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Depth and direction effects 
in the prediction of static 
and shifted reaching goals 
from kinematics
A. Bosco 1,2*, M. Filippini 1,2, D. Borra 3, E. A. Kirchner 4,5 & P. Fattori 1,2

The kinematic parameters of reach-to-grasp movements are modulated by action intentions. 
However, when an unexpected change in visual target goal during reaching execution occurs, it is 
still unknown whether the action intention changes with target goal modification and which is the 
temporal structure of the target goal prediction. We recorded the kinematics of the pointing finger and 
wrist during the execution of reaching movements in 23 naïve volunteers where the targets could be 
located at different directions and depths with respect to the body. During the movement execution, 
the targets could remain static for the entire duration of movement or shifted, with different timings, 
to another position. We performed temporal decoding of the final goals and of the intermediate 
trajectory from the past kinematics exploiting a recurrent neural network. We observed a progressive 
increase of the classification performance from the onset to the end of movement in both horizontal 
and sagittal dimensions, as well as in decoding shifted targets. The classification accuracy in decoding 
horizontal targets was higher than the classification accuracy of sagittal targets. These results are 
useful for establishing how human and artificial agents could take advantage from the observed 
kinematics to optimize their cooperation in three-dimensional space.

Actions require complex cognitive processes that start from abstract action intentions and arrives to the descrip-
tion of motor mechanistic  properties1–3. Typically, the interpretation and predictions about the actions and 
their intentions represent crucial aspects on which the human behaviour is based. Specifically, by a mechanistic 
perspective, the kinematic parameters of reach-to-grasp movements are modulated by the action intentions. 
In fact, the reach and the grasp components are affected by changes in both intrinsic and extrinsic features of 
the target and prior  intentions4,5. The knowledge that the kinematics of human behaviour is modulated by dif-
ferent motor intentions opens to the possibility of using the observed kinematics as a cue to predict the action 
intentions. For example, Manera et al.6 showed the possibility to predict the agent’s intention to cooperate or 
compete with a partner by the observation of the initial reach and grasp phase of the entire movement and 
without contextual information. Similar results were found by Sartori et al.7 and another study by Cavallo et al.8 
showed that the accuracy found in an intention prediction task was significantly related to a specific subset of 
kinematics features varying across different intentions. Another study showed that the similarity between the 
kinematics of agents and observers have a positive impact on the accuracy in recognition of  intentions9. Fur-
thermore, the use of an object influences the way we reach towards that object and grasp  it10,11. In fact, what the 
actor intends to do with the object (e.g. throw a bottle, pour something from a bottle, or pass a bottle to another 
person) shapes the grasping kinematics for the same  object12. And similarly, the actor’s social intentions such as 
cooperating with a partner, competing against an opponent, or performing an individual action also modulate 
the kinematics of reach-to-grasp  movements11,13. Based on the evidence that the action execution is itself shaped 
by its final goal and/or by the physical properties of its target, the intention and outcome of an observed action 
can be accurately predicted. In fact, as the action is shaped by its final goal, the information about the goal is 
available to the observer well before the end of action execution. This can be applied to several ecological motor 
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behaviours spanning from simple actions (e.g. reach-to-grasp an object) to more complex ones (e.g. playing an 
interactive ball game)14.

In the previously discussed studies, researchers investigated the possibility to predict action intentions or 
action goals from the kinematics of movement towards targets/objects that remained stable for the entire execu-
tion of the movement. However, it is still an open question the effect of an unexpected change in target goal 
position that occurs at different directions and depths with respect to the body during reaching execution on the 
prediction of the final goal. In addition, it is unknown the temporal structure of this prediction. In this study, 
we addressed these questions, and we characterized the information contained in the kinematics of reaching 
movement towards targets located at different directions and depths with respect to the body in a condition 
where the targets remained static for the entire duration of the movement and in a condition where the targets 
shifted to another position during the movement execution. To investigate the effect of reaching perturbation 
on the predictability of reaching goals and of intermediate positions (i.e., to quantify the amount of information 
of kinematics that enable the prediction of reaching), a recurrent neural network was used to decode the reach-
ing goals over the trial course (i.e., over time) and the intermediate positions of reaching kinematics from the 
three-dimensional position of the pointing finger and the wrist of human participants.

Results
The 3D position of the index finger and the wrist was recorded in each participant during reaching movements 
performed towards 12 static and shifted spatial positions with 6 different direction angles and 6 different depth 
levels (see Fig. 1A–D for the experimental setup), covering a wide range of positions in the peripersonal space. 
Twelve participants executed the task with the target shifts at the onset of the movement (Experiment 1, see 
Fig. 1B) and 11 participants executed the task with the targets shift after 100 ms with respect to the movement 
onset (Experiment 2, see Fig. 1B). In both experiments, during each session, the sequence of presentation of 
static and shifted targets were randomized. At first, we analysed the movement kinematics by applying a compu-
tational approach based on sliding window decoding with a recurrent neural network (RNN), able to highlight 
the temporal evolution of the accuracy in predicting the final target goal for movements towards static and 
shifted targets from the recorded kinematics. This analysis was performed to evaluate the discriminability of 
movements from kinematics in the temporal domain. Then, with a similar approach as the previous one (based 
on a similar RNN and on sliding window decoding), we analyzed whether the reaching trajectories (and not 
only the reaching goal as before) can be predicted from past observations. This was performed to investigate 
whether also the prediction of intermediate positions was affected by the applied target shifts. Both analyses were 
conducted separately for horizontal and sagittal targets, and separately for different latencies in the application 
of the perturbation (i.e., the two experiments).

Kinematic analysis of reaching movement corrections to targets along the horizontal and 
sagittal dimension. To explore the dataset and to guide the subsequent analyses, we started with a kine-
matic analysis of reaching. As it is shown in the decoding analysis below, the kinematic properties were captured 
by the application of the Recurrent Neural Network decoder used to decode reaching target goals and movement 
trajectories. Specifically, we first performed a kinematic analysis on lateral velocity of reaching movements to 
evaluate the time at which the trajectories towards the shifted targets significantly deviated, causing the correc-
tion of the hand path originally directed to the static target. Figure 2 shows the averaged lateral velocity profiles 
as function of the movement time for shifted reaching actions in Experiment 1. To assess the time at which the 
hand correction occurred, we compared the velocities of movements to horizontal shifted targets evaluating the 
time of significant deviation by a two-tailed t-test (p < 0.05). For movement to horizontal left targets the devia-
tion occurred after ~ 196 ms (Fig. 2A, upper panel) with respect to the target shift (onset of the movement, dotted 
vertical line in Fig. 2) and for movements to horizontal right targets after ~ 193 ms (Fig. 2A, lower panel) with 
respect to the target shift. For movements to sagittal near targets the correction occurred after ~ 357 ms (Fig. 2B, 
upper panel) and for movements to sagittal far targets after ~ 229 ms with respect the the target shift (Fig. 2B, 
lower panel). These results suggest that the hand corrections of movements towards the shifted sagittal targets 
occurred later than those of movements towards the shifted horizontal targets.

The same kinematic analysis was performed for experiment 2. Figure 3 shows the averaged lateral velocity 
profiles as function of the movement time for shifted reaching actions in Experiment 2. In this case, we found that 
for movement towards horizontal left targets the deviation occurred after ~ 144 ms (Fig. 3A, upper panel) with 
respect to the target shift (100 ms after the movement onset, dotted vertical line in Fig. 3) and for movements to 
horizontal right targets after ~ 133 ms (Fig. 3A, lower panel) with respect to the target shift. In Experiment 2, we 
did not find significant corrections of the hand when the movements were performed towards shifted near and 
far targets (Fig. 3B, upper and lower panel). We hypotesized that the differences in the latency of target shift in 
the two experiments and the lack of hand correction had impact on the movement accuracy. Figure 4A shows 
the endpoint errors for movements performed to horizontal and sagittal shifted targets in the two experiments. 
It is evident that when the target shift was at the onset of the movement, the participants were able to successfully 
correct the hand and performed smaller endpoint errors compared to Experiment 2. No significant differences 
were found between endpoint errors towards horizontal and sagittal shifted targets (Fig. 4A, left, two-tailed t-test, 
p > 0.05). On the other hand, when the target shift occurred after 100 ms after the movement onset (Experi-
ment 2), the participants performed larger errors in movements towards shifted horizontal and sagittal targets. 
The endpoint errors executed towards shifted sagittal targets were significantly larger than the endpoint errors 
executed towards shifted horizontal targets (Fig. 4A, right, two-tailed t-test, p > 0.05). These results are in line 
with the evidence that we did not find significant deviations in the lateral velocity of movements performed 
to sagittal targets in Experiment 2 suggesting that the lack of hand path correction leads to increased reaching 
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errors. However, to exclude the possibility that the differences found between Experiment 1 and Experiment 2 
were due to differences in motor plan and in reaching strategies of the two groups of participants, we calculated 
the reaction times of reaching movement initiation and the trajectory variability at the peak velocity, respectively. 

Figure 1.  Experimental setup. (A) View of the target arrangement with respect to the participant’s body. The 
participants performed reaching movements with their right hand towards one of the 12 dots projected on the 
screen at different depths (near and far, sagittal dimension) and in different directions (left and right, horizontal 
dimension). Reaching movements were performed in a dimly lighted room, starting from the mouse located 
next to the body. Static targets are represented as grey dots, shifted targets are represented as black dots. (B) 
Time sequence of task. The eye symbol represents the fixation target; the filled grey dot represents the reaching 
target. The fixation target stayed on for 1.5 s and then the reaching target was turned on in one of the four 
static locations. As soon as the reaching target appeared on the screen, the participant had to reach with his/
her right hand the position of the target while maintaining fixation on the fixation target. The fixation target 
lasted until the participant completed the movement. In Experiment 1 the target shift occurred at the movement 
onset, in Experiment 2 the target shift occurred 100ms after the movement onset (black dot). (C) Averaged 
reaching trajectories executed towards static and shifted targets located along direction and depth dimensions 
in Experiment 1 (left) and in Experiment 2 (right). Blue lines indicate trajectories towards static targets, red 
and green lines indicate trajectories towards shifted targets. (D) Example of individual normalized eye position 
reported in pixels displayed as the most likely ellipse surrounding 95% of eye data points during reaching. The 
black cross represents the center of the ellipse. 0.5 represents the center of the screen along the horizontal and 
sagittal dimension of the screen, 1 on the x axis represents the right limit of the screen, 1 on the y axis represents 
the furthest limit of the screen.
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No significant differences were found in the comparison of reaction times for reaching movements to static and 
shifted among the two experiments suggesting that the same motor plan was used by the participants of Experiment 
1 and Experiment 2 (two sample t-test, corrected for multiple comparisons, P > 0.025, see Fig. 4B). In Fig. 4C, D we 
reported the trajectory variability analysis to evaluate whether there were significant modifications of trajectory 
paths across static and shifted trials in the two experiments at the moment of peak of velocity that represents a 
relevant point during the reaching movement. Our hypothesis was that if the motor strategies were different in the 
execution of static and shifted trials among the two groups of participants, the distribution of trajectory variability at 
the peak of velocity should be statistically different between the two experiments. However, we found no significant 
differences in trajectory variabilities at the peak of velocity between movements towards static targets of Experiment 
1 and Experiment 2 neither between movements towards shifted targets of Experiment 1 and Experiment 2 (two 
sample t-test, corrected for multiple comparisons, P > 0.0125; see Fig. 4C, D).

Temporal evolution of static and shifted reaching goals classification. To study the temporal 
dynamics of discriminability of reaching endpoints, RNN-based classifiers were trained on sliding windows 
within the trial course. In the following analyses we investigated the temporal evolution of the accuracy in recog-
nizing the static or shifted target positions along the horizontal and sagittal dimensions in Experiment 1 (target 
shift at the onset of the movement) and in Experiment 2 (target shift after 100 ms from movement onset). In 
general, we found that the time course of the accuracy (recognition rate) in predicting static and shifted targets 
shows similar trends in both horizontal and sagittal dimension and in the two Experiments. No significant dif-
ferences were found between the time course of decoding accuracy of static targets between Experiment 1 and 
Experiment 2 suggesting that the two groups presented the same baseline (SPM1d with two-sample Hotellings’ 
T2 test, p > 0.05).

Figure 2.  Average lateral velocity of the pointing finger during reaching to horizontal and sagittal shifted 
targets in Experiment 1. (A) Lateral velocity profiles corresponding to movements towards shifted targets to 
the left (top panel) and on the right (bottom panel). Positive values indicate deviation of movement to the 
right; negative values deviation of movement to the left. Green circle represents the time at which significant 
separation between the two traces occurs. Dashed vertical line correspond to the time of target shift. (B) Lateral 
velocity profiles corresponding to movements towards shifted near targets (top panel) and shifted far targets 
(bottom panel). Details as in (A).
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In Experiment 1 when the target shift occurs at movement onset, the accuracy in the prediction of static hori-
zontal targets was significantly higher than the one of left shifted targets (from 7 to 56% of movement execution, 
SPM1d with two-sample Hotellings’ T2 test, p < 0.05) and also than the one of right shifted targets (from 1 to 
64% of movement execution, SPM1d with two-sample Hotellings’ T2 test, p < 0.05), see Fig. 5A. Furthermore, 
the accuracy in predicting the static sagittal targets was significantly higher than the one of near shifted targets 
(from 16 to 63% of movement execution, SPM1d with two-sample Hotellings’ T2 test, p < 0.05), and also than 
the one of far shifted targets (from 5 to 66% of movement execution, SPM1d with two-sample Hotellings’ T2 
test, p < 0.05), see Fig. 5B. So, the RNN classifier reaches the maximum accuracy in predicting static targets 
earlier than in predicting shifted targets suggesting a significant effect of target shift on the RNN performance.

In Experiment 2, when the target shift occurs 100 ms after movement onset, we found similar results as 
obtained from Experiment 1, but in wider intervals of movement execution compared to Experiment 1. Spe-
cifically, the accuracy in the prediction of horizontal static targets was significantly higher with respect to the 
one of shifted left targets from 11 to 76% of movement execution, and of shifted right targets from 11 to 77% of 
movement execution (SPM1d with two-sample Hotellings’ T2 test, p < 0.05), see Fig. 6A. Lastly, regarding the 
prediction of sagittal targets, the accuracy in predicting static sagittal targets was significantly higher with respect 
to those of near and far shifted targets (from 5.75 to 98.87% and from 7.24 to 94.89% of the movement execu-
tion, respectively, SPM1d with two-sample Hotellings’ T2 test, p < 0.05), see Fig. 6B. The results in Experiment 
2 suggest significant effects of the target shift occurrence but also the timing of this shift because the predic-
tion accuracy of shifted targets did not reach the maximum accuracy values as in Experiment 1. However, this 
phenomenon was not due to the fact that in Experiment 1 the classifier reached the maximum accuracy earlier 
having longer time interval between the target shift and the end of movement because the movement duration 
and the mean velocity calculated within this interval were not significantly different between Experiment 1 and 
Experiment 2 (two sample t-test, corrected for multiple comparisons, P > 0.0125). Moreover, to exclude the pos-
sibility that micro-movements before the onset of the reaching allowed some kind of predictability, we calculated 

Figure 3.  Average lateral velocity of the pointing finger during reaching to horizontal and sagittal shifted 
targets in Experiment 2. (A) Lateral velocity profiles corresponding to movements towards shifted targets on 
the left (top panel) and on the right (bottom panel). Positive values indicate deviation of movement to the 
right; negative values deviation of movement to the left. Green circle represents the time at which significant 
separation between the two traces occurs. Dotted vertical line correspond to the time of target shift. (B) Lateral 
velocity profiles corresponding to movements towards shifted near targets (top panel) and shifted far targets 
(bottom panel). Details as in (A).
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the classification accuracy during the 500 ms before the movement onset. In both experiment and for all the 
reaching targets tested, the maximum classification accuracy was equal or below the chance level of 0.5. And 
finally, although the endpoint accuracy decreased in Experiment 2 (see Fig. 4A), the RNN classifier was able to 
recognize the target goals with a certain accuracy even in those movements with large endpoint errors despite 
a high variability (data not shown).

The previous classification analysis enabled to assess the differences in the discriminability of static and 
shifted targets in the temporal domain. Apparently, no differences are visible from the time course of shifted 
target classification between the horizontal and sagittal dimension in Experiment 1 and 2. To further address this 
question, we first calculated at which time of the movement execution the recognition rate reached the chance 
level (0.5) in each participant when they must execute movement corrections towards targets along the horizontal 
and sagittal axes, respectively. Figure 7A shows the data of the chance level time for reaching to shifted sagittal 
targets as function of the chance level time for reaching to shifted horizontal targets in Experiment 1 at single 

Figure 4.  (A) Averaged reaching endpoints of Experiments 1 and 2. Averaged reaching endpoints calculated in 
the horizontal shifted targets (white columns) and sagittal shifted targets (black columns) in Experiments 1 and 
2, respectively. Increased reaching errors are present in the sagittal dimension in both experiments, particularly 
in Experiment 2. (B) Averaged reaction times of reaching movement initiation of Experiments 1 (black dots) 
and 2 (grey dot) for static and shifted targets. (C) Distribution of trajectory variability in the X dimension 
for movements directed to static and shifted horizontal targets at the point of peak velocity of the movement 
in Experiment 1 (black dots) and Experiment 2 (grey dots). (D) Distribution of trajectory variability in the 
Y dimension for movements directed to static and shifted sagittal targets at the point of peak velocity of the 
movement in Experiment 1 (black dots) and Experiment 2 (grey dots).
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subject level (individual white dots). We then constructed the confidence ellipse within which 95% of the points 
were located and computed the corresponding eigenvalues along the principal axes of the ellipse. In Experi-
ment 1, the distribution of the points was mostly located in the left-bottom quadrant (blue square) suggesting 
that all participants reached the chance level in classification accuracy during the first half of the movement in 
both movements to shifted horizontal and sagittal targets. However, Fig. 7A, C (left) show that the magnitude 
of the eigenvalue corresponding to sagittal targets (pink vector and column) was larger than the eigenvalue cor-
responding to horizontal targets suggesting an increased variability in the classification of targets located along 
the sagittal dimension. Similar results were found in Experiment 2 where most of the participants reached the 
chance level of target classification within the half of the movement in both horizontal and sagittal targets (see 
Fig. 7B), but the increased variability in the classification of shifted sagittal targets was more pronounced with 
respect to Experiment 1 (Fig. 7B, C-right). The larger variability in target classification of Experiment 2 is evi-
dent also from the comparison of the two ellipse areas in Fig. 7D. These results suggest that the discrimination 
of static targets was significantly more accurate with respect to that of shifted target in both experiments and in 
both dimension of the space tested (horizontal and sagittal targets). Additionally, the classification of horizontal 
shifted targets resulted less variable and, consequently more stable, with respect to the classification of sagittal 
shifted targets. The stability of classification decreased with the increased latency of target shift as the variability 
results demonstrated in Fig. 7 (comparison between Experiment 1 and Experiment 2).

To further investigate the overall effect of horizontal and sagittal dimension not only in terms of variability 
in the predictability of final target goals, we calculated the averaged temporal evolution of the accuracy in 
recognizing static and shifted target positions along the two dimensions considered and in both experiments. As 
it is shown in Fig. 7E, we observed a progressive increase of the classification accuracy from the onset to the end 
of movement, well above the chance level, when the participants executed Experiment 1. However, classification 
accuracies in decoding targets along horizontal and sagittal dimensions showed differences in the maximum 
accuracy reached by the classifier in the final phase of the movement. In fact, for horizontal targets, the maximum 
accuracy was 0.94, whereas, for sagittal targets, the maximum accuracy was 0.77. Moreover, during the entire 
course of the movement, the classification accuracy of horizontal targets showed higher values with respect 
that of target in depth as it is shown in Fig. 7E, but this difference reached the significance level from the 63% 
(~ 396.18 ms after the movement onset) of the reaching execution (SPM1d with two-sample Hotellings’ T2 test, 
p < 0.05). In Experiment 2, the comparison between the average recognition rate across the movement execution 
displays that the prediction of static and shifted horizontal target goals was more accurate than the prediction 
of static and shifted sagittal target goals, consistently with the results of Experiment 1 (see Fig. 7F). However, no 

Figure 5.  Averaged time course of the classification accuracy of movement goals in Experiment 1 as scored 
by RNN classifiers. (A) Average time course across subjects of classification accuracy of static (black line) and 
shifted horizontal targets (blue and red lines). Thin lines are standard deviations. The red and blue horizontal 
lines represent the intervals of significant separation of the two lines (blue and red lines) corresponding to the 
shifted targets accuracy with the line corresponding to static targets (black line) assessed by Hotelling’s test 
(p < 0.05). The horizontal black line represents the chance level (0.5 for the performed 2-class classifications). 
(B) Average time course across subjects of classification accuracy of static (black line) and shifted sagittal targets 
(blue and red lines). All details as in (A). It is evident that the prediction of shifted targets from the trajectories is 
slower than the prediction of static targets in both horizontal and sagittal dimensions.
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significant differences between decoding accuracy of horizontal and sagittal targets were found (SPM1d with 
two-sample Hotellings’ T2 test, p > 0.05). These results suggest that when the target was located along the sagittal 
dimension the target recognition was less accurate than the targets located along the horizontal dimension in 
both experiments. However, if the target shift occurred earlier (movement onset), the target recognition improved 
also along the sagittal dimension.

Trajectory reconstruction of movements to static and shifted reaching targets located along 
the horizontal and sagittal dimension. To assess the ability in reconstructing the future trajectory 
observing the past one and how this was influenced by the offset between past and future observations, RNN-
based regressors were trained on sliding windows within the trial course by varying the offset between past 
(regressor input) and future (regressor output) kinematic values. Figure 8 shows the R squared for the three 
trajectory components (x, y and z) averaged across the time course of the movement, respectively; these were 
computed for each sector of the tested space (left, right, near and far). In all the trajectory components and for all 
the tested target positions, it was evident a progressive decrease of the ability in reconstructing the future trajec-
tory in the intervals lasting between 4 and 12% of movement duration from the past observations. In the attempt 
to predict the future trajectory samples with intervals lasting 20% and 30% of the total movement duration, the 
RNN performance was dramatically reduced. However, despite the observed and expected decrease as the offset 
between future and past observations increases, in most cases ≥ 70% of the variability in the data was explained 
by RNNs for offsets up to 8% of the movement, i.e., for predictions distant up to 8% of movement. Lastly, similar 
R squared distributions were found for targets located along direction and depth dimensions in the two per-
formed experiments and in all the three trajectory components tested (two samples Kolmogorov–Smirnov test, 
p > 0.05). While the recognition of the endpoint to reach resulted differently affected by the spatial position of the 
targets, e.g., see Fig. 7 for the differences in classification accuracy found for targets arranged in the two dimen-
sions of the space (horizontal and sagittal targets), the prediction of future position values during movement was 
similar for horizontal and sagittal dimensions across the time steps. Together with the results obtained in the 
previous section, this result corroborates the idea that, regardless of the timing of the shift of the target endpoint, 
intermediate kinematics is not influenced by the dimension in which the shift of the perturbation occurs (i.e., 
depth or direction), as quantified by the prediction of future kinematics during the reaching movement (e.g., 
prediction of kinematic values of the next 12% of movement), but only the final reaching goal is.

Figure 6.  Averaged time course of the classification accuracy of movement goals in Experiment 2 as scored 
by RNN classifiers. (A) Horizontal targets. The horizontal solid line represents the chance level (0.5 for the 
performed 2-class classifications). (B) Vertical targets. All details as in Fig. 5. Differently from Experiment 1, in 
Experiment 2 we found that the prediction of shifted targets was less accurate in both horizontal and sagittal 
dimension.
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Figure 7.  Analysis of the variability and accuracy in decoding horizontal and sagittal targets in the two 
experiments. (A) Average percentage of the movement where the classification accuracy exceeded 0.5 in 
decoding horizontal (x axis) and sagittal (y axis) targets in Experiment 1. Each point represents a participant. 
The confidence ellipse encircled the 95% of the data, the pink and green arrows represent eigenvalues from 
which the confidence ellipse was computed. Specifically, green and pink arrows represent the spread of the data 
in the direction of the eigenvectors for horizontal and sagittal targets, respectively. (B) Average percentage of 
the movement where the classification accuracy exceeded 0.5 in decoding horizontal (x axis) and sagittal (y 
axis) targets in Experiment 2. Details as in (A). (C) Histogram represents the eigenvalues for horizontal and 
sagittal target in the two Experiments. (D) Histogram represent the area of ellipses calculated in Experiment 
1 and Experiment 2. (E) Average time course across participants of classification accuracy of static and shifted 
horizontal (blue line) and sagittal (red line) targets in Experiment 1. Blue and red thin lines are standard errors. 
The vertical dotted line represents the point of significant separation of the two lines assessed by Hotelling’s 
test (p < 0.05). The horizontal solid line represents the chance level (0.16). (F) Average time course across 
participants of classification accuracy of static and shifted horizontal (blue line) and sagittal (red line) targets in 
Experiment 2. Details as in (E).



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13115  | https://doi.org/10.1038/s41598-023-40127-3

www.nature.com/scientificreports/

Discussion
The focus of this study was to assess whether it was possible to predict static and shifted target goals in the 
three-dimensional space based on advanced information from the hand kinematics of individual participants. 
Specifically, we explored (i) at which stage of the movement execution it was possible to make the most accurate 
predictions about final target goals and (ii) the influence of the offset between past and future observations on 
the reconstruction of the future trajectory observing the past one.

Figure 8.  R squared distribution of decoded X, Y and Z trajectory component (height of bars: mean value, error 
bars: standard deviation) as scored by RNN regressors. (A) Left, right, near and far target clusters in Experiment 
1. (B) Left, right, near and far target clusters in Experiment 2. In all panels, each target cluster includes the static 
and the two corresponding shifted targets. No differences between horizontal and sagittal dimension are present 
in the prediction accuracy of future kinematics.
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We defined temporal and accuracy differences in predicting static and shifted targets when these were moved 
at the onset of the movement (Experiment 1) or 100 ms after the onset of the movement (Experiment 2) and 
when they were located along the horizontal or along the sagittal axis. We found that the accuracy in predicting 
static targets was higher than the accuracy in predicting shifted targets in both experiments, but an increased 
variability was visible in predicting shifted targets located along the sagittal axis, particularly, during the execution 
of Experiment 2.

In this study, we found a progressive increase of decoding accuracy of stable targets across the movement 
execution that goes beyond the chance level before the half (50%) of action execution in both experiments (see 
Figs. 5 and 6, black lines). In fact, before the half of the movement, it was possible to predict the final target of 
the reaching with accuracy of ~ 90% (recognition rate: 0.9). However, we observed a different progression of the 
decoding accuracy of shifted targets. When the target shift occurred at the onset of the movement, the highest 
decoding accuracy similar to that of static targets was reached on averaged around the 62% of the movement with 
similar values for horizontal and sagittal targets. When the target shift occurred after 100 ms the movement onset, 
the highest decoding accuracy, similar to that of static targets, was reached on averaged ~ 76.5% of the movement 
for horizontal targets and around the end of the movement (~ 96.8%) for sagittal targets. All these differences 
can be ascribed to the kinematic properties related to the reorganization of movements following a shift of 
the target location. We found that participants took between 100 and 200 ms to correct movements towards 
horizontal targets in both experiments whereas they took more than 200 ms to correct movements towards 
sagittal targets when the target shift occurred at the onset of the action. However, no significant corrections 
were detected in movements towards sagittal targets when the target shift occurred after 100 ms the movement 
onset (Experiment 2). The correction times related to movements towards horizontal targets are aligned with 
what Parblanc and Martin (1992)15, Soechting and Lacquaniti (1983)16 and Brenner and Smeets (1997)17 found. 
In fact, they found the same range of correction time (between 100 and 200 ms) to respond adequately to an 
unpredictable displacement of the reaching targets during the movement confirming that some corrections 
can be made during most movements. However, we found that movement corrections to sagittal targets were 
delayed or not detectable according to the time of the target displacement, respectively. The differences found 
for movements towards horizontal and sagittal targets are also evident in the target classification in terms of 
prediction variability of shifted targets and in terms of prediction accuracy of static and shifted targets together 
(Fig. 7). These results are in accordance with several behavioural studies demonstrating that depth and direction 
are two spatial parameters processed  independently18,19. At neural level, it was shown that going from parietal 
to frontal areas, the processing of depth and direction information is more segregated in both humans and 
 monkeys20,21. The decoding of target goals taking into account the depth dimension was mostly addressed in 
studies where the input data were represented by neural signals recorded from  monkey22 and  human23,24 brain 
areas and not by pure kinematics as in the present work (i.e. x, y and z components of hand trajectory). Although 
in monkey the results showed a reliable decoding of targets goals also in depth from parietal neural  discharges22, 
in humans, when the depth information was added, the decoding of movement became reasonably slower 
and  clumsier23. This can be explainable by the evidence that visual depth perception is distorted and the same 
binocular disparity can be generated by different  objects25–28. For example, based on disparity information alone, 
a marble ball that you hold between the fingers and a basketball at a distance of two meters appear virtually 
identical. In theory, the brain can resolve this ambiguity from an estimate of fixation distance provided by the 
ocular convergence. However, the brain fails to properly calibrate relative depth, because perceived relative 
depth is overestimated for objects that are closer from the observer and underestimated for objects that are 
 further29. A similar distortion can be observed also for pointing to visual targets in  depth30, so reflecting the 
kinematics of these types of movements and the accuracy through which the final targets are predicted. However, 
if the depth distortion perception can explain the differential effect of direction and depth dimension on the 
classification accuracy of the final targets, the same cannot be considered to explain the absence of the same 
effect on the accuracy of intermediate kinematics prediction. In this case, similar accuracies were found in our 
results suggesting that depth and direction are relevant factors for predicting reaching execution as function of 
the final goals but not for predicting the reaching execution itself.

Another aspect of the present study is related to the higher classification accuracy found for the target shifts 
occurring at the movement onset (Experiment 1) with respect to those occurring after 100 ms after the movement 
onset (Experiment 2). These results are interesting in the framework of models of goal directed reaching, 
suggesting that targeted reaching movements require several processing  steps31. The target is first localised, a 
motor plan is generated, and finally motor commands are sent to the arm muscles, resulting in a movement. 
During the movement process a forward model of the dynamics of the arm is generated. This model receives the 
sensory inflow and a copy of the motor outflow as inputs and generates an estimate of the movement endpoint 
location as output. Visual and proprioceptive feedback is used to compare this estimate with information about 
the target location. The difference between actual and predicted sensory feedback is the sensory error and in the 
case of discrepancy, an error signal is produced that triggers a modification of the ongoing motor  command31. 
Through this online control process, sensory feedback and feedforward information can be used during the reach 
to influence the  outcome32. In this framework, previous work has demonstrated that the timing of the target 
perturbation and the subsequent time available to complete the movement correction limit the final accuracy 
of the movement. In fact, in this study, the accuracy in pointing the final shifted goals is significantly smaller 
when the target shift occurred later with respect the movement onset than when the target shift occurred at the 
movement onset. These results are in line with the study of Komilis et al. (1993)33 that conducted a double-step 
reaching task where the shift occurred at either reach onset or peak velocity. They demonstrated that when the 
target was shifted at movement onset participants compensated for 88–100% of the target displacement. In 
contrast, when the target was displaced at peak velocity participants were unable to fully account for the change 
in target position and compensated for only 20–40% of the  perturbation33. Liu and Todorov (2007)34 similarly 
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found incomplete corrections to target shifts that occurred considerably after reach onset. They suggested that 
achieving stability in stopping a reaching movement may potentially compromise the sensorimotor system’s 
ability to respond to positional errors at the end of the  reach34. Present results are in accordance with these pieces 
of evidence, suggesting that target shifts occurring early in the reach (i.e. 0 ms) were more easily tackled by the 
neural network than those occurring later in the reach (i.e. 100 ms post reach initiation).

Conclusions
The results of this study provide novel insights into quantitative estimate of the accuracy that is possible to achieve 
when predicting, from hand kinematics, whether a reaching target goal is located along the horizontal dimension 
(direction) or the sagittal dimension (depth) of the 3-dimensional space and when the target shift occurs at the 
onset of the reaching or at later stages in the reach, as a function of time during movement. Furthermore, we also 
extended this analysis not only for decoding reaching goals but also for intermediate positions, to investigate 
whether the previous results held also when predicting intermediate kinematics and not only the final goal. 
We achieved this by exploiting the prediction of a learning system (here a RNN) that provided evidence of the 
kinematic cues potentially available for predicting final action goals and the intermediate kinematics in reaching 
targets in the 3D space. Future directions will consider the extension of this framework towards applications in 
human–robot interaction in which more complicated actions and composite contexts need to be decoded for 
fruitful human-artificial intelligent agents.

Materials and methods
Participants. A total of 23 naïve volunteers (11 males and 12 females, mean age 22.6 ± 2.3) took part at the 
study. 12 participants performed Experiment 1 and 11 participants performed Experiment 2. All participants 
were right-handed, and they had normal or corrected-to-normal vision with no history of neurological or psy-
chiatric disorder. The study was approved by the local ethical committee of University of Bologna and was con-
ducted according to the principles expressed in the Declaration of Helsinki. All participants provided written 
informed consent.

Experimental setup. In all trials, the starting position of the hand (dominant right hand) was on a com-
puter mouse placed adjacent to the touchscreen within a square marked with a tape (size 12 × 12 cm) in front of 
the participant’s chest, as sketched in Fig. 1A.

Reaching movements were performed in a dimly illuminated room. The head of participants was supported 
on a chinrest in order to reduce movements. The stimuli were green (diameter 0.3 cm) and red dots (diameter 
1.2 cm) presented at different depths and at different direction with respect to the participant’s midline. The 
stimuli presented a luminance of ~ 17 cd/m2. Stimuli were presented on 19-inch touchscreen (ELO IntelliTouch 
1939L) laid horizontally on a desk located at waist level with a visible display size of 37.5 × 30 cm and 15,500 
touchpoints/cm2. The display had a resolution of 1152 × 864 pixels and a frame rate of 60 Hz.

Reaching movements were recorded using a motion tracking system (VICON motion capture system) by 
sampling the position of two markers at a frequency of 100 Hz; markers were attached to the wrist (on the 
scaphoid bone) and on the nail of the index finger (pointing finger). Participant’s eye positions were recorded by a 
mobile eye-tracking glasses (Pupil Core, Pupil Labs GmbH., Berlin, Germany). This device is composed of three 
cameras: a world camera which records the subject’s field of vision (resolution: 1920 × 1080 pixels; field of view: 
100° fisheye; sampling rate: 60 Hz) and two eye-cameras that records the observer’s eye movements (resolution: 
1920 × 1080 pixels; sampling rate: 120 Hz). Before each measurement, a binocular calibration process was carried 
out automatically using five pupil calibration markers (v0.4) located in the touchscreen’s corners and center. The 
psychophysical experiment was designed and generated with Matlab (Mathworks, USA) with the Psychophysics 
toolbox  extension35. Arduino UNO microcontroller (Arduino UNO, Arduino, Milan, Italy) was responsible for 
triggering the start/stop of the VICON system capture.

Behavioural task. The scheme of the experimental paradigm is illustrated in Fig. 1B. All participants per-
formed a peripheral reaching task where the movement was executed maintaining the fixation on the central 
position of the screen. The experimental procedure consisted in the presentation of a central fixation point that 
prompted the participant to press the left mouse button (HB). Then, the participant had to stare at the fixation 
point for a period of 1.5 s. After this interval, the reaching target appeared (Cue/Go) indicating the position 
to reach and that the participant had to promptly reach that target position while maintaining fixation on the 
central fixation point. The end of trial was triggered to the screen touch. In the half of the trials, the reaching 
target could remain static in the same position (static trials) and in the remaining half of trials, the target shifted 
in another position (shifted trials) according to the target arrangement (see Fig. 1A). The static targets were 
presented at the distance of 8 cm with respect the fixation point and the shifted targets were presented at 2.4 cm 
with respect the initial static target in both horizontal and sagittal dimensions. Experiment 1 and Experiment 2 
were identical except in the time of target position shift in shifted trials. In Experiment 1, it was triggered with 
movement onset (left mouse button release, see Fig. 1B, top) and, in Experiment 2, it was triggered 100 ms after 
the movement onset (see Fig. 1B, bottom). In the shifted trials, the participants had to suddenly, unexpectedly 
online correct the reaching movement for the unexpected perturbation, to touch the new target position that 
could be located farther or nearer than the previous, for targets located along the depth dimension (shift in 
depth, Fig. 1A) or rightward or leftward to it, for targets located along the direction dimension (shift in direc-
tion, Fig. 1A). Both the fixation point and the reaching target remained illuminated until the participant had 
completed the arm movement (visually guided reaching). The participant had to fixate the fixation point all 
throughout the trial. After touching the target, the target and the fixation point switched off and a new trial 
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started. Participants were asked to move the hand in a ballistic way (without pauses or interruptions), at a fast but 
comfortable speed, and as accurately as possible. During an experimental session, each participant completed 
120 trials (60 static trials and 60 shifted trials).

Data processing and analysis. The analyses were performed with customized scripts in MATLAB (The 
MathWorks; RRID: SCR_001622) and Python 3 using open source machine learning (scikit-learn, http:// scikit- 
learn. org, RRID: SCR_002577) and deep learning (Keras, https:// keras. io/) Python packages. Specifically, for 
hand position data processing and analysis, a custom MATLAB algorithm was used to extract the x, y and z 
components of the index and wrist trajectories between the onset and the offset of the reaching movement (see 
Fig. 1C). For gaze data processing and analysis, the Pupil Player tool was used to extract gaze position data in 
normalized coordinates (see Fig. 1D). A custom MATLAB script was created to convert the normalized data 
into degree (deg), considering viewing distance and size and resolution of the Pupil Labs world camera. For data 
filtering, only data related to confidence values greater than 0.6 were used. The gaze position data was used only 
to check whether the position of the eyes was on the fixation point at the center of the screen during the reaching 
execution.

To evaluate the response to the target perturbation, we calculated the average lateral velocity for reaching 
movements performed towards left, right, near and far shifted targets (the velocity of the x component of the 
trajectory) during the entire execution of the movement and for each participant. Then, we compared the lateral 
velocities of left and right shifted trajectory and those of near and far shifted trajectory in each sample of all 
participants by a two-tailed t-test (p < 0.05). By this method, we found the sample at which the two shifted 
trajectory started to become statistically different (two-tailed t-test, p < 0.05).

Movement accuracy was extracted by endpoints recorded as the x and y coordinates of the touching point 
acquired by the touchscreen and the x and y coordinates of the target location. The measure of accuracy was 
extracted for each participant and calculated as follows:

where xM and yM are the average endpoint coordinates and xloc and yloc are the target location coordinates. 
Then we averaged the values of accuracy across targets located along horizontal and sagittal axis and across all 
participants. We compared the accuracy between horizontal and sagittal within each experiment by a two-tailed 
t-test (p < 0.05).

Reaction times were calculated as the time interval between the appearance of the reaching target and the 
movement onset. We compared the reaction times between the two experiments by a two-tailed t-test corrected 
for multiple comparisons (p > 0.0125).

As measure of motor strategies along the movement execution, we performed an analysis of the variability of 
trajectories across trials. For each participant and in each experiment, we calculated standard deviations across 
trials in both X (for static and shifted horizontal targets) and Y dimensions (for static and shifted sagittal targets) 
at a relevant point of the movement corresponding to the peak velocity (point of maximum velocity); then we 
averaged across  participants36–38.

Analyses based on kinematics decoding. Due to the different number of samples of each trial (i.e., 
each trial lasted differently), position trajectories of index and wrist belonging to each trial were normalized 
between 0 and 100% of the trial duration and resampled  to have a fixed number of 100 samples. The x, y, z 
positions of index and wrist movement effectors were analyzed using two different sliding window decoding 
approaches, decoding a single chunk of kinematic activity at a time. For both approaches, each input chunk 
consisted of the K = 6 kinematic variables 

[

pindexx , pindexy , pindexz , pwristx , pwristy , pwristz

]

 evaluated at T = 8 consecu-
tive time steps, i.e., the i-th extracted chunk Xi was a 2D matrix with shape (T ,K) , Xi ∈ R

T×K . That is, the input 
feature space included 6 dimensions corresponding to x, y, z of the index and of the wrist, and to better capture 
the dynamics of the system, each training example given to the network included 8 time steps. During network 
training, each input chunk slid with a stride of 4 time samples over the total number of 100 samples characterizing 
each trial, to reduce the computational cost. Then, each so extracted chunk Xi was provided as input to the 
decoding stage. During the network inference step, input chunks slid with a unitary stride to increase the 
inference time resolution of the performed analyses.  Due to the sliding window nature of decoding, the 
discriminatory capability (as quantified by the performance metrics) of learning systems can also be analyzed as 
a function of time, thus enabling the analysis of the predictability of reaching from kinematics in the temporal 
domain. This was performed in the approach (i) (see the following) in which we were interested into analyzing 
the temporal structure of decoding performance, while in the approach (ii) the analysis was conducted on 
average across time points.

In the following, the decoding analyses are described.

(i) Classification of reaching goals. In this first decoding analysis, central for this study, classifiers were trained 
to predict the target endpoint to reach, given the x, y, z coordinates of the index and wrist contained in the 
chunk Xi . The desired output was set to the class of the final target to which the whole trial corresponded. 
With this approach, we pointed to test when, during movement execution, it was possible to accurately 
detect the reaching goal from kinematics. Specifically, classifiers were trained and tested to discriminate 
between pairs of endpoints (2-class classification), separately for different latencies of the applied 
perturbation (i.e., different experiments conducted), and separately for targets located along horizontal 

Accuracy =

√

(xM − xloc)
2
+

(

yM − yloc
)2

http://scikit-learn.org
http://scikit-learn.org
https://keras.io/
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and sagittal dimensions (see Fig. 1A for the endpoints location) and for static and shifted conditions. This 
last selection was provided by using the trajectory data of reaching for pairs of static targets or shifted 
targets in a specific dimension (depth or direction, see Fig. 1A). Overall, this decoding analysis was devoted 
to compare the different temporal dynamics of predictability of reaching goals at different levels, i.e., 
horizontal vs. sagittal dimensions, static vs. shifted movements, 0 ms vs. 100 ms perturbation latency 
respect to movement onset. For the direct comparison between classification of horizontal and sagittal 
targets reported in Fig. 7E, F, the classifiers were trained and tested to discriminate the 6 endpoints (6-way 
classification) separately for horizontal and sagittal dimensions.

  Furthermore, to inspect the differences in classification accuracy between horizontal and sagittal shifted 
targets in each experiment, we computed the averaged sample at which the accuracy exceeded the chance 
level (0.5) in recognition. Then, we plotted the percentage of movement towards shifted horizontal targets 
at which the classification accuracy exceeded the value of 0.5 against the percentage of movement towards 
shifted sagittal targets exceeded the same value. The differences between the classification accuracy were 
evaluated by calculating the confidence ellipses for 2D normally distributed data in the two experiments 
separately. The shape of the confidence ellipses was determined by computing the eigenvectors and the 
eigenvalues. Eigenvectors represent the direction in which the data varies the most and the eigenvalues 
correspond to the spread of the data in the direction of the eigenvectors. The area of the ellipses was 
computed from the length of the major and minor axes defined as standard deviations σx and σy of the data.

(ii) Regression of future trajectory values. In this analysis, we analyzed to which extent the intermediate kin-
ematic observations (and not only the final reaching goal) were predictable from past kinematics. Regres-
sors were trained to predict the future position trajectory values recorded during movement, given the x, y, 
z coordinates of the index and wrist contained in Xi . Remarkably, trajectory regression was performed as a 
function of the interval (hereafter referred as “offset”) between past and future observations; future observa-
tions were sampled with an offset of 4, 6, 8, 10, 12, 20, 30 time samples with respect to past observations. 
As each trial was normalized between 0 and 100% of the performed movement and resampled to 100 time 
steps, the investigated offsets corresponded to infer observations in the future at 4%-30% of movement 
from past observations. This analysis was conducted separately for different latencies of the applied shift 
(i.e., different experiments conducted) and separately for near, far, left and right targets (thus, separately 
for targets located on horizontal vs. sagittal dimensions), by including in each of these cases the trajectory 
data of reaching towards the static target and the two corresponding shifted targets (see Fig. 1A).

Regarding network structure, RNNs were used to address both decoding problems. RNN-based classifiers 
and regressors shared the same input and hidden layers. Specifically, an input layer simply replicating the input 
chunk Xi was used, and a single hidden layer based on Gated Recurrent Units (GRUs)39 with 100 GRU units 
was designed. The networks changed only in the adopted output layer across the two decoding approaches. 
Therefore, in the classification task the output layer was a dense fully-connected layer with one unit for each 
reaching endpoint, that is, 2 units (discrimination among pairs of targets, separately within depth and direction 
dimensions), followed by a softmax activation function. Conversely, in the regression task, the output layer was 
a dense fully-connected layer with one unit for each trajectory component, that is, 6 units (corresponding to K).

Furthermore, as concerning network training, RNNs were trained using the categorical cross-entropy and 
mean squared error as loss functions for the addressed classification and regression tasks, respectively. Adam 
was used as  optimizer40, with a learning rate of 0.001 and a batch size of 32. Network trainings were performed 
up to 10,000 epochs but were early stopped when the loss evaluated on a held-out validation set (set as 20% of 
the training set) did not decrease after 500 epochs. Unless not otherwise specified, the default Keras parameters 
were used (e.g., to define the network layers).

Lastly, regarding performance evaluation we adopted a fivefold stratified cross-validation scheme, thus, 
5 independent models were trained using 48 training trials and 12 test trials within each fold, balanced across 
classes. Then, performance metrics (accuracy for classification and R squared for regression) scored on the test 
set were computed and averaged across the 5 cross-validation folds.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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