540 1.152
J1141+2216 0.586 2.762 1565 2496 1.281
J1201+4743 0.563 2.126 1883 2624 1.139
J1226+5457 0.498 2.732 1578 2676 1.351
J1529+4015 0.531 2.792 1553 2580 2.233
J2228+1205 0.530 2.832 1536 2492 1.291
J2342–0120 0.527 2.265 1803 2484 1.033

the sample we refer to Table 1 and Shu et al. (2016). Images of the
lensed emission are shown in Fig. 1. Gravitational lens models,
under the assumption of a smooth elliptical power-law lensing
potential, and Sérsic parameters for the lens surface brightness
distribution for all 17 systems are respectively reported in Tables 2
and 3. More details can be found in Section 3.2 and Ritondale et al.
(2019). Briefly, Ritondale et al. (2019) revealed that these Lyman
α emitting sources are qualitatively very structured with extremely
inhomogeneous surface brightness distributions. They often consist
of multiple components that sometimes appear to be connected
or merging, while in other cases, they appear as clearly separated
components in the sky (see Fig. 2). Their intrinsic sizes vary quite
widely, from 0.2 to 1.8 kpc in radius and they have a relatively low
median integrated star formation rate of 1.4 M� yr−1, on average
(Ritondale et al. 2019).

3 LENS MODELLI NG

Each of the gravitational lens systems in the sample has been
analysed with an updated version of the grid-based fully Bayesian
modelling method developed by Vegetti & Koopmans (2009). This
technique simultaneously optimizes for the surface brightness of
the background source and the brightness and mass distribution
of the foreground lens galaxy. Our lens modelling procedure is
carried out in two subsequent steps. First, we find the best mass
and light model for the main lensing galaxies under the assumption
of a relatively smooth mass distribution, meaning that we do not
allow for the presence of any subhalo or line-of-sight halo. Results
of this analysis are presented and discussed by Ritondale et al.
(2019). Then, we look for the gravitational signature of dark-matter
subhaloes and line-of-sight haloes (collectively referred to as haloes
for the rest of the paper) on the surface brightness distribution of
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Gravitational imaging of dark matter haloes 2181

Figure 1. The surface brightness distributions of the lensed images within a selected region on the sky plane used to reconstruct the background sources. The
colour scale is in units of electron s−1h and the projected areas shown are at the redshift of the lens.

the lensed images, and use their number and inferred masses to
derive constraints on the dark matter properties. In this section, we
review the methodology, highlighting the main differences from the
original version of Vegetti & Koopmans (2009).

3.1 Lens mass and light distribution model

The mass distribution of each lens galaxy is parametrized as a
cored elliptical power law with normalized surface mass density κ
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Table 2. Mean values and relative errors for the lens mass models, derived using MULTINEST. The uncertainties are purely statistical and do not include
systematic errors. For the two additional lenses in SDSS J0113+0250, the radial density slope was kept fixed at a value of γ = 2 (corresponding to a SIE) and
therefore they are not reported here. Reproduced from Ritondale et al. (2019). By permission of Oxford University Press on behalf of the Royal Astronomical
Society.

Name (SDSS) κ0 θ q γ � �θ

(arcsec) (deg) (deg)

J0029+2544 1.320 ± 0.003 35 ± 4 0.94 ± 0.02 1.886 ± 0.002 0.05 ± 0.002 28 ± 2
J0113+0250 1.219 ± 0.005 80.6 ± 0.3 0.72 ± 0.01 2.08 ± 0.01 0.001 ± 0.0001 165 ± 14

0.058 ± 0.003 236 ± 15 0.86 ± 0.05
0.176 ± 0.005 226 ± 9 0.82 ± 0.04

J0201+3228 1.6604 ± 0.0001 53.5 ± 0.1 0.9105 ± 0.0005 1.8638 ± 0.0004 0.0489 ± 0.0002 34.91 ± 0.02
J0237−0641 0.7 ± 0.04 36 ± 0.9 0.8 ± 0.02 1.860 ± 0.04 0.007 ± 0.001 237.1 ± 3.3
J0742+3341 1.208 ± 0.005 151.9 ± 0.4 0.835 ± 0.007 1.98 ± 0.01 0.021 ± 0.001 352.6 ± 0.4
J0755+3445 1.86 ± 0.01 104.94 ± 0.05 0.531 ± 0.002 1.834 ± 0.01 0.232 ± 0.0005 30.18 ± 0.1
J0856+2010 1.093 ± 0.0004 100 ± 0.6 0.775 ± 0.001 1.820 ± 0.0004 0.072 ± 0.001 84.8 ± 0.7
J0918+4518 0.362 ± 0.005 47 ± 2 0.84 ± 0.03 2.15 ± 0.01 0.093 ± 0.003 78 ± 2

0.48 ± 0.01 31 ± 3 0.938 ± 0.03 2.01 ± 0.01
J0918+5104 1.560 ± 0.001 20.1 ± 0.1 0.703 ± 0.001 2.254 ± 0.002 0.267 ± 0.001 124.2 ± 0.03
J1110+2808 0.882 ± 0.004 45 ± 1 0.847 ± 0.007 2.210 ± 0.003 0.020 ± 0.002 320 ± 3
J1110+3649 1.116 ± 0.007 80.4 ± 0.3 0.79 ± 0.01 2.10 ± 0.01 0.016 ± 0.001 254 ± 1
J1141+2216 1.269 ± 0.004 155.8 ± 0.3 0.76 ± 0.01 1.92 ± 0.01 0.0034 ± 0.0002 14.1 ± 0.7
J1201+4743 1.147 ± 0.004 39.1 ± 0.3 0.799 ± 0.004 2.112 ± 0.006 0.010 ± 0.0005 42 ± 2
J1226+5457 1.355 ± 0.004 62.3 ± 0.4 0.915 ± 0.003 2.04 ± 0.02 0.162 ± 0.002 159.9 ± 0.1
J1529+4015 2.2 ± 0.01 37.1 ± 0.2 0.504 ± 0.01 2.00 ± 0.01 0.0075 ± 0.0004 222 ± 3
J2228+1205 1.266 ± 0.004 176.9 ± 0.2 0.899 ± 0.005 2.04 ± 0.01 0.033 ± 0.001 3.6 ± 0.2
J2342−0120 1.003 ± 0.001 40.8 ± 0.1 0.8765 ± 0.0004 2.0596 ± 0.001 0.0196 ± 0.0001 272.13 ± 0.05

Table 3. Mean values and relative errors for the lens galaxy surface brightness distribution derived with MULTINEST. The
reported uncertainties are purely statistical and do not include systematic errors. Reproduced from Ritondale et al. (2019). By
permission of Oxford University Press on behalf of the Royal Astronomical Society.

Name (SDSS) Lens Component Re n φ f
(arcsec) (deg)

J0029+2544 0.74 ± 0.07 5 ± 0.3 51 ± 6 0.8 ± 0.1
J0113+0250 1 1.50 ± 0.03 3.70 ± 0.04 83.5 ± 0.6 0.59 ± 0.01

2 0.102 ± 0.005 2.4 ± 0.2 125 ± 10 0.95 ± 0.02
3 0.347 ± 0.003 2.08 ± 0.01 246.8 ± 0.7 0.49 ± 0.02

J0201+3228 I 2.79 ± 0.03 2.61 ± 0.02 27.56 ± 0.4 0.862 ± 0.004
II 0.240 ± 0.004 5.49 ± 0.07 151.1 ± 1.6 0.88 ± 0.01

J0237−0641 4.7 ± 0.2 8.8 ± 0.2 3.3 ± 0.4 0.984 ± 0.008
J0742+3341 2.21 ± 0.04 6.5 ± 0.1 147.6 ± 0.5 0.705 ± 0.004
J0755+3445 0.62 ± 0.01 4.26 ± 0.05 102.012 ± 0.6 0.617 ± 0.006
J0856+2010 0.81 ± 0.02 4.44 ± 0.08 95.4 ± 0.6 0.779 ± 0.004
J0918+4518 1 I 0.56 ± 0.03 3.42 ± 0.08 164 ± 2 0.58 ± 0.03

II 0.055 ± 0.002 3.14 ± 0.03 176.4 ± 0.4 0.61 ± 0.02
2 1.34 ± 0.04 4.5 ± 0.1 40 ± 4 0.89 ± 0.02

J0918+5104 I 0.50 ± 0.01 2.90 ± 0.05 40 ± 2 0.882 ± 0.006
II 0.071 ± 0.003 2.6 ± 0.1 19 ± 3 0.92 ± 0.04

J1110+2808 I 0.78 ± 0.02 4.03 ± 0.09 48 ± 2 0.65 ± 0.02
II 0.70 ± 0.02 3.73 ± 0.04 21 ± 1 0.83 ± 0.01

J1110+3649 1.04 ± 0.02 6.05 ± 0.08 89 ± 1 0.756 ± 0.008
J1141+2216 I 0.65 ± 0.01 3.8 ± 0.05 153 ± 1 0.813 ± 0.007

II 0.25 ± 0.01 3.7 ± 0.2 150 ± 2 0.79 ± 0.03
J1201+4743 I 1.72 ± 0.04 4.18 ± 0.03 62 ± 3 0.618 ± 0.007

II 0.94 ± 0.03 5.34 ± 0.08 47 ± 1 0.737 ± 0.006
J1226+5457 0.69 ± 0.02 3.87 ± 0.06 181.3 ± 0.6 0.821 ± 0.004
J1529+4015 1.68 ± 0.05 6 ± 0.1 19.4 ± 0.5 0.805 ± 0.005
J2228+1205 0.83 ± 0.02 5.16 ± 0.06 102 ± 4 0.93 ± 0.01
J2342−0120 2.16 ± 0.03 6.02 ± 0.05 41.9 ± 0.5 0.652 ± 0.005
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Gravitational imaging of dark matter haloes 2183

Figure 2. The surface brightness of each background LAE, based on the pixelated source reconstructions from the gravitational lens modelling. The colour
scale is in units of electron s−1 and the projected areas shown are at the redshift of the source.

MNRAS 485, 2179–2193 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/485/2/2179/5320367 by guest on 15 August 2023



2184 E. Ritondale et al.

expressed as

κ (x, y) = κ0

(
2 − γ

2

)
qγ−3/2

2
(
q2

(
x2 + r2

c

) + y2
)(γ−1)/2 , (1)

while its light distribution is parametrized by one or a sum of
elliptical Sérsic profiles, with each component given by

Sh (x, y) = Ih exp

⎡
⎢⎣−ah

⎛
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⎛
⎝

√
q2

l,hx
2 + y2

Re,h

⎞
⎠

1/nh

− 1.0

⎞
⎟⎠
⎤
⎥⎦

= Ih h (x, y) . (2)

In equation (1), κ0 is the surface mass density normalization, γ is
the radial mass-density slope, q is the axial ratio, and rc is the core-
radius. The normalization of the density κ(x, y) is chosen such that
the mass within the Einstein radius is independent of the axial ratio
q. The contribution of an external shear component is parametrized
by its strength � and positional angle �θ , while in equation (2) Ih is
the normalization, ah = 1.9992 × nh − 0.3271 (Capaccioli 1989),
ql,h the axial ratio, Re,h the effective radius, and nh the Sérsic index.

Given one lens system of n lenses and N Sérsic components,
we refer to the free parameters of the mass and the light dis-
tributions respectively as ηm = {ηm,j }n

j=1 and ηl = {ηl,{j,h}}n,N
j,h=1,

with ηm,j = {k0,j , θj , qj , xj , yj , rc,j , γj , �j , �θ,j } and ηl,{j,h} =
{Re,{j,h}, n{j,h}, xl,{j,h}, yl,{j,h}, ql,{j,h}, θl,{j,h}}. They are all simulta-
neously optimized, except for rc, which we keep fixed at 0.1 mas and
each lens j is independently modelled. As the background source is
also unknown, the other free parameters of the model are the source
surface brightness distribution at each pixel on the source plane and
regularization level λs that sets the smoothness of the source model
(see Vegetti & Koopmans 2009, for more details).

3.2 Grid-based source model

The surface brightness distribution of each pixel in the lens plane
d is given by the sum of the lensed emission ds of the background
source s and the foreground lens brightness distribution d l . The
positions of the pixels on the lens- and source-planes are related to
each other by the lensing potential ψs

(
x, ηm

)
via the lens equation,

where we consider one lens and one source plane, respectively. The
effect of the line-of-sight haloes is projected on to the main lens
plane, using the mass–redshift relation by Despali et al. (2018) (see
also Section 3.4), which takes into account the non-linear effects
due to the multiplane lens configuration. The conservation of surface
brightness by gravitational lensing then leads to the following set
of linear equations:

B
[
L(ψ, ηm) | (�0 ... �N ) | 1

]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s

I0

.

.

.

IN

b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ n = ds + dl = d , (3)

where B is the blurring operator, which represents the effect of the
point spread function, L is the lensing operator, �h is the surface
brightness at each pixel of the hth Sérsic component, n is the noise
vector, and 1 is a vector with as many entries as the number of pixels
in the lens plane, all equal to one. I0, ..., IN are the unknown Sérsic

component normalizations and b is the pedestal which is a constant
accounting for the sky background. These are computed at each
iteration by solving equation (6) for a given set of the parameters
ηm and ηl . Under the assumption of Gaussian noise, the maximum
a posteriori (MAP) parameters ηm, λs, and ηl can be inferred by
maximizing the penalty function

P
(

r, ηm, ηl , λs | d,Hs

) ∝ ‖Mr − d‖2
2 + λ2

s‖Hs r‖2
2 , (4)

where we have introduced the vector rᵀ = (s, I0...In, b) and
rephrased equation (3) as

Mr + n = d, (5)

with M the product of the blurring operator with the lensing operator
and foreground surface brightness matrix. The first term of the
penalty function represents the χ2 difference between the data and
the model, while the second term includes a priori information
on the smoothness of the source surface brightness distribution
encoded by the level and form of the regularization λs and Hs . The
latter is set to zero in the entries multiplying the Sérsic component
normalizations. For each choice of the non-linear parameters ηm,
ηl , and λs, the corresponding value for r is obtained by solving the
linear system(
MT C−1

d M + λ2
s H

T
s Hs

)
r = MT C−1

d d , (6)

where Cd is the data covariance matrix and is assumed to be
diagonal, that is, we ignore any correlation among data pixels. In
fact the only non-zero correlation term is due to drizzling, which is
as low as 0.2 between adjacent pixels and effectively zero up to the
second neighbouring pixel (Bayer et al. 2018).

We refer the reader to Ritondale et al. (2019) for a more detailed
description of the smooth modelling results for the sample of lenses
studied in this paper.

3.3 Grid-based potential corrections

At this stage of the lens modelling, we gravitationally image low-
mass substructures by describing them as linear localized pixellated
corrections δψ(x) to the main lensing potential. In practice, at
each position x on the main lens plane, we redefine the lensing
potential as ψ(x, ηm) = ψs(x, ηm) + δψ(x). Where ψs(x, ηm) is
the parametric smooth potential introduced in the previous section.
Following the formalism developed by Koopmans (2005) and
Vegetti & Koopmans (2009), we then introduce a new linear system
relating the image and the source planes, which at each iteration n
reads as

M
(
ηm, ηl , ψn−1, sn−1

)
rn + n = d, (7)

with

M = B
[
L
(
ηm, ψn−1

) | − Ds(sn−1)Dψ | �i | 1
]

(8)

and

rᵀn = (
s, δψn, I0...In, b

)
. (9)

Here, Ds(sn−1) is a sparse matrix whose entries depend on the
surface brightness gradient of the best source at the n − 1 iteration
and Dψ is a matrix that determines the gradient of δψn (see
Koopmans 2005, for more details). Introducing Hδψ and λδψ as
the form and level of regularization for the potential corrections
δψn, we can now write a new penalty function as

P
(

rn | d, ηm, ηl , λs, λδψ , sn−1,Hs ,Hδψ

)
∝ ‖Mrn − d‖2

2 + λ2
s‖Hs sn‖2

2 + λ2
δψ‖Hδψδψn‖2

2 . (10)
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Gravitational imaging of dark matter haloes 2185

We can further define R as the diagonal block matrix that contains
the regularization level parameters λs and λδψ , and combines
the source and potential regularization operators H s and Hδψ .
Maximizing the penalty function with respect to r leads to the
following set of equations for rn(
MT C−1

d M + R
)

rn = MT C−1
d d. (11)

The solution of this linear system can be found using an iterative
technique; in particular, we solve equation (11) and then add the
correction δψn to the best potential of the previous iteration ψn−1.
While iterating this procedure, both the source and the potential
should converge to the maximum of the penalty function, given
by equation (10), following a Gauss–Newton scheme. At every
step of this procedure, the matrix M has to be recalculated for
the new updated potential ψn and source sn. While the potential
grid points are kept spatially fixed in the image plane, a Delaunay
tessellation grid for the source is rebuilt at every iteration to ensure
that the number of degrees of freedom is kept constant during
the entire optimization process. Pixellated convergence corrections
can be derived from the corresponding potential corrections by
applying the Laplace operator. At this stage of the analysis, the
non-linear parameters ηm, ηl , and λs are kept fixed at the MAP
parameters inferred in Section 3.2. This has two effects: (i) δψ

has both positive and negative peaks in order to conserve the total
mass; (ii) δψ includes corrections due to substructure as well as
any departures from the macro-model assumptions. The latter is
an important aspect of this technique that allows us to distinguish
between genuine and spurious substructure detections (Ritondale
et al., in preparation). However, a systematic quantification of the
interplay and degeneracy between complex mass distribution and
the properties of substructure and of the background source has not
been studied yet and we plan to address this issue in a follow-up
paper.

3.4 Small mass haloes as analytical mass components

The main advantage of describing substructures as pixellated
potential corrections is that it does not require any prior assumption
on their number and mass density profile. However, the non-linear
parameters describing the main lensing potential are fixed at the best
smooth values and the number of degrees of freedom defined by
the potential correction grid can be relatively large. Therefore, the
gravitational imaging alone does not allow the degeneracy between
the properties of the main lens and those of the substructure to be
straightforwardly quantified nor to be used to statistically compare
models (Vegetti & Koopmans 2009).

To this end, we follow our pixellated analysis with an analytical
description of the mass density profile of the low-mass haloes. At
this stage of the analysis, we assume that all of the haloes are at the
same redshift of the lens, that is subhaloes. Using the mass–redshift
relation from Despali et al. (2018), we then derive the mass that these
haloes should have had in order to generate the most similar lensing
effect if they were located at a different redshift, that is, along the line
of sight. In this procedure, we take into account the non-linear effects
due to the multiplane lens configuration. At this step, the haloes are
parametrized by a spherically symmetric NFW profile (Navarro,
Frenk & White 1996) with the concentration–mass relation of Duffy
et al. (2008). While this mass density profile is a good description for
the line-of-sight haloes, it is only an approximation for the subhaloes
that have been accreted by the halo of the lens galaxy, and have
therefore experienced events of tidal disruption. At a fixed virial
mass, this results in a higher concentration that is mildly dependent

on the subhalo distance from the host centre. However, Despali et al.
(2018) have shown that assuming a constant mass–concentration
relation from Duffy et al. (2008) plays only a secondary effect and
leads to an error on the inferred mass of 5 per cent for subhaloes
with masses of 105–6 M� and 20 per cent for masses of 109 M�.
These errors are significantly smaller than the de-projection errors
on the total mass of pseudo-Jaffe profiles (Minor, Kaplinghat & Li
2017; Despali et al. 2018) and it leads to an error on the expected
number of substructures of the order of 10 per cent.

At this stage of the analysis, the free parameters of the model
are: the non-linear parameters describing the main lens mass and
light distribution, the source surface brightness distribution in each
pixel and its regularization, the NFW virial mass and the projected
position of each halo.

3.5 Bayesian evidence and model comparison

In order to determine the statistical significance of a substructure
detection, we compare the marginalized Bayesian evidence of the
smooth and perturbed analytical models to determine which of the
two is preferred by the data. For each system, the Bayesian evidence
is computed using MULTINEST (Feroz et al. 2013) as the following
integral

E = P (d|M,Hs) =
∫

P
(

d|λs, ηm, ηl , m, x,M,Hs

)
×P

(
λs, ηm, ηl , m, x

)
dλsdηm dηl dm dx , (12)

where P
(
λs, ηm, ηl , m, x

)
is the normalized prior probability

density distribution on the model parameters, and is chosen as
follows: for the non-linear parameters ηm, ηl , and λs, we choose
uniform priors within an interval centred on the MAP value derived
in Section 3 and as large as 10, 20, or 40 per cent of this value,
with priors always consistent between the smooth and the perturbed
model for each lens.1 For the source regularization level λs, the
prior is uniform in logarithmic space. Both the prior on the
model parameters and the likelihood are properly normalized to
have integrals of unity. At this stage, substructures are described
analytically (as discussed in Section 3.4). Their masses m have
a uniform prior in logarithmic space, while their positions x are
equally probable at any location on the plane of the lensed images.

3.5.1 Detection criteria

As demonstrated by McKean et al. (2007), Gilman et al. (2017), and
Hsueh et al. (2016, 2017, 2018), assuming that all departures from a
smooth power-law elliptical potential are due to the presence of dark
sub-haloes and line-of-sight haloes can lead to the false detection of
haloes with a high statistical significance. Indeed, a complex lensing
potential, as for example in the form of edge-on discs, can affect the
lensed observables in a way which is degenerate with a large number
of low-mass haloes. In this respect, the pixellated gravitational
imaging technique, described in Section 3.3, represents a clear
advantage as it allows for the identification and quantification of all
departures from a simple power-law macro model, independently
of their origin. To obtain a reliable set of detections and non-
detections, it is therefore important to combine the results of the

1Building the prior volume based on the data is not consistent with a
Bayesian approach, but we checked that this does not impact the resulting
parameter values.
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two analyses that have been carried out in a completely independent
way. Following Vegetti et al. (2014), we define a detection as robust
if:

(i) a positive and localized convergence correction is identified,
it improves the fitting quality of the data and does not depend on
the source regularization forms and levels;

(ii) the analysis using parametric models for the haloes in
Sections 3.4 and 3.5 leads to the detection of a substructure with the
same mass and at the same location as the peak of the convergence
corrections identified at the previous step;

(iii) the model that includes the presence of a substructure
is preferred over the smooth model by a difference in the
Bayesian evidence of � log E = log Epert − log Esm ≥ 50, corre-
sponding roughly to a 10σ detection at its inferred position.

3.5.2 Detection threshold

As described in the previous section, we choose to set our detection
threshold at a Bayes factor of � log E ≥ 50. Under the assumption
of statistical Gaussian errors, this corresponds to a 10σ -threshold.
Using the reconstructed sources from the 10 systems with the
highest number of data pixels in the lens plane, we have also tested
the reliability of lower significance cuts. In particular, from each
of the 10 reconstructed sources we have created four mock lensed
data sets with the same level of signal-to-noise ratio and resolution
as the original data: one smooth model and three including a
subhalo detectable at the 4 (� log E ≥ 8), 5 (� log E ≥ 12.5), and
6σ (� log E ≥ 18) level. We have then analysed these data in the
same way as the real dataset and overall found a highpercentage
of false positive (almost 60 per cent) and false negatives (almost
40 per cent). In 30 per cent of the cases we have either recovered the
correct lack of subhaloes or correctly detected the presence of an
existing one. The percentage of false positives and false negatives
drops from 100 per cent (40 and 60 per cent, respectively) at the
4σ level, to 90 per cent (20 and 70 per cent, respectively) at the
5σ one, and finally to 60 per cent (30 per cent for both) at the 6σ

case. We therefore conclude that these lower significance cuts are
statistically unreliable. We believe this to be related to the fact that
the conversion between the Bayes factor and a simple confidence
level is only valid under the approximation of Gaussian statistical
errors and does not include the effects of systematics (especially
in relation to the source structure). In the rest of the paper, we
therefore quote as robust our results based on the more conservative
10σ cut, for which we recover correct results in 80 per cent of
the cases (10 per cent of false positives and 10 per cent of false
negatives).

4 IN F E R E N C E O N DA R K M AT T E R

In this section, we describe how the detection and non-detection
of subhaloes and line-of-sight haloes are statistically combined to
constrain the free-streaming properties of dark matter.

4.1 Mass and position definition

In the following, we denote with mo the observed NFW virial mass,
that is the mass that one would infer from the lens modelling of the
data under the substructure assumption. This mass is allowed to vary
between the lowest detectable mass MNFW

low (xo) at each considered
projected position xo (see Section 4.4 for a definition) and the
maximum NFW virial mass MNFW

max = 1011 M�. The true NFW

virial mass of a substructure at the redshift of the lens or a line-
of-sight halo at an arbitrary redshift z is referred to as m, and it is
allowed to assume any value between MNFW

min = 1.0 × 105 M� and
MNFW

max . The observed and true masses are statistically related to each
other via equation (22). The observed and true projected position
of haloes are respectively indicated with xo and x. The former is
defined as the projected position on the lens plane where the lensed
images are affected by the presence of the halo. For subhaloes, xo

and x are related to each other by a relatively small measurement
error (Despali et al. 2018). For line-of-sight haloes, the recursive
nature of the lens equation needs to be taken into account.

4.2 Dark matter mass function

Following Schneider et al. (2012) and Lovell et al. (2014), we
parametrize the subhalo and halo mass function as

n (m|Mhm, β) = nCDM (m)

(
1 + Mhm

m

)β

, (13)

where nCDM(m) is the number density of objects with mass m in the
CDM framework and the second factor expresses the suppression
in the number of haloes due to the free streaming of the dark matter
particles. In particular, Mhm is the mass scale at which the WDM
mass power-spectrum is suppressed by one half with respect to the
CDM one and β is the slope of the WDM mass function below the
turn-over mass. For the subhalo CDM mass function we assume a
power-law mass function given by

nCDM
sub (m) ∝ m−α. (14)

Instead, for the CDM mass function of line-of-sight haloes, we
adopt the expression by Sheth & Tormen (1999), with the best-
fitting parameters optimized for the Planck cosmology from Despali
et al. (2016).2

4.3 Likelihood

In the following, we refer to mob
i and xob

i as the bins of observed
mass mo and projected position xo that correspond to a detected
halo. As in Vegetti et al. (2018), we have chosen the widths of these
mass and position bins to be small enough so that the maximum
number of detections per bin is one. We have also assumed a Poisson
distribution for the number of haloes. Under this assumption, we
can express the likelihood of detecting n objects (substructures plus
line-of-sight haloes) with observed NFW masses

{
mob

1 , ...., mob
n

}
at

the projected positions
{

xob
1 , ...., xob

n

}
, and no detection in all other

mass and position ranges as follows (see Vegetti et al. 2018, for a
complete derivation)

log P
({

mob
1 , ...., mob

n

}
,
{

xob
1 , ...., xob

n

} |θ)
= −

∫ [
μs(m

o, xo) + μl(m
o, xo)

]
dmo dxo

+
n∑
i

log
[
μs

(
mob

i , xob
i

)
dmo dxo+μl

(
mob

i , xob
i

)
dmo dxo

]
,

(15)

2These cosmology parameters are slightly different (<10 per cent) from the
ones stated at the beginning of the paper. However, this difference does not
impact the formation of structures as small as the ones we are concerned
with. Therefore, this difference is not important for our purposes (Despali
et al. 2016).
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where θ is a vector containing the set of parameters describing the
subhalo and halo mass functions (see Section 4.6 for an explicit
definition). The above integrals are computed between the lowest
detectable mass MNFW

low (xo) and MNFW
max , while for the positions

we consider all pixels on the lens plane used to reconstruct the
background source (see Fig. 1). Here, μs (mo, xo) dmo dxo and
μl (mo, xo) dmo dxo are the mean expected number of substructures
and line-of-sight haloes, respectively, in the mass range mo, mo +
dmo, and projected position range xo, xo + dxo. These are derived
in Section 4.5.

4.4 Sensitivity function

In order to derive constraints on the substructure and halo mass
function, it is necessary to calculate the sensitivity function for
each lens system in the sample. The latter is defined as the lowest
detectable NFW mass at the redshift of the main lens MNFW

low (xo) for
each position in the lens plane of each system in the sample. It is
computed as the smallest observed mass for which a clumpy model
is preferred over the smooth one by a factor of the marginalized
Bayesian evidence (see Section 3.5) corresponding to a 10-σ
detection cut.

As demonstrated by Koopmans (2005) and Rau, Vegetti & White
(2014), the sensitivity function strongly depends on the complexity
of the surface brightness distribution of the background source.
In fact, the strength of a surface brightness anomaly (δI) due to
a potential perturbation δψ is δI = −∇s · ∇δψ , that is, the inner
product of the gradient of the source brightness distribution (where
∇s is evaluated in the source plane) dotted with the gradient of the
potential perturbation due to substructure (where δψ is evaluated
in the image plane). Hence, mass (sub)structure can be detected
more easily for sources that are highly structured (i.e. large values
of |∇s|) or, conversely, more structured sources allow for a lower
mass detection threshold for a fixed signal-to-noise ratio.

The sample analysed in this paper consists of 17 lensed Lyman
α emitters, that are known to be very structured galaxies and char-
acterized by a high dynamical range in their brightness distribution
(Ritondale et al. 2019). Therefore, these data could in principle be
characterized by a relatively high sensitivity (i.e. low-mass detection
threshold). We present the actual distribution of pixels as a function
of lowest detectable mass in comparison with the subsample of the
SLACS lenses (Bolton et al. 2006; Auger et al. 2010) from Vegetti
et al. (2018) in Section 6.1.

4.5 Expectation values

Given the sensitivity functions, it is now possible to compute the
expected total number of subhaloes and line-of-sight haloes as

μ(mo, xo) = μ0 ×
∫

P (I = 1|mo, xo)P (mo|m, z)

×P (m, z|θ )P (xo|x, z)P (x)P (z) dm dz dx. (16)

The mass integrals are evaluated between MNFW
min and MNFW

max . I is a
vector that is equal to one for detectable objects and zero otherwise,
so that P (I = 1|mo, xo) encodes the sensitivity function and is
given by

P (I = 1|mo, xo) =
{

1 if mo ≥ Mlow(xo)

0 otherwise
. (17)

P(m, z|θ ) dm dz is the probability of finding one halo in the mass
range m, m + dm and in the redshift range z, z + dz. It is related to

the mass functions by

P (m, z|θ ) dm dz = n(m, z|θ )
dV

dz
dm dz

×
[∫

n(m′, z′|θ )
dV

dz′ dm′dz′
]−1

, (18)

and, for subhaloes, it reduces to the following expression

P (m|θ) dm = n(m|θ) dm
[∫

n(m′|θ ) dm′
]−1

(19)

with n(m|θ ) given by equation (13).
Introducing the projected mass of the main lens Mlens and a

projected total mass fraction in substructure fsub between MNFW
min

and MNFW
max , we express μ0 as follows:

μ0 = fsubMlens

[∫
m′P (m′|θ ) dm′

]−1

. (20)

For line-of-sight haloes μ0 is expressed instead as

μ0 =
∫

n(m′, z′|θ )
dV (x′)

dz′ dm′ dz′ dx′ . (21)

As the measurement error on the halo positions is relatively small
(Despali et al. 2018), we assume P (xo|x, z) = δ(x − g(xo, z)), that
is a delta function. For substructure, g(xo, z) ≡ xo, whilst for line-
of-sight haloes g(xo, z) takes into account the effect of the recursive
lens equation. Following the results by Xu et al. (2015) and Despali
et al. (2018), we assume a uniform probability for P (x). The redshift
of line-of-sight haloes have a uniform prior between the observer
and the source, excluding the region within the main lens virial
radius. The latter estimated to be ∼390 kpc and 0.0001 in redshift,
assuming that the lens galaxies are typical early-types at z ∼ 0.5
and have a mean halo mass of M = 1013 M�. For subhaloes P(z) =
δ(z − zlens).

As the detection threshold MNFW
low (xo) and the measured mass mo

were derived under the substructure assumption, we account for the
different lensing effect of line-of-sight haloes via the term

P (mo|m, z) = 1√
2πmoσ (z)

exp

[
− (log mo − f (m, z))2

2σ 2(z)

]
. (22)

Given a line-of-sight halo of NFW virial mass m located at redshift
z, f(m, z) returns the NFW virial mass at the same redshift of the
main lens with the most similar gravitational lensing effect, for a
Duffy et al. (2008) concentration–mass relation. Here, we do not use
the exact relation reported by Despali et al. (2018), but we derive a
characteristic relation for each lens in our sample using mock lensed
images of each of the lenses in the sample. The intrinsic scatter σ (z)
is also not the same as the one given by Despali et al. (2018), but
it is a sum in quadrature of the error on the measured mass mo and
the uncertainty related to changes in the mass–redshift relation as a
function of position on the image plane in a way that depends on
the main lens deflection angle and the external shear. In the case
of substructures, f(m, z) reduces to m and σ (z) reduces to the mass
measurement error.

4.6 Prior and posterior distributions

The target parameters of the model, expressed by the vector θ ,
are the subhalo and halo mass function slopes, respectively α and
β, the projected total dark matter fraction in substructures fsub,
and the half-mode mass Mhm. These are drawn from the following
prior probability density distributions: (i) for α and β we assume
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a Gaussian prior centred at 1.9 and −1.3 and with σ of 0.2 and
0.1, respectively; (ii) we draw the values of fsub from a uniform
prior density distribution in 1/

√
fsub between 0 and 0.2; (iii) for the

half-mode mass we assume a logarithmic prior distribution between
106 and 2 × 1012 M�. Both priors are chosen in order to allow for
an even exploration of the parameter space. This range of Mhm

covers the most commonly considered WDM models, including the
3.5 keV model. The lower limit Mhm = 106 M� is strictly speaking
warmer than CDM, but in practice indistinguishable from it within
the mass range probed by the sensitivity of the data (see Section 6.3).

The posterior probability density distribution is obtained assum-
ing the different lens systems in the sample to be statistically
independent from each other.

5 LENS MODELLING R ESULTS

A complete description of the analysis and the results of the smooth
modelling is provided in Ritondale et al. (2019), along with a
detailed comparison with the smooth models derived by Shu et al.
(2016). In this section, we present the results of our search for
low-mass haloes.

5.1 Substructure search

Out of the 17 gravitational lenses in the sample, we find that 14 do
not fulfil one or more of the detection criteria defined in Section 3.5.1
and, therefore, all the pixels in these systems will contribute to the
statistical analysis as non-detections. In particular, in all of these
14 cases, the smooth model is always preferred by the Bayesian
evidence, independently of the choice of prior. Moreover, no
significant convergence corrections are identified. For the remaining
three systems, namely SDSS J0742+3341, SDSS J0755+3445, and
SDSS J1110+3649, we find that the Bayesian Evidence persistently
prefers a model that includes the presence of one or more subhaloes,
however, the potential corrections give a meaningful perturbation
only in the case of SDSS J1110+3649. Below, we discuss these
systems individually in more detail.

5.1.1 SDSS J0742+3341

The parametric analysis of Section 3.4, where subhaloes are
described as analytical NFW mass components, shows a persistent
preference for a model that includes a substructure with a mass of
MNFW

vir = (3.8 ± 0.8) × 1010 M� located at (dx, dy) = (1.14 ± 0.04,
−0.80 ± 0.03) arcsec, relative to the main lens centre. However,
the detection is only at the 6σ level and therefore below our 10σ

threshold (see Section 3.5.2). Moreover, no significant and localized
convergence correction is identified by the pixellated analysis of
Section 3.3 at the same location, as shown in Fig. 3. We, therefore,
conclude that there is no evidence for a significant detection of
a mass perturbation in this system and register it as another non-
detection in the sample.

5.1.2 SDSS J0755+3445

This system is a clear example of how a purely analytical analysis of
mass substructure can lead to false detections due to a mis-modelling
of the main lens macro model. We refer to a follow-up paper for
an in-depth discussion of this system. Here, we provide a short
summary of the results. The analytical clumpy analysis shows a
consistent preference at the 12σ level (i.e. � log E = 72) for a model

using an NFW halo with a mass of MNFW
vir = (4.8 ± 0.4) × 1010 M�

located at (dx, dy) = (−1.76 ± 0.02, 1.12 ± 0.02) arcsec, relative
to the main lens centre. However, no strong positive and localized
convergence correction is identified. Low-level diffuse corrections
can be seen instead (see Fig. 3), which allow for a better focusing of
the background source and reduce the positive and negative beating
otherwise seen in the low-surface brightness tail of the smooth
source. This indicates that the true mass distribution of this system
is probably not well described by a single power-law model and that
the compactness of the gravitational imaging source is probably due
to the extended convergence corrections shown in Fig. 3.

Moreover, we find that the Bayesian evidence further increases
when adding a second analytic subhalo. The source tail is also
further decreased, although we do not see evidence for this second
halo in the gravitational imaging as a localized positive correction
either. We have also modelled the data using a double power-law
model and including the contribution to the lensing potential of a
galaxy observed in the south-west direction and ∼5 arcsec away
from the main lens. However, in none of these cases could we
reconstruct a compact source and remove the low-level diffuse
potential corrections. We conclude therefore that complex mass
components that remain un-captured by the macro-model can mimic
the effect of subhaloes and lead to an overestimation of the latter.

This result is in qualitative agreement with what was found
by Hsueh et al. (2016, 2017), who have shown that observed
flux-ratio anomalies in multiply imaged quasars can sometimes
be reproduced by the lensing effect of an un-modelled edge-on
disc rather than requiring dark matter (sub)haloes. Similarly, from
an analysis of hydrodynamical simulations, Hsueh et al. (2018)
have shown that the presence of baryonic structures and discs is
responsible for an increase of flux-ratio anomalies by a factor from
8 to 20 per cent. They also found that baryonic structures can cause
astrometric anomalies in 13 per cent of the studied mocks. Gilman
et al. (2017) have come to the same conclusion by analysing mock
data based on HST observations of low-redshift galaxies. Moreover,
Gomer & Williams (2018) found that astrometric anomalies can also
be caused by asymmetries and inhomogeneities in the region of
the lensing galaxy where the transition between dark and baryonic
matter occurs.

This demonstrates that the gravitational imaging technique is
important to distinguish between genuine detections and false
detections due to an un-captured underlying complexity of the
lensing mass distribution.

5.1.3 SDSS J1110+3649

The pixellated analysis for SDSS J1110+3649 shows the pres-
ence of a positive localized convergence correction at about (dx,
dy) = (−0.851, 0.628) relative to the main lens (Fig. 3). Moreover,
the parametrized analysis of Section 3.4 gives a preference at the 4σ

level for a model with a subhalo with mass MNFW
vir = (5.4 ± 1.5) ×

109 M�. This subhalo is located at (dx, dy) = (−0.945 ± 0.084,
0.536 ± 0.021) relative to the main lens centre, consistent within 1σ

with the position of the convergence correction. From the pixellated
convergence corrections, we derived a model-independent projected
mass for the substructure of Mκ

2D(<rs) = ∑
pix 2 π c κi r2

i =
2.5 × 109 M�. This is consistent within 2σ with the parametric
projected mass MNFW

2D (<rs) = (1.7 ± 0.7) × 109 M�.
However, given the low statistical significance and the results

presented in Section 3.5.2, we conclude that multiband data or
deeper observations are required to understand the nature of this

MNRAS 485, 2179–2193 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/485/2/2179/5320367 by guest on 15 August 2023



Gravitational imaging of dark matter haloes 2189

Figure 3. Results of the gravitational imaging analysis for the lens systems SDSS J0742+3341 (Panel a), SDSS J0755+3445 (Panel b), and SDSS J1110+3649
(Panel c). For each lens, the top-row shows the data (left), the model (middle), the normalized residuals (right). The bottom row shows the reconstructed
source (left), the pixellated potential corrections (middle), and the corresponding convergence corrections (right). In SDSS J0742+3341 the convergence
corrections are in correspondence of the lens galaxy, but their low-level and wide extension suggests the absence of small size haloes. SDSS J0755+3445 also
shows low-level and diffused corrections to the potential; this is a symptom of a complicated mass distribution rather than of the presence of a subhalo. In
SDSS J1110+3649 we see the presence of a positive and localized potential correction, possibly indicating the tentative detection of a dark matter halo of mass
Mκ

2D(<rs) = 2.5 × 109 M�. In all the panels, negative potential corrections are related to the conservation of the integral of the convergence, i.e. the mass.

system and, at present, also in this case we do not count this as a
detection.

6 IN F E R E N C E O N T H E DA R K M AT T E R
PA R A M E T E R S

In this section, we combine the lens modelling results presented in
Section 5 with the statistical formalism introduced in Section 4 to
derive statistical constraints on the free streaming properties of dark
matter. First, we compare with the expected value of detectable line-
of-sight haloes from the CDM paradigm (i.e. α = 1.9, Mhm = 0,
Springel et al. 2008) and then with resonantly produced sterile
neutrino models (Shi & Fuller 1999) including the contribution of
both subhaloes and line-of-sight haloes.

6.1 Sensitivity function

We firstly compute the sensitivity function for the BELLS
GALLERY sample, as described in Section 4.4. As discussed in
the same section, the high level of structure of the sources could

in principle provide a high sensitivity to low-mass haloes at fixed
signal-to-noise. However, this was found not to be the case: the
BELLS GALLERY lenses not only have a mean sensitivity that
is lower than the SLACS lenses (see Fig. 4), but also, as the
background sources are very compact, have a smaller fraction of
image plane pixels with a high sensitivity than SLACS. For this
reason, this sample of lenses turned out to be less constraining than
the SLACS lenses in terms of probing the halo and subhalo mass
function at an interesting mass regime. Higher signal-to-noise ratio
observations are required to improve the sensitivity of this sample.

6.2 A potential discrepancy with CDM

Assuming our reference detection threshold of 10σ and the relative
sensitivity function, we compute the number of detectable line-of-
sight CDM haloes to be μl = 1.17 ± 1.08, for the complete sample
of 17 systems, in agreement with the zero detections registered
for this sample. This is computed with equation (16) using the
lowest detectable (at the 10σ level) mass in each pixel as the lower
integration limit and summing over all 17 lenses. This result is
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Figure 4. The upper panel shows the fraction of pixels with a 10σ

substructure mass detection threshold (as defined in Section 4.4) for the
BELLS GALLERY sample analysed in this paper (green histogram) and
for the sub-sample of SLACS lenses analysed by Vegetti et al. (2014, grey
histogram). The lower panel shows the same for the BELLS GALLERY
sample but with a 5σ substructure mass detection threshold. The vertical
lines indicate the mean sensitivity values for each sample.

consistent with the fact that this sample has relatively low sensitivity
(i.e. large value for the lowest detectable mass) and thus the number
of line-of-sight haloes per arcsec or per pixel is relatively small.

Although the tests presented in Section 3.5.2 have shown that a
detection threshold cut at the 5σ level is not reliable, it is interesting
to test what happens if the sensitivity improved to the level implied
by this less conservative threshold. As can be seen in the bottom
panel of Fig. 4, the sensitivity at the 5σ cut of the BELLS GALLERY
sample is closer to the 10σ level one of the SLACS lenses, with a tail
at lower masses. As a consequence of the improved sensitivity, the
number of detectable CDM line-of-sight haloes significantly rises to
μl = 9.0 ± 3.0, while we find that also at the 5σ level, the number
of detections in the sample is still zero. The unreliability of this
sensitivity cut does not allow us to draw robust conclusions, but the
probability of registering zero detections in the CDM framework
would be P5σ

CDM(ndet = 0) = 0.0001. Interestingly, Vegetti et al.
(2018) have found that the expected number of CDM line-of-sight
haloes at the 10σ level for the SLACS lenses is μl = 0.8 ± 0.9 (in
agreement with the single detection reported by Vegetti et al. 2014),
reflecting the lower size of the cosmological volume probed by this
sample. These results indicate that deeper exposures or multiband
data, that provide improved sensitivity whilst keeping the robust
10σ threshold, for the BELLS GALLERY sample hold significant
promise to find a possible strong tension between the CDM model
and the sample of lenses considered in this paper.

6.3 Dark matter mass function

In the previous section, we only looked at the total expected number
of line-of sight haloes, here we use the full results of the Bayesian
analysis (with the 10-σ level cut) to characterize the dark matter
model based on the total number of detections and non-detections
and using the priors described in Sections 4.6. We summarize our
constraints on the subhalo and line-of-sight halo mass function
parameters in Table 4. Specifically, we report the mean, and the
upper and lower limits at the 68 and 95 per cent confidence level for
α and β, the 68 and 95 per cent upper limit on the dark matter mass

Table 4. Inference on the dark matter parameters with the BELLS sample
and the joint BELLS and SLACS samples. We report the mean and the lower
and upper limit at the 68 and 95 per cent confidence level for α and β, while
we only report the upper and lower limits for the half mode mass Mhm and
the upper limits on the dark matter fraction in substructures at the 68 and
95 per cent level.

Run Parameter Mean σ 68 σ 95

BELLS α 1.90 − 0.19 | +0.19 − 0.33 | +0.37
β − 1.30 − 0.1 | +0.09 − 0.16 | +0.16

fsub <0.01 <0.07
logMhm[M�] 6.52 | 12.12 5.77 | 12.60

Joint logMhm[M�] 10.38 | 11.85 7.27 | 12.26

Figure 5. The posterior probability density distribution for the half mode
mass Mhm for the joint and individual samples.

fraction in subhaloes fsub, and the 68 per cent and 95 per cent level
upper and lower limits for the half-mode mass Mhm. The posterior
probability distributions for these last two parameters obtained with
the BELLS GALLERY sample are presented in Fig. 5. We have
constrained the half-mode mass to be log Mhm < 12.60 at the 2σ

level. As expected from the calculations in Section 6.1, our results
are in agreement with the CDM paradigm, but do not allow us to
rule out alternative warmer dark matter models.

Recently, Vegetti et al. (2018) have performed a similar analysis
with a sample of 11 gravitational lens systems from the SLACS
survey by combining the single detection of Vegetti et al. (2010) with
the non-detections reported by Vegetti et al. (2014). The substructure
mass fraction derived here is smaller than the value reported by
Vegetti et al. (2018), which is contrary to what one would expect
given the relative redshift of the two samples of lenses (high redshift
for the BELLS GALLERY and low redshift for the SLACS sample),
however this is just a reflection of the poor data sensitivity, as shown
in Fig. 4, and the small number statistics combined with the null
detection. Also, it should be noted that the definition of fsub adopted
here (total mass fraction in subhaloes) is different than the one
adopted by Vegetti et al. (2014, 2018, dark matter mass fraction in
subhaloes).

In Fig. 5, we plot the joint posterior probability distribution for
Mhm derived by combing a posteriori the analysis of the two sample
of lenses. It has to be noted that we do not provide a joint inference
on fsub as its definition is different for the two samples and it is
expected to change with the mean lens redshift of the sample (Xu
et al. 2015). In Table 4 we also show the 95 and 68 per cent upper and
lower limits on the half-mode mass derived from the joint analysis
of the SLACS and BELLS GALLERY samples. It is evident that the
constraints at the lower 95 per cent confidence limits are driven by
the SLACS sample, while the upper limits are driven by the BELLS
GALLERY sample and are now consistent with warmer models,
that is the joint 95 per cent upper limit has shifted towards larger
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Figure 6. Line-of-sight mass functions derived from the joint
SLACS + BELLS GALLERY dataset. The black line corresponds to the
�CDM framework, the red to the sterile neutrino dark matter model
compatible with the detection of the 3.5 keV line, and the yellow and
green respectively to the upper and lower limits at the 95 (solid line) and 68
(dashed line) per cent confidence levels found in this paper, assuming a 10σ

detection threshold. The black dashed lines correspond to the prior edges in
Mhm. The striped and shaded grey regions correspond to the sensitivity of
the BELLS GALLERY and the SLACS samples, and the dotted line shows
the lowest detectable line-of-sight halo mass with the joint sample.

values from what was derived using the SLACS sample only. This
can be explained as follows: when combining the two samples, the
number of detections is the same, that is one, while the number of
non-detections significantly increases with the number of pixels in
each lens system included in the analysis. The substructure detection
in the SLACS sample is also responsible for a significant change in
the inference on the half-mode mass Mhm. In fact, the lower limit on
Mhm raises by 3 and 1 dex at the 68 and 95 per cent confidence level,
respectively. This is due to the fact that the single, rather massive
detection from the SLACS sample requires a cooler dark matter
model, and therefore smaller values of Mhm, as clearly visible in the
derived posterior probability in Fig. 5.

In Fig. 6, we compare the differential line-of-sight halo mass
function derived in this paper with the one predicted by the CDM
model (black solid line) and a sterile neutrino model consistent with
the 3.5 keV emission line (red solid line). The latter falls within our
lower and upper 95 per cent confidence limits, respectively plotted
as the green and yellow solid lines. Our lower limit mass function
is consistent at the 2σ level with the CDM prediction within the
mass range probed by the data. The inability to disentangle CDM
and warmer models, is due to the relatively low sensitivity of the
data to low-mass haloes, represented by the grey-shaded region. In
practice, this data can only probe the higher mass end of the halo
and subhalo mass functions, where different dark matter models do
not significantly differ from one another (Despali et al. 2018). As
discussed by Vegetti et al. (2018), the same sample of lenses with a
sensitivity improved by one or two orders of magnitude would result
in a shift of the posterior distribution of the half-mode mass towards
larger values and create a tension with CDM at the 2σ level. This
clearly indicates the importance of obtaining higher quality data for
the joint sample.

In Fig. 7, we show how our results compare with sterile neutrino
dark matter models. Sterile neutrinos are a two-parameter dark
matter model whose coolness is determined by a combination of

the level of lepton asymmetry L6 in the early Universe and the mass
of the sterile neutrino ms (Shaposhnikov 2008; Lovell et al. 2017).
This is evident from Fig. 7, where Mhm oscillates with L6 for each
value of ms. On the left panel of Fig. 7 we plot the half-mode mass
Mhm against the lepton asymmetry L6 for different values of the
sterile neutrino particle mass. On the right-hand panel instead, we
compare our results with those derived from the observed satellites
in the Milky Way (Lovell et al. 2016), X-ray decay searches from
M31 (Watson, Li & Polley 2012; Horiuchi et al. 2014) and Lyman α

forest constraints (see Vegetti et al. 2018, for a detailed description).
We notice that our joint lower limit constraints are not visible
because they are beyond the plotting range. The upper 95 per cent
confidence limit rules out sterile neutrino masses ms < 0.8 keV
at any value of the lepton asymmetry L6. As for the SLACS-only
results, our exclusion regions are significantly smaller than those
derived by other astrophysical probes. For the SLACS lenses, this is
mainly due to the low redshift of the lenses and the sources, which
results in a small contribution from the line-of-sight. For the BELLS
GALLERY sample, this is instead related to the lower sensitivity
of the data. Indeed, as discussed in Section 6.1, the same sample of
lenses but with higher data quality than currently available would
have led to a significantly larger number of expected line-of-sight
haloes. Finally, it should be noted that, although our results are
currently weaker, they are more robust than those from the Milky
Way satellite counts and the Lyman α forest, as they are less affected
by feedback processes and do not depend on the unknown thermal
history of the intergalactic medium, and our limits are therefore less
model dependent.

7 SU M M A RY A N D C O N C L U S I O N S

We have analysed a sample of 17 gravitational lens systems from
the BELLS GALLERY survey with the aim of detecting low-mass
dark matter haloes within the lensing galaxies and along their lines
of sight. First, we have modelled each system in the sample with
a smooth power-law elliptical mass model assuming the presence
of no haloes and studied the intrinsic properties of the background
sources (Ritondale et al. 2019). In this paper, we have focused on
the detection of low-mass haloes and its implication for the dark
matter properties, in particular those of sterile neutrinos.

Our main results can be summarized as follows. For the entire
sample of lenses, we report no significant detection of subhaloes
and line-of-sight haloes. In particular, 14 systems show statistical
preference for a model that does not include the presence of any
halo; one system, SDSS J0742+3341, shows a small preference
for a model with a subhalo, however this was not confirmed by our
gravitational imaging analysis. The system SDSS J1110+3649 also
shows a preference for a small-mass subhalo with a corresponding
significant pixellated convergence correction. However, its statis-
tical significance is still below our 10σ detection threshold and
we, therefore, conclude that more data are required to draw final
conclusions on this system.

Hsueh et al. (2016, 2017) have shown that un-modelled edge
on-discs and other baryonic structures in early-type galaxies can
cause flux-ratio and astrometric anomalies in multiply imaged
quasars, similarly to dark matter (sub)haloes. A similar conclusion
was reached using realistic lens galaxies taken from numerical
simulations and mock data based on HST observations of low-
redshift galaxies (Gilman et al. 2017; Hsueh et al. 2018). On the
same note, our analysis of the lens system SDSS J0755+3445 has
shown how structure not readily visible in the imaging data might
affect the lensing and therefore how complex mass distributions
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Figure 7. Left: Half-mode mass versus lepton asymmetry L6 for different values of the sterile neutrino mass with upper and lower limits at the 95 and
68 per cent confidence level on the turnover mass (dashed and dotted black lines). Right: 95 per cent exclusion region in the L6 versus sterile neutrino mass ms

plane. The grey region has been excluded by the Lyman α forest, the green region is excluded by the missed detection of X-ray decay in Andromeda, and the
blue and red regions are excluded by satellite counts in the Milky Way with two different feedback models. The yellow region is excluded at the 95 per cent
confidence level by the detections and non-detections in the joint SLACS+BELLS GALLERY sample. Only our upper limit is visible, since the lower limit
we set lies outside the mass range of this plot, being much higher than the masses constrained by other methods. The black error bar corresponds to the dark
matter model explaining the 3.5 keV line.

can potentially lead to the false detection of mass substructure.
This result is particularly important to show how a pixellated
gravitational imaging analysis can be used to distinguish between
the two scenarios.

Assuming a sensitivity function for the detection of subhaloes
based on a 10σ cut and applying the mass–redshift relation
by Despali et al. (2018), we have derived the total expected
number of CDM line-of-sight haloes for our entire sample to be
μl = 1.17 ± 1.08, in agreement with our null detection. Our
results are therefore consistent with the �CDM model, under
our most conservative assumption on the subhalo detectability.
Interestingly, if we were to relax our assumptions and adapt
a 5σ cut, the number of detectable line-of-sight haloes raises
significantly to μl = 9.04 ± 3.01, that would potentially be in
strong tension with our results that point to zero detections also
at this sensitivity cut. However, we have extensively tested our
detections and non-detections at the 5σ confidence level and we
have found a highpercentage of false positive and false negatives.
We conclude therefore that the currently available data for this
sample does not allow us to draw robust conclusions at the
5-σ level. Therefore, deeper exposure (we note that the sensitivity
improves non-linearly with the data quality) or multiband data are
required to improve the sensitivity whilst keeping the robust 10σ

threshold and consequently to find a potential strong discrepancy
with the standard cosmological model.

We have used the BELLS GALLERY lenses to infer the dark
matter mass function and constrained the half-mode mass to be
log Mhm < 12.60 at the 2σ level. If we combine our results with
those derived by Vegetti et al. (2018) from a subsample of the
SLACS lenses, our constraints drop to log Mhm < 12.26 at the
same confidence level. An interesting result is the significant change
in the inference on the dark matter model parameters when even
just one detection is included. In fact, we register a shift of 3 dex
on the 68 per cent lower limit for Mhm after combining the two
samples. More sensitive data is necessary to significantly improve
the constraints at the 95 per cent confidence level.

Assuming that the dark matter is composed by resonantly
produced sterile neutrinos, we have then derived a 95 per cent
confidence level exclusion region for the sterile neutrino mass and
the lepton asymmetry in the early Universe, which is significantly
smaller than the constraints obtained with other astrophysical
probes, such as the number of Milky Way satellites and the Lyman α

forest. Specifically, our current results are consistent with the CDM
paradigm, but do not allow us to rule out alternative warmer dark
models. This is due to the limited sensitivity of the current data,
which only allows us to probe the high-mass end of the dark matter
mass function, where different dark matter models predict a similar
number density of subhaloes and line-of-sight haloes.

In the future, observations of strong gravitational lens systems
with a redshift distribution similar to the BELLS GALLERY sample
considered here, but with a higher data quality (i.e. higher signal-
to-noise ratio) will allow us to set tighter and robust constraints on
the nature of dark matter.
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