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Deformations of rational curves on primitive

symplectic varieties and applications

Christian Lehn, Giovanni Mongardi and Gianluca Pacienza

Abstract

We study the deformation theory of rational curves on primitive symplectic varieties
and show that if the rational curves cover a divisor, then, as in the smooth case, they
deform along their Hodge locus in the universal locally trivial deformation. As applica-
tions, we extend Markman’s deformation invariance of prime exceptional divisors along
their Hodge locus to this singular framework and provide existence results for uniruled
ample divisors on primitive symplectic varieties that are locally trivial deformations of
any moduli space of semistable objects on a projective K3 or fibers of the Albanese
map of those on an abelian surface. We also present an application to the existence of
prime exceptional divisors.

1. Introduction

In recent years, “singular” symplectic varieties have attracted increasing attention. On the one
hand, this is certainly due to the fact that irreducible symplectic varieties appear as factors of the
singular Beauville–Bogomolov decomposition for mildly singular Kähler spaces with trivial first
Chern class; see [GKP16, Dru18, GGK19, HP19, Cam21, BGL22]. On the other hand, in many
fundamental aspects of the theory (deformation theory, lattice structure, projectivity, Torelli
theorems, etc.) even the larger class of primitive symplectic varieties behaves very similarly to
their smooth analogs; see [BL21, BL22, Men20]. It is worthwhile pointing out that both these
classes of symplectic varieties coincide in the smooth case by a recent theorem of Schwald [Sch22];
see Section 2.1 for precise definitions and a more detailed discussion.

Moduli spaces of (semi)stable sheaves (with respect to a generic polarization) on K3 or
abelian surfaces play a prominent role in the theory of smooth irreducible symplectic varieties, as
all known examples of such varieties arise as deformations of moduli spaces of sheaves on those
surfaces or of (crepant) desingularizations thereof. Recently, Perego, and Rapagnetta showed
in [PR18] that “singular” moduli spaces of stable sheaves (with respect to a generic polarization)
on projective K3 or abelian surfaces are irreducible symplectic varieties (see below for more de-
tails). Together with quotients by finite groups of symplectic automorphisms (see [Bea00, Propo-
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sition 2.4]), “singular” moduli spaces of stable sheaves then provide a vast source of examples of
singular symplectic varieties.

A recent and very active line of research concerns rational curves on irreducible symplectic
varieties, either in relation to their birational geometry (see, for example, [BM14a, BM14b,
BHT15, AV15, AV17, AV21]) or to study their Chow groups (see, for example, [Voi16, CMP21,
MP18, MP21, LP19, OSY19, SYZ20, SY20]). So far, these investigations have mainly been carried
out in the smooth case; the purpose of the present paper is to initiate the systematic study of
rational curves on singular symplectic varieties, a task that seems both natural and relevant.

There are three different main contexts giving rise to rational curves on symplectic varieties:
degenerate fibers of Lagrangian fibrations, prime exceptional divisors, and uniruled members
of ample (or, more generally, movable) linear systems. These correspond to divisors of zero,
negative, respectively positive square with respect to the Beauville–Bogomolov–Fujiki form; see
below. It is also in complete analogy to what happens on K3 surfaces where the aforementioned
contexts correspond to elliptic fibrations (obtained from square zero curves), to (−2)-curves, or
generalize the Bogomolov–Mumford theorem.

While the definition of irreducible symplectic varieties is more involved (see Definition 2.4),
the geometric features of primitive symplectic varieties are mainly their vanishing irregularity
and the uniqueness of the symplectic form up to scalars (see Definition 2.3). Our applications
concern rational curves with non-zero square on primitive symplectic varieties. The deformation
theory of rational curves is one of the key tools to deduce general results from special cases.
The main technical contribution of the present note extends to the most general singular, not
necessarily projective, setting a result established in [AV15, CMP21] in the smooth case.

Theorem 1.1. Let X be a primitive symplectic variety of dimension 2n and f : C −→ X a genus
zero stable map. Let M be an irreducible component of the space M0(X, f∗[C]) of genus zero
stable maps containing [f ], and suppose that the deformations of f parametrized by M cover
a divisor D ⊂ X. Then the following hold:

(1) There is a unique irreducible component M of the space M0(X /S, f∗[C]) of relative genus
zero stable maps in the local universal family X −→ S := Def lt(X) of locally trivial de-
formations of X that contains M . Moreover, M is smooth at the general point of M and
dominates the Hodge locus B ⊂ S where the class f∗[C] remains algebraic.

(2) For any point b of B, the fiber Xb contains a uniruled divisorDb covered by the deformations
of f in Xb. If furthermore Db is Q-Cartier, then its cohomology class is proportional to the
dual of f∗[C].

Here, the dual of a class in H2(X,Q) is defined with respect to the Beauville–Bogomolov–
Fujiki quadratic form (BBF form for short); see Definition 2.6. The key (and at first sight maybe
somewhat surprising) point in the proof of the above result can most handily be formulated for a
primitive symplectic variety X with terminal singularities: in this case, the general rational curve
ruling a divisor does not meet the singular locus of X (cf. Corollary 3.9). In the projective case, it
is standard to reduce to the terminal case via a Q-factorial terminalization, whose existence is not
known in the non-projective case. Instead, we use the functorial resolution of Bierstone–Milman
and Villamayor [BM97, Vil89] in families and the local structure of symplectic singularities.

Theorem 1.1 allows us first to generalize to the singular setup the following result concerning
prime exceptional divisors (that is, prime Q-Cartier divisors whose square with respect to the
BBF form is negative), which is due to Markman [Mar13] in the smooth case.
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Theorem 1.2. Let X be a projective and Q-factorial primitive symplectic variety. Let E ⊂ X
be a prime exceptional divisor. Then the following hold:

(1) The divisor E is contractible on a birational Q-factorial primitive symplectic variety X ′

that is a locally trivial deformation of X. In particular, E is uniruled, and the contraction
of its strict transform on X ′ determines a distinguished ruling. The dual E∨ is proportional
to the class of a general curve R of this ruling, which is either a smooth rational curve or
a union of two smooth rational curves meeting transversally in a single point. Moreover,
either 1

2 [E] or [E] is a primitive class of H2(X,Z).
(2) (a) There is a flat family of divisors over the Hodge locus Hdg[E](X) that specializes to

a multiple of E at the origin. In particular, [E] is Q-effective over all of its Hodge locus.
(b) There exists a non-empty open subset of the Hodge locus Hdg[E](X) over which E

deforms to a prime exceptional divisor.

We refer to Definition 3.1 for the precise notion of a ruling and to Remark 3.2 for a discussion
about uniqueness. Notice that item (1) does not require controlling the deformation theory of the
rational curves in the ruling and is essentially contained in [BBP13, Theorem A and its proof]
and [Dru11, Theorem 3.3]. The above result is one of the ingredients involved in the proof of the
fact that reflections in prime exceptional divisors are integral monodromy operators. We refer
the reader to [Mar11, Mar13] for details and applications. We plan to return to this topic in
subsequent work.

Moreover, we provide existence results for positive and negative uniruled divisors on prim-
itive symplectic varieties deformation equivalent to a moduli space Mv(S, σ) (respectively, to
a fiber Kv(S, σ) of its Albanese map) of semistable objects on a projective K3 surface S of
Mukai vector v that are Bridgeland σ-semistable with respect to a v-generic stability condition
(respectively, Kv(S, σ)) on a projective K3 (respectively, abelian) surface S. We refer the reader
to Section 2.5 for the precise definitions. It is well known that, when smooth, these moduli
spaces are irreducible symplectic manifolds of K3[n] (respectively, of Kumn) deformation type.
In the singular case, by considering moduli spaces of sheaves of Mukai vector v that are Gieseker
H-semistable with respect to a v-generic polarization (on a projective K3, respectively abelian
surface S) admitting a crepant resolution, O’Grady discovered the OG10 and OG6 deformation
types; cf. [O’G99, O’G03]. In the remaining cases, by the recent results of [PR18], these mod-
uli spaces are primitive (mostly irreducible) symplectic varieties (again, we refer the reader to
Section 2.5 for more details and the long history of contributions).

Ample uniruled divisors on irreducible symplectic manifolds of K3[n], Kumn, or OG10 de-
formation types are investigated in, respectively, [CMP21, MP18, Ber21]. The OG6 deformation
type is the object of an ongoing project by Bertini, Grossi, and Onorati. Here we use Theorem 1.1
to show the following.

Theorem 1.3. Let M be any moduli space (cf. Definition 2.8) of polarized primitive symplectic
varieties locally trivially deformation equivalent (as unpolarized varieties) to a fixed moduli
space Mv(S, σ) of semistable objects on a projective K3 surface S of Mukai vector v that are
Bridgeland σ-semistable with respect to a v-generic stability condition (or to a fiber Kv(S, σ) of
its Albanese morphism if S is an abelian surface). Then M possesses infinitely many connected
components whose points correspond to polarized primitive symplectic varieties all containing
an ample uniruled divisor proportional to the polarization.

The proof of Theorem 1.3 uses crucially the analogous existence results proved in [CMP21,
MP18] together with a rational map constructed in [PR18, Lemma 3.19] from a smooth moduli
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space of sheaves Mu(S,H) (respectively, Ku(S,H)), where u is primitive, onto Mv(S,H) (re-
spectively, onto Kv(S,H)), see (2.6), and another important result contained in [PR18] (cf. The-
orem 1.19 therein). Notice that M is of course not of finite type, and the generality of our results
comes at the price of not knowing whether the connected components of M possibly left out by
our results are in finite number or not. Unlike in the smooth case (see [CMP21, MP18, Ber21]),
we do not control here the numerical invariants of the connected components covered by our
results. It is conceivable, however, that our methods could be pushed further by studying the
classes of divisors obtained via the Perego–Rapagnetta map [PR18, Lemma 3.19]. This together
with a better knowledge of the monodromy groups in the singular case would allow us to obtain
more precise statements; see Remark 4.7.

In terms of marked moduli spaces (cf. Definition 2.7), Theorem 1.3 can be expressed by saying
that every connected component of such a moduli space containing a variety of the formMv(S, σ),
respectively Kv(S, σ), contains infinitely many divisors parametrizing varieties with a uniruled
divisor of positive square. Concerning the existence of exceptional divisors, we prove the following
slightly weaker statement.

Theorem 1.4. Let MΛ be any moduli space of marked primitive symplectic varieties locally
trivially deformation equivalent to a moduli space Mv(S, σ) of stable objects on a projective K3
surface S of Mukai vector v that are Bridgeland σ-semistable with respect to a v-generic stability
condition. Then any connected component of MΛ possesses a divisor whose points correspond
to polarized primitive symplectic varieties containing a uniruled prime exceptional divisor.

Since the Kähler variety parametrized by the very general point of MΛ has Picard group
of rank zero, the locus where prime exceptional divisors exist is a priori a countable union of
subvarieties of positive codimension.

2. Preliminaries

We first introduce the various notions of singular symplectic varieties and discuss their basic
properties in Section 2.1, recall the Bogomolov–Beauville–Fujiki form in Section 2.2, and then
introduce their moduli spaces in Sections 2.3 and 2.4. In Section 2.5, we adapt a result due to
Perego and Rapagnetta (to the framework of moduli spaces of stable objects), and in Section 2.6,
we present a construction of theirs that is central for the proof of Theorem 1.3. We conclude
Section 2 by showing that moduli spaces of sheaves with respect to a v-generic polarization on
a projective K3 or abelian surface are primitive symplectic varieties.

2.1. Symplectic varieties. Let X be a normal complex variety. Recall that, for any integer

p ⩾ 1, the sheaf Ω
[p]
X of reflexive holomorphic p-forms on X is ι∗Ω

p
Xreg

, where

ι : Xreg ↪−−→ X

is the inclusion of the regular locus of X. It can be alternatively (and equivalently) defined by

the double dual Ω
[p]
X =

(
Ωp
X

)∗∗
. Recall the following definition, which is due to Beauville [Bea00].

Definition 2.1. Let X be a normal variety.

(1) A symplectic form on X is a closed reflexive 2-form σ on X that is non-degenerate at each
point of Xreg.

(2) If σ is a symplectic form on X, the variety X has symplectic singularities if for one (hence

202



Deformations of rational curves

for every) resolution f : X̃ −→ X of the singularities of X, the holomorphic symplectic form
σreg := σ|Xreg

extends to a holomorphic 2-form on X̃. In this case, the pair (X,σ) is called
a symplectic variety.

The local structure of symplectic singularities is described by the following proposition,
which follows from a combination of [Kal06, Theorem 2.3], [Art69, Corollary 2.6], and [Nam11,
Lemma 1.3]. We refer to [BL22, Theorem 3.4] for further details regarding the validity of this
statement in the complex analytic situation. The proposition will play a role in the proof of
Theorem 1.2.

Proposition 2.2 (cf. [LP16, Proposition 2.1]). Let (X,σ) be a symplectic variety, and let Σ ⊂ X
be the singular locus of Xsing. Then codimX Σ ⩾ 4, and every x ∈ U := X \Σ has a neighborhood
that is locally analytically isomorphic to

(
C2n−2, 0

)
× (S, p), where 2n = dimX and (S, p) is the

germ of a smooth point or a rational double point on a surface. This isomorphism can be chosen
to preserve the symplectic structure.

Definition 2.3. A primitive symplectic variety is a normal compact Kähler variety X such that

h1(X,OX) = 0 and H0
(
X,Ω

[2]
X

)
is generated by a holomorphic symplectic form σ such that X

has symplectic singularities.

For a normal variety X such that Xreg has a symplectic form σ, Beauville’s condition above
that the pullback of σ to a resolution of X extends as a regular 2-form is in fact equivalent to
having canonical, even rational, singularities by [Elk81], [KS21, Corollary 1.7]. For the definition
and basic properties of Kähler forms on possibly singular complex spaces, we refer the reader to,
for example, [BL22, Section 2].

In order to put Definition 2.3 into perspective, first recall the following.

Definition 2.4. An irreducible symplectic variety is a normal compact Kähler variety X with
canonical singularities and such that for any finite morphism f : X ′ −→ X that is étale in codi-
mension 1, the reflexive pullback f [∗]σ of the symplectic form σ on X generates the exterior
algebra of reflexive forms on X ′.

Irreducible symplectic varieties appear in the Beauville–Bogomolov decomposition for nu-
merically K-trivial log terminal Kähler varieties obtained in [BGL22, Theorem A], building on
earlier work in the projective case of [HP19, Dru18, GGK19, GKP16]. In the smooth case, being
primitive symplectic or irreducible symplectic is equivalent by [Sch22, Theorem 1], while in the
singular case, an irreducible symplectic variety is primitive symplectic but not vice versa.

To see that irreducibility implies primitivity, it is sufficient to check that h1(OX) = 0 when-
ever X is irreducible symplectic. If Y −→ X is any desingularization, then since symplectic
singularities are rational, we have h1(X,OX) = h1(Y,OY ). The latter is equal to h0

(
Y,Ω1

Y

)
,

which is at most h0
(
X,Ω

[1]
X

)
(it is actually equal to h0

(
X,Ω

[1]
X

)
by [KS21], but we do not need

this deep result here). To conclude, notice that h0
(
X,Ω

[1]
X

)
= 0 by the definition of irreducible

symplectic varieties. As counterexample to the converse, one may take for instance the Kummer
singular surface A/±1 that is primitive symplectic but has a cover by the abelian surface A that
is finite and étale in codimension 1; hence it is not irreducible symplectic. For a review of the
different notions of “singular” symplectic varieties, we refer the reader to the survey [Per20].

As a consequence of the results of [BGL22], a locally trivial deformation of an irreducible
symplectic variety is irreducible symplectic. We sketch the argument.
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Lemma 2.5. Let X be an irreducible symplectic variety, and let X −→ Def lt(X) be its universal
locally trivial deformation. Then Xt is irreducible symplectic for any t ∈ Def lt(X), possibly after
shrinking the representative.

Proof. By [BGL22, Corollary 2.28], the global sections of the algebra of reflexive differential
forms is invariant under locally trivial deformations. As any small deformation of a symplectic
form remains symplectic, on nearby fibers too, the algebra of holomorphic forms is generated
by a non-zero 2-form. Quasi-étale covers of X give rise to quasi-étale covers of X that prolong
the one on X by [BGL22, Lemma 3.7], and, finally, quasi-étale covers of X are again locally
trivial by [BGL22, Lemma 3.8]. The claim now follows from invoking once more the invariance
of reflexive forms under locally trivial deformations.

2.2. Beauville–Bogomolov–Fujiki form. LetX be a primitive symplectic variety. Then there
is a quadratic form qX on H2(X,C), the so-called Beauville–Bogomolov–Fujiki form (BBF form
for short); see [BL22, Definition 5.4]. Up to scaling, it is defined by the formula

qX(α) :=
n

2

∫
X
(σσ̄)n−1 α2 + (1− n)

∫
X
σnσ̄n−1α

∫
X
σn−1σ̄nα . (2.1)

Due to [Nam01a, Kir15, Mat15, Sch20, BL22], we know that qX is defined over Z and non-
degenerate of signature (3, b2(X)−3); see Section 5 of [BL22] and references therein. It is used to
formulate the local Torelli theorem [BL22, Proposition 5.5], satisfies the Fujiki relations [BL22,
Proposition 5.15], and is compatible with the Hodge structure onH2(X,Z); see Section 2.3 below,
where this last property is crucial in the definition of the period map. Moreover, it allows one to
identify second-degree homology with cohomology. More precisely, we define the following.

Definition 2.6. Let X be primitive symplectic. For α ∈ H2(X,Q), we define the dual class
α∨ ∈ H2(X,Q)∨ = H2(X,Q) by the condition

qX(α, β) = α∨(β) .

In the same way, we define γ∨ ∈ H2(X,Q) for a homology class γ ∈ H2(X,Q). Clearly, α∨∨ = α.

2.3. Moduli spaces of marked primitive symplectic varieties. Let Λ be a lattice of signa-
ture (3, n). For a primitive symplectic variety X, let H2(X,Z)tf denote the torsion-free part of its
second cohomology. A Λ-marking of X is an isometry µ : H2(X,Z)tf −→ Λ. A Λ-marked primitive
symplectic variety is a primitive symplectic variety together with the choice of a Λ-marking. An
isomorphism of Λ-marked primitive symplectic varieties (X,µ) and (X ′, µ′) is an isomorphism
φ : X −→ X ′ such that µ′ = µ ◦ φ∗.

Definition 2.7. We define MΛ to be the moduli space of Λ-marked primitive symplectic vari-
eties of a fixed locally trivial deformation type; that is, its elements are isomorphism classes of
Λ-marked primitive symplectic varieties (X,µ), where X is a locally trivial deformation of a fixed
primitive symplectic variety X0, and the (not necessarily Hausdorff topology and) complex struc-
ture is obtained from patching Kuranishi spaces for locally trivial deformations together using
that miniversal locally trivial deformations are universal; see [BL22, Lemma 4.6]. From the unob-
structedness of locally trivial deformations [BL22, Theorem 4.7], one deduces that MΛ is smooth.

Let H = (HZ, F
•, q) be a semipolarized hyperkähler Hodge structure in the sense of [BL22,

Definition 8.1]; that is, HZ is a Z-module of finite type, F • is a decreasing filtration on HC :=
HZ ⊗ C such that (HZ, F

•) becomes a pure Hodge structure of weight 2, and q : HZ −→ Z is a
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non-degenerate bilinear form of signature (3, rkHZ − 3) such that H2,0 ⊂ HC is an isotropic line
and the real space underlying H2,0 ⊕ H0,2 is positive and perpendicular to H1,1. As usual, we
write Hp,q := F p ∩ F

q
. Let us fix a lattice Λ of signature (3, n). Then the period domain for

Hodge structures of hyperkähler type on the lattice Λ is

DΛ := {x ∈ P(Λ⊗ C) | (x, x) = 0, (x, x̄) > 0} , (2.2)

where P(Λ⊗ C) denotes the projective space of lines in Λ⊗ C and x is to be interpreted as the
H2,0-part of the Hodge decomposition, from which the Hodge structure can be reproduced. It is
easily seen that DΛ is connected.

The period map for Λ-marked primitive symplectic varieties is the map

℘ : MΛ −→ DΛ , (X,µ) 7−→ µ
(
H2,0(X)

)
. (2.3)

It is holomorphic and a local isomorphism by the local Torelli theorem [BL22, Proposition 5.5].
Moreover, it is generically injective when restricted to a connected component of MΛ if rkΛ ⩾ 5
by [BL22, Theorem 1.1], or if X has only quotient singularities by [Men20, Theorem 1.1].

For any sublattice Λ0 ⊂ Λ of signature (2, n), the set DΛ ∩ P(Λ0 ⊗ C) has two connected
components. We choose one of them and denote it by DΛ0 . As explained in [Mar11, Section 4],
such a choice is determined by the choice of an orientation class for the cone of positive vectors
in Λ⊗R and is therefore obtained from a choice of connected component of the marked moduli
space MΛ.

2.4. Moduli spaces of polarized primitive symplectic varieties. Recall that a polarized
variety is a pair (X,L) consisting of a projective variety X and a primitive ample line bundle L
on X.

Definition 2.8. For each d ∈ N and each locally trivial deformation type δ of primitive sym-
plectic varieties, we denote by Mδ,d the coarse moduli space of polarized primitive symplectic
varieties (X,L), where X is a primitive symplectic variety of type δ and L is an ample line bundle
of BBF square d. We write

Mδ :=
∐
d∈N

Mδ,d .

Note that Mδ,d exists and is a quasi-projective scheme by [BL22, Proposition 8.7 and Lem-
ma 8.8] or [BBT22, Corollary 1.2]. For b2(X) ⩾ 5, the global Torelli theorem [BL22, Theorem 1.1]
allows one to describe the moduli spaces of polarized primitive symplectic varieties. Even though
we will not use it, we include it for convenience. The proof goes as in the smooth case, using
results from [BL22] instead of their smooth analogs.

Proposition 2.9. Let d ∈ N, let δ be a locally trivial deformation type of primitive symplectic
varieties, and suppose rkΛ ⩾ 5. If M0 ⊂ Mδ,d is an irreducible component, then there is a
primitive vector v ∈ Λ of square d such that M0 is a Zariski open subset of Γ\Dv⊥ , where
Γ ⊂ O(Λ) is the subgroup leaving the period domain fixed.

2.5. Moduli spaces of stable objects on K3 or abelian surfaces. We recall here some rel-
evant definitions and results about moduli spaces of Bridgeland-stable objects on K3 or abelian
surfaces. These are a generalization of moduli spaces of stable (twisted) sheaves on the same class
of (twisted) surfaces. Their construction is based on the existence of a Bridgeland-stability con-
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dition σ, proved in [Bri08, Theorem 1.1]. In the following, whenever we use a stability condition,
we suppose that it lies in the component Stab†(S) constructed by Bridgeland.

Let S be a projective K3 surface or an abelian surface. Set

H̃(S,Z) := H2⋆(S,Z) = Z⊕H2(S,Z)⊕ Z .

An element v = (v0, v1, v2) ∈ H̃(S,Z) is called a Mukai vector if v0 ⩾ 0 and v1 ∈ NS(S), and if in
case v0 = 0, either v1 is the first Chern class of an effective divisor, or v1 = 0 and v2 > 0. Recall
that H̃(S,Z) carries a pure Hodge structure of weight 2 and is endowed with a lattice structure
with respect to a pairing (·, ·) called a Mukai pairing (see, for example, [HL10, Section 6.1] for
more details). We set v2 = (v, v) for every Mukai vector v ∈ H̃(S,Z) and call

(
H̃(S,Z), (·, ·)

)
the

Mukai lattice of S. To any object F • on Db(S), we associate a Mukai vector v(F •) as follows:

v(F •) := ch(F •)
√

td(S) .

For an ordinary sheaf F , we simply have

v(F ) =
(
rk(F ), c1(F ), ch2(F ) + ϵ(S) rk(F )

)
,

where ϵ(S) equals 1 in the K3 case and 0 in the abelian case. We consider the moduli space
Mv(S, σ) of stable objects on Db(S) of Mukai vector v that are σ-semistable with respect to
a v-generic Bridgeland-stability condition σ. In the abelian case, we denote by Kv(S, σ) the
fiber over zero of the Albanese morphism. When no confusion is possible, we will drop the
dependence on S and σ and simply write Mv and Kv. Notice that, by [BM14b, Theorem 6.7],
there are v-generic stability conditions for which these moduli spaces of Bridgeland-stable objects
are ordinary moduli spaces of Gieseker-semistable (twisted) sheaves. Therefore, basically thanks
to the work of Mukai [Muk84], it is known that the locus M s

v parametrizing stable objects is
smooth (of dimension v2 + 2ϵ(S)) and endowed with a holomorphic symplectic form whenever
it is non-empty. For primitive Mukai vectors, the latter occurs precisely when v2 ⩾ −2ϵ(S)
(see [Yos00, Yos01]). More classically, the moduli spaces Mv(S,H) of sheaves on S of Mukai
vector v that are Gieseker H-semistable with respect to a v-generic polarization (respectively,
the fiber Kv(S,H) over zero of the Albanese morphism in the abelian case) were considered.
Write v = mw, with w a primitive Mukai vector and m ∈ N∗. When m = 1 (and w2 > 2 in
the abelian case), thanks to results due to Huybrechts, Mukai, O’Grady, and Yoshioka (see, for
example, [Yos01] and references therein), we know that Mv and Kv are irreducible symplectic
manifolds deformation equivalent to the punctual Hilbert scheme on a K3 surface (respectively,
to a generalized Kummer variety). If m = 2 and w2 = 2, they possess a symplectic resolution that
is an irreducible symplectic manifold (respectively, known as the OG10 and the OG6 manifolds
[O’G99, O’G03]). When m ⩾ 3, or m = 2 and w2 ⩾ 4, the irreducible symplectic varieties Mv

and Kv have singularities in codimension at least 4 by [KLS06, Proposition 6.1]; hence they are
terminal by [Nam01b, Corollary 1].

We record below some results that will be crucially used in what follows.

Proposition 2.10. Let S be a projective K3 surface or an abelian surface, v = mw a Mukai
vector, where w is primitive with w2 = 2k for two non-zero integersm, k ∈ N (with (m, k) ̸= (1, 1)
in the abelian case), and σ a v-generic stability condition on Db(S). Then the moduli space Mv

(respectively, Kv) is a symplectic variety with Q-factorial singularities. If (m, k) ̸= (2, 1), it has
terminal singularities.

Proof. When S is a K3 surface, the first part of the proof is the content of [BM14b, Theo-
rem 1.3(a) and Corollary 6.9]. Notice that the proof of the theorem by Bayer and Macr̀ı actually
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shows that this moduli space is isomorphic to a moduli space of Gieseker-semistable twisted
sheaves on a twisted K3 surface (Y, α); see [BM14b, Lemma 7.3] for the existence of (Y, α) and
the rest of that section for the isomorphism with a moduli space of twisted sheaves. The analo-
gous result in the case of abelian surfaces is the content of [MYY14, Theorem 1.4] (notice that
the assumption on the Picard rank in [MYY14, Theorem 1.4] is only for the case of K3 surfaces),
where the authors prove that in this case too, moduli spaces of stable objects for v-generic stabil-
ity conditions are ordinary moduli spaces of stable twisted sheaves on a twisted abelian surface
(Y, α) with Mukai vector v′. The statement on the singularities in the abelian case now follows
from [PR18] and the vanishing of the Brauer class α for special surfaces: indeed, we can take
any family (Y , α) of twisted abelian surfaces containing (Y, α) and construct the relative moduli
space of twisted sheaves with Mukai vector v′ (if the class of v′ remains algebraic). We are left
with proving the terminality if (m, k) ̸= (2, 1). To do so, we need the following.

Claim 2.11. Let F • be a strictly σ-semistable object in Mv. Then all the elements in the
Jordan–Hölder filtration of F • have Mukai vector nw with n < m.

Proof of Claim 2.11. Suppose on the contrary that there exist an object F • and an element G •

in its Jordan–Hölder filtration with Mukai vector v′ ̸= nw. By semistability, v and v′ are not
collinear; therefore, by the proof of [Bri08, Proposition 9.3], there exists a wall Wv′ in the space of
stability conditions to which σ belongs. Therefore, σ cannot be v-generic, and the claim follows.
This proof is completely analogous to the stable case in [Bri08, Proposition 9.3].

Notice that the claim also proves that a general element of Mv is stable. Now, strictly
semistable objects inMv are extensions of semistable objects with Mukai vector nw and (m−n)w,
with 1 ⩽ n < m. Hence the codimension of the strictly semistable locus is

max
1⩽n<m

(
m22k + 2− dim(Mnw)− dim(M(m−n)w)

)
= max

1⩽n<m

(
2k

(
−2n2 + 2mn

)
− 2

)
= 2k(2m− 2)− 2 ,

which is at least 4 if (m, k) ̸= (2, 1). Therefore, by [Nam01b, Corollary 1], it is terminal.

Perego and Rapagnetta proved, for moduli spaces of sheaves, the following important result
when v ̸= (0,mH, 0) or S has Picard rank 1. We check here that for moduli spaces of objects,
one does not need to exclude the case where v = (0,mH, 0) and S does not have Picard rank 1.

Theorem 2.12 ([PR18, Theorem 1.19]). Let S be a projective K3 surface or an abelian surface,
v = mw a Mukai vector with w primitive with w2 = 2k for two non-zero integers m, k ∈ N,
and σ a v-generic stability condition on Db(S). Then Mv (respectively, Kv) is an irreducible
symplectic variety, and its locally trivial deformation type is determined by (m, k).

Proof. Notice that the walls in the stability manifold are bounded by [Mac14, Theorem 3.11];
hence by taking the large volume limit as in [Bri08, Section 14], we have a chamber “at infinity”
where Bridgeland stability tends to Gieseker stability. If v ̸= (0,mH, 0) or S has Picard rank 1,
we observe that we can choose a stability condition so that the moduli space of stable objects is
a moduli space of stable sheaves (by taking a stability condition in the final chamber under the
large volume limit); hence this is precisely the content of [PR18, Theorem 1.19]. Now assume
v = (0,mH, 0) and that S does not have Picard rank 1. To simplify the notation, we will
restrict to the case of Mv; the argument, however, is literally the same for Kv. Inside the local
deformation space Def(S), we consider the smooth hypersurface B ⊂ Def(S) of deformations of
the pair (S,H). This is a family of polarized K3 surfaces f : S −→ B, and we denote by H the
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polarization. By [BLM+21, Theorem 24.1], we know that there is a relative stability condition σB,
and we consider the moduli space Mv := Mv(S , σB) −→ B of σB-semistable objects on S over B
with Mukai vector v = (0,mH , 0) interpreted as a section of the relative Mukai lattice R2∗f∗ZS .
One argues as in [PR18, Lemma 2.15] that Mv −→ B is a deformation of Mv. If (m, k) ̸= (2, 1),
we have by Proposition 2.10 that Mv is terminal and Q-factorial; hence all small deformations are
locally trivial by [Nam06, Main Theorem]. Locally trivial deformations preserve the property of
being irreducible symplectic by Lemma 2.5. As the general fiber of S −→ B has Picard number 1,
we have a locally trivial deformation of Mv to a variety where the theorem holds by the initial
remark, and we are done. If on the other hand (m, k) = (2, 1), our varieties are Q-factorial but
not terminal, and they all have a resolution of singularities of relative Picard rank 1 by [MZ16,
Proposition 2.2, Corollary 2.8], which is a blowup along their singular locus. Hence Mv −→ B is
also a locally trivial deformation, as the b2-constant locus coincides with the locally trivial locus
by [BL22, Proposition 5.22 and Corollary 5.23]. We can now conclude again by Lemma 2.5.

As a consequence of the proof of Theorem 2.12, we have the following.

Corollary 2.13. Let S be a projectiveK3 surface or an abelian surface, v = mw a Mukai vector
with w primitive with w2 = 2k for two non-zero integers m, k ∈ N, and σ a v-generic stability
condition on Db(S). Then Mv (respectively, Kv) is locally trivial, deformation equivalent to the
moduli space of sheaves M(0,mH,0)(S

′, H) (respectively, K(0,mH,0)(S
′, H)), where S′ is a K3 or

abelian surface with NS(S′) = ZH and H2 = 2k.

Remark 2.14. In Theorem 2.12, we used moduli spaces of stable objects instead of moduli spaces
of stable sheaves to avoid pathological situations for the Mukai vector (0,mH, 0) on a surface
with Néron–Severi rank bigger than 1. In our situation, a moduli space of stable objects for this
choice of a Mukai vector is birational to the ordinary moduli space of sheaves, but the latter has
possibly worse singularities. By [BM14b, Theorem 1.3] and [MYY14, Theorem 1.4], these moduli
spaces of objects can be interpreted as moduli spaces of (twisted) sheaves on another surface,
with a possibly different Mukai vector; hence Theorem 2.12 is exactly equivalent to the result
stated in [PR18].

2.6. A construction due to Perego and Rapagnetta. We recall below a construction in-
troduced in [PR18, Lemma 3.9] that we will crucially use in the proofs of Theorems 1.3 and 1.4.

Let S be a projective K3 surface with an ample line bundle H, and consider the Mukai vector
v = (0,m ·H, 0), m ⩾ 1. Notice that a general element in the moduli space Mv := Mv(S,H) is
an invertible sheaf of degree g− 1 on a smooth curve C ∈ |mH|. In other words, Mv contains as
open dense subset the relative Picard variety

J ◦ := Picg−1(C ◦/|mH|◦) , (2.4)

where C −→ |mH| denotes the universal curve and the superscript denotes the restriction to the
open subset |mH|◦ ⊂ |mH| parametrizing smooth curves. It comes with a Lagrangian fibration

f : J ◦ −→ |mH|◦ (2.5)

given by mapping a sheaf to its support.

Set u := (0,mH, 1− (g−1)). Let C ∈ |mH| be an integral curve and j : C ↪→ S the inclusion.
Then for every L ∈ Pic1(C), the sheaf j∗L is H-stable of Mukai vector u. The sheaves of this type
form an open subset U of Mu. If L ∈ Pic1(C), then L⊗(g−1) ∈ Picg−1(C), hence j∗L

⊗(g−1) ∈ Mv.
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In [PR18, Proof of Lemma 3.9], the associated map

PR: Mu 99K Mv , j∗L 7−→ j∗L
⊗(g−1) , (2.6)

which is over the base |mH| is shown to be dominant, and then generically finite as both spaces
have the same dimension.

Observe that u is a primitive Mukai vector. Hence if every semistable sheaf is stable, for
example if S is general, then

Mu is an irreducible holomorphic symplectic manifold of K3[n]-type (2.7)

by [O’G97]; see also [HL10, Theorem 6.2.5, Proposition 6.2.6].

If S is an abelian surface, then the construction is exactly the same, but replacing Mv by Kv

and Mu by Ku; see [Yos01, Theorem 0.2] and [KLS06, Theorem 4.4].

2.7. Moduli spaces of stable sheaves on K3 or abelian surfaces. If (S, v,H) is an (m, k)-
triple in the sense of [PR18, Definition 1.15], then the moduli spaces of H-semistable sheaves Mv

of Mukai vector v (respectively, Kv in the abelian case) are irreducible symplectic varieties by
[PR18, Theorem 1.19]. In the remaining case w = (0, w1, 0) and Picard number ρ(S) > 1, we use
the construction by Perego and Rapagnetta recalled above to show the following result, which
will be only marginally used in the paper (cf. Remark 4.6) but may be interesting in its own
right. We refer the interested reader to [PR18, Remark 2.6 and Example 2.7], where Perego and
Rapagnetta explain thoroughly why they did not consider the case w = (0, w1, 0) and ρ(S) > 1.

Proposition 2.15. Let S be a projective K3 surface or an abelian surface, v a Mukai vector,
H an ample divisor on S, and m, k ∈ N two positive integers. Suppose that

(1) the polarization H is primitive and v-generic;

(2) v = mw, with w primitive and w2 = 2k.

Then the moduli space of stable sheaves Mv (respectively, Kv in the abelian case) is a primitive
symplectic variety.

Proof. We may assume that S is a projective K3 surface with ρ(S) > 1 and consider the Mukai
vector v = (0,m ·H, 0) with m ⩾ 1. We set u := (0,mH, 1− (g − 1)) and consider the dominant
Perego–Rapagnetta map recalled above,

PR: Mu 99K Mv , j∗L 7−→ j∗L
⊗(g−1) . (2.8)

Even if Mu is not an irreducible holomorphic symplectic (IHS for short) manifold, we do never-
theless have the following.

Claim 2.16. There exists a stability condition σ that is u-generic such that the moduli space of
σ-stable objects Mσ provides a crepant resolution ν : Mσ −→ Mu and Mσ is of K3[n]-type.

Proof of Claim 2.16. Let us consider the component Stab†(S) of stability conditions in Db(S)
defined by Bridgeland in [Bri08, Theorem 1.1], which contains the Gieseker-stability condition
given on Mu by H. Notice that the walls in the stability manifold are bounded by [Mac14,
Theorem 3.11]; hence by taking the large volume limit as in [Bri08, Section 14], we have a chamber
“at infinity” where Bridgeland stability tends to Gieseker stability. Let U be an open set in the
closure of Stab†(S) containing the H-Gieseker-stability condition such that the closure B of U
is compact. Let us consider all semistable objects for some σ ∈ U in Db(S) with Mukai vector u.
This set of objects has bounded mass in the sense of [Bri08, Definition 9.1], as the mass of a set
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of objects depends on the Mukai vectors of their subobjects, which in our case form a finite
set. Therefore by [Bri08, Proposition 9.3], there is an open set of stability conditions in B such
that all semistable objects are stable. Let σ be one such condition that lies in a chamber of B
whose closure contains the H-Gieseker-stability condition. Notice that such a chamber exists
by taking the so-called large volume limit (see [BM14b, Theorem 6.7]). Therefore, the space
of stable objects Mu(S, σ) is smooth and projective by [BM14b, Corollaries 6.9 and 7.5]. As
semistability is preserved in the closure of the chamber containing σ by the continuity of the
mass function (see [Bri08, before Lemma 2.2]), we have a morphism Mu(S, σ) −→ Mu(S,H) that
contracts S-equivalence classes of strictlyH-semistable objects. Finally,Mu(S, σ) is ofK3[n]-type
by [BM14b, Section 7], as it is birational to a moduli space of Gieseker-stable twisted sheaves on
a K3 surface (derived equivalent to S).

Hence, either directly by (2.7) or by Claim 2.16, we have a dominant rational map from an
irreducible holomorphic symplectic manifold Y to Mv. We already know by [Muk84] that Mv

carries a reflexive 2-form that is symplectic on the regular part. If M ′
v −→ Mv is a resolution of

singularities, we deduce furthermore that H0
(
Mv,Ω

[2]
Mv

)
is generated by the symplectic form by

the following:

h0
(
Ω
[2]
Mv

)
= h0

(
Ω2
M ′

v

)
⩽ h0

(
Ω2
Y

)
= 1 , (2.9)

where the first equality follows from [GKKP11] and the inequality from the fact that we have
a dominant rational map from Y to M ′

v. It also follows that Mv has symplectic singularities in the
sense of Definition 2.1 by applying Lemma 2.17 below to a resolution Z −→ M ′

v of indeterminacy
of Y 99K Mv. Note that Y is smooth and symplectic. Moreover, if M ′

v −→ Mv is a resolution of
singularities, we have

h1(OMv) = h1(OM ′
v
) = h0

(
Ω1
M ′

v

)
⩽ h0

(
Ω1
Y

)
= 0 , (2.10)

and the conclusion follows.

In the abelian case, the proof is identical once one uses [MYY14] instead of [BM14b].

Lemma 2.17. Let h : Z −→ X be a surjective generically finite morphism from a smooth projective
variety to a normal projective variety. If σ is a k-form on Xreg whose pullback along h extends
to a regular k-form on Z, then for any resolution π : X ′ −→ X, the pullback π∗σ extends to a
regular k-form as well.

Proof. Replacing Z with a further birational modification, we may assume that f lifts to X ′.
Now we consider a diagram

Z̃
((

��

Z //

��

X ′

π

��
Ỹ // Y

f // X ,

where Z −→ Y is the Stein factorization of h, the morphism Ỹ −→ Y is the Galois closure of f ,
and Z̃ −→ Ỹ is an equivariant resolution of singularities for the action of the Galois group G on
Ỹ that also admits a generically finite morphism Z̃ −→ X. Such a resolution can be obtained as
follows. Composition with π−1 gives a rational map Ỹ 99K X ′. Then the closure of the graph of
this map is a closed subvariety Γ ⊂ Ỹ ×X ′ that has a G-action (trivial on the second factor, note
that Γ is G-stable as Ỹ −→ X is G-invariant) and a morphism to X. Then Z̃ can be obtained
from Γ by taking an equivariant resolution. Now we claim:
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(i) The pullback of σ to Z̃ extends as a regular k-form σ̃ on Z̃.

(ii) This form descends to X ′.

For the first claim, it suffices to note that one can always pull back forms along rational maps
between smooth varieties. As f∗σ extends to Z by assumption, the claim follows. For the second
claim, we observe that Z̃ −→ X ′ is G-invariant and thus factors through the quotient by G. Being
a pullback from Y , the form σ̃ is invariant and thus descends back to Z̃/G (as a reflexive k-form).
Finally, any reflexive k-form descends along the birational contraction Z̃/G −→ X ′.

3. Deforming rational curves on primitive symplectic varieties

The goal of the section is to extend some results in the smooth case concerning the deformation
theory of rational curves to primitive symplectic varieties.

The general framework is the following. Given a compact Kähler variety X, we denote by
M0(X,α0) the Kontsevich moduli stack of genus zero stable maps into X of class α0 ∈ H2(X,Z).
If f is a stable map, we denote by [f ] the corresponding point of the Kontsevich moduli stack.
We refer to [BM96, FP97, AV02] for details and constructions in the projective case and to,
for example, Starr’s answer in [Sta18] for a discussion of the Kontsevich moduli stack of genus
zero stable maps in the Kähler case. We will often consider the relative situation as follows.
Let π : X → B be a proper morphism of complex varieties whose fibers are compact Kähler
varieties of dimension 2n, and let α be a global section of the local system R4n−2π∗Z. Suppose
that α is fiberwise of Hodge type (2n− 1, 2n− 1). Consider the relative Kontsevich moduli stack
M0(X /B, α) that parametrizes genus zero stable maps f : C → X to fibers X = Xb, b ∈ B, of
π such that f∗[C] = αb. The canonical morphism M0(X /B, α) → B is proper.

Definition 3.1. We say that an irreducible subvariety Z ⊂ X is uniruled if there exists an
irreducible subvariety T ⊂ M0(X,α0) such that the evaluation morphism

evT : CT −→ Z ⊂ X

restricted to the universal curve CT −→ T over T is dominant. We refer to such a component T
as a ruling. By a general curve in the ruling of Z, we mean the morphism

evt : Ct −→ Z

for general t ∈ T .

Remark 3.2. Notice that a ruling does not have to be unique. Nevertheless, using the MRC-
fibration and the symplectic form, it is easy to see that there is a unique covering family of
irreducible rational curves if the divisor is irreducible. Let us assume for simplicity that D is
projective. Then from [MP97, Part I, Theorem V.3.1], we infer that there exist a proper modifi-
cation ν : D̃ −→ D from a smooth variety D̃ and a proper morphism p : D̃ −→ B with rationally
connected fibers whose very general fiber contains all rational curves it meets. The map p is
a resolution of indeterminacy of the MRC-fibration; its existence in the non-projective case is
a direct consequence of [Cam81, théorème 1.1]. As D̃ is smooth, the general fiber of p is irre-
ducible. Since the pullback ν∗σ of the symplectic form has generically a 1-dimensional radical, p
has relative dimension 1, and the images of fibers of p constitute the sought-for unique covering
family. The expression the general curve of the ruling of a uniruled divisor D will then refer to
the general curve in this unique covering family of irreducible rational curves.

Clearly, there can still be different rulings in the sense of Definition 3.1. However, if there is
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a birational contraction whose exceptional locus is the given irreducible uniruled divisor, there
is a distinguished ruling determined by the family of general fibers of the contraction. Notice
that by what we said before, the contraction is necessarily unique. Such a contraction exists on
a birational model for prime exceptional divisors, thanks to Theorem 1.2(1).

The argument presented in Remark 3.2 immediately yields the following.

Lemma 3.3. Let X be primitive symplectic variety of dimension 2n. Let D ⊂ X be a uniruled
divisor. Then through the general point of D, there are finitely many rational curves.

If X is smooth, it is well known (see, for example, [BHT11]) that

dim[f ]M0(X, f∗[C]) ⩾ dim(X) + deg f∗TX − 3 . (3.1)

We place ourselves in the following setting.

Setting 3.4. We assume that X is a primitive symplectic variety of dimension 2n, that C is a
connected union of normally crossing smooth rational curves, and that f : C −→ X is a morphism
that is generically injective on each irreducible component of C. We suppose furthermore that
no intersection between two irreducible components of C is sent to the singular locus of X. If
needed, we will denote by R the image of f in X.

It is well known that if X is a smooth IHS of dimension 2n, the lower bound (3.1) can be
improved by 1, namely M0(X, f∗[C]) has dimension at least 2n − 2, and moreover R deforms
along its Hodge locus in Def(X) whenever equality holds (cf. [Ran95, CMP21, AV15]).

Let X → Def lt(X) be a local universal family of locally trivial deformations of X. Recall
that Def lt(X) is smooth by [BL22, Theorem 4.7]. Let B be the Hodge locus associated to [R] in
Def lt(X). In particular, by the local Torelli theorem [BL22, Proposition 5.5], the sublocus B is
a smooth divisor in Def lt(X). By abuse of notation, we denote by [R] the corresponding global
section of Hodge type (2n− 1, 2n− 1) of the local system R4n−2π∗Z.

Recall from [GKK10] that there always exist strong log resolutions π : Y −→ X such that
π∗TY = TX for any reduced complex space Y .

Proposition 3.5. Suppose that we are in Setting 3.4, consider a local universal family X →
S ⊂ Def lt(X) of locally trivial deformations of X, and let Π: Y −→ X be a simultaneous
resolution of singularities that is an isomorphism on the smooth locus of X −→ S. We denote by
π : Y −→ X the central fiber of Π. Suppose that R is not contained in the singular locus of X.
Let g : C −→ Y be a lift of f and M an irreducible component of M0(X, f∗[C]) containing [f ].
Then the following hold:

(1) The component M has dimension at least 2n− 2− deg(g∗KY ).

(2) If M has dimension 2n−2−deg(g∗KY ), then (possibly after shrinking the representative of
Def lt(X)) any irreducible component of M0(X /B, [R]) containing M dominates the Hodge
locus B where the class [R] remains algebraic.

Note that such a lift g exists and is unique as we are in Setting 3.4. Moreover, the term
deg(g∗KY ) is always non-negative as X has canonical singularities, and a simultaneous resolution
as in the statement Proposition 3.5 always exists by [BGL22, Corollary 2.27]. In fact, it can be
obtained as a deformation of any given resolution π : Y −→ X satisfying π∗TY = TX .
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Proof. To prove item (1), observe that a generic deformation of f can be lifted to Y ; that is,
there exist an irreducible component M ′ of M0(Y, g∗[C]) containing [g] together with a birational
map M ′ 99K M . Let T ⊂ S be a smooth curve passing through the point 0 ∈ S corresponding
to X and not contained in the Hodge locus B := Hdg[R](X) ⊂ S of [R]. Recall from [BL22,
Lemma 4.13] that B is a divisor in S. Consider the restrictions of Π to T

YT
//

""

XT

��
T .

Let MT −→ T be an irreducible component of M0(XT , [R]) that contains M . Lifting rational
curves from XT −→ T to YT −→ T , we determine an irreducible component M ′

T −→ T of
M0(YT , [R]) that dominates MT generically finitely.

By (3.1), we have

dim[f ] MT = dim[g] M
′
T ⩾ −deg g∗KYT

+ dimYT − 3 = −deg g∗KY + 2n− 2 .

Now by the choice of T outside the Hodge locus of [R], for 0 ̸= t ∈ T close to 0, no deformation
of f parametrized by MT can be contained in Xt, and item (1) follows.

To show item (2), consider as above an irreducible component M −→ S of M0(X , f∗[C])
containing M , and again let M ′ −→ S be the unique irreducible component of M0(Y , g∗[C])
obtained by lifting rational curves to the desingularizations.

By (3.1), we have

dim[g] M
′ ⩾ −deg g∗KY + dimY − 3 ⩾ dimS + 2n− 3− deg(g∗KY ) ,

from which we deduce

dim[f ] M ⩾ dimS + 2n− 3− deg(g∗KY ) = dimB + 2n− 2− deg(g∗KY ) .

Since the image in S of M is necessarily contained in the divisor B given by the Hodge locus and
the fibers of such a component all have dimension at least 2n− 2− deg(g∗KY ) by item (1), if a
fiber has dimension 2n−2−deg(g∗KY ), it follows from the semicontinuity of the fiber dimension
that M has to dominate B, which shows the result.

In practice, Proposition 3.5 can be useful to deform families of rational curves covering a di-
visor only when the general member of the family does not intersect the singular locus, as the
following elementary dimension count shows.

Lemma 3.6. Let X be a primitive symplectic variety of dimension 2n. Let f : C −→ X be a genus
zero stable map whose deformations in X cover an irreducible divisor D. Then f deforms in
a family of dimension at least 2n− 2.

Proof. Let M be an irreducible component of M0(X, f∗[C]) containing [f ], and let C −→ M be
the (domain of the) universal family restricted to M . Toward a contradiction, suppose dim(M) =
2n−2−e for some e > 0; then C would have dimension 2n−1−e, and the evaluation morphism
ev : C −→ D cannot be dominant.

Proposition 3.7. Let X be a primitive symplectic variety of dimension 2n. Let D ⊂ X be
an irreducible uniruled divisor and f : C −→ D a general curve in the ruling (cf. Remark 3.2).
Then f deforms in a family of dimension 2n− 2.
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Proof. Let f : C −→ D ⊂ X be a curve in the family passing through the general point of D.
We argue by contradiction. By Lemma 3.6, we may then suppose that there exists an irreducible
component M of M0(X, f∗[C]) containing [f ] and having dimension at least 2n−1. Consider the
universal curve C −→ M and the evaluation morphism

ev : C −→ D ⊂ X .

Since dimC ⩾ 2n, through the general point of D we would have a family Cx −→ Mx of rational
curves with dim(Mx) ⩾ 1. This would contradict Lemma 3.3, and we are done.

The arguments in Remark 3.2 in particular implied that only finitely many curves pass
through a general point in a uniruled divisor. The following strengthening of that statement will
be crucial in the proof of Theorem 1.1 and also yields Corollary 3.9 below.

Theorem 3.8. Let X be a compact Kähler variety with rational singularities, let D ⊂ X be
an irreducible uniruled divisor, and let σ be a reflexive 2-form on X that is symplectic at the
general point of D. If Σ ⊂ X is a closed subvariety such that every curve in the ruling meets Σ,
then codimX Σ ⩽ 2.

Proof. Without loss of generality, we may assume that Σ is a proper subset ofD and is irreducible.
We fix the ruling given by Remark 3.2 and assume that

every curve in the ruling meets Σ . (3.2)

From this, we will deduce that the rank of the pullback of the holomorphic 2-form σ on X along
the inclusion ι : Dreg ∩ Xreg −→ Xreg is less than 2n − 2 at a general point where dimX = 2n.
This is impossible; see [CMP21, Lemma 3.3]. We then conclude the proof of the theorem by
contradiction.

The rank of ι∗σ can be determined after pullback along any surjective morphism C ′ −→ D as
long as C ′ is reduced (since such a morphism will be smooth at the generic point of C ′). We will
construct a generically finite such map together with a fibration f : C ′ −→ Σ with fiber dimension
at least 2 such that the pullback of σ to C ′ is generically a pullback from Σ. Let

C
e //

��

D ⊃ Σ

T

be the ruling family of curves on D where the parameter variety T and the family C of curves
over it are compact and irreducible; in particular, the evaluation morphism e is surjective. Here,
we choose C −→ T to be smooth over a dense open set in T ; that is, e is the normalization when
restricted to the generic fiber of C −→ T .

Notice that, although by assumption every curve Ct, t ∈ T, intersects Σ, we do not in general
obtain a map T −→ Σ sending t to a point of intersection of the corresponding curve with Σ
as there could be many points of intersection. To remedy this, we proceed as follows. Let T ′ be
a resolution of singularities of an irreducible component of e−1(Σ) ⊂ C such that the induced
maps T ′ −→ Σ and T ′ −→ T are both dominant (note that e−1(Σ) could have several components).
Then T ′ −→ T is finite (as the generic ruling curve will not be contained in Σ), and T ′ −→ Σ
has relative dimension equal to codimD Σ − 1. This last claim follows because all curves in the
ruling meet Σ by assumption. We denote by C ′ the unique irreducible component of T ′ ×T C
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that dominates C and have thus obtained the following diagram:

C ′

f

��

a
��

p // C

�� e



T ′

b
��

//

s

VV

T

Σ �
� c // D �

� ι // X .

(3.3)

Here, s is the canonical section of a. Note that the diagram is not commutative. This is because C ′

dominates D via e′ := e ◦ p, but f maps to Σ, which is strictly contained in D. However, the
diagram becomes commutative if we delete either the c- or the e-arrow. We replace C ′ with
a resolution of singularities and assume henceforth that it is smooth. If we denote by σC ′ the
pullback (of reflexive forms, see [KS21, Theorem 14.1]—here we use the hypothesis of rationality
of the singularities of X) of σ along ι ◦ e′, it remains to show that σC ′ is a pullback along f . By
construction, a is a smooth P1-fibration over a Zariski open set U ⊂ T ′, so clearly the restriction
σC ′ |a−1(U) descends to a holomorphic 2-form on U . This coincides, however, with s∗σC ′ |U and
therefore has a holomorphic extension to the whole of T ′. As C ′ is smooth and σC ′ − a∗s∗σC ′ is
torsion, we obtain that σC ′ = a∗η, where η = s∗σC ′ is a holomorphic 2-form on T ′.

Now consider the commutative diagram obtained from (3.3) by deleting the e-arrow. We have
to show that η descends along b. But this is now immediate: by construction, η is the reflexive
pullback along T ′ −→ X (recall that T ′ was chosen non-singular), and this morphism factors
through T ′ −→ Σ.

Corollary 3.9. Let X be a primitive symplectic variety with terminal singularities. Let D ⊂ X
be an irreducible uniruled divisor. Then the general curve R in the ruling of D (cf. Remark 3.2)
does not meet Xsing.

Proof. This follows directly from Theorem 3.8 and the fact that by [Nam01b, Corollary 1], the
variety X has terminal singularities if and only if codim(Xsing) ⩾ 4.

Remark 3.10. It is worth noting that the proof of Theorem 3.8 is much easier in the projective
case. Let us take a resolution of singularities π : Y −→ X. By a result of Hacon–McKernan,
the fiber π−1(x) over every x ∈ X is rationally chain connected by [HM07, Corollary 1.5].
If {Ct}t∈S is a family of rational curves all passing through a given point x ∈ D and such
that no curve is contained in Xsing, we see that all points in the strict transforms C̃t lie in the
same “rational orbit,” that is, are equivalent under rational equivalence. Then the result follows
easily from Mumford’s theorem; see, for example, [Voi02, Proposition 22.24]. Note that the
proof of Theorem 3.8 does not need the result of Hacon–McKernan but uses Kebekus–Schnell’s
result [KS21, Theorem 14.1] instead. Note that the projective precursor [Keb13] of the latter
used [HM07] in the proof.

Remark 3.11. Even though it is not needed in this article, it is interesting to note that there is
an analog of [HM07, Corollary 1.5] for non-projective primitive symplectic varieties. First note
that it is sufficient to show this for one resolution of singularities because the statement holds
for smooth varieties, and given two resolutions, we can always find a third one dominating both.

Thus, we may choose a resolution π : Y −→ X satisfying π∗TY = TX . Hence we obtain
a simultaneous resolution of singularities Y −→ X = {πt : Yt −→ Xt}t∈∆ deforming π, by
[BGL22, Corollary 2.27], so that in ∆ we have a dense set {ti}i∈I of projective points (use [BL22,
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Corollary 6.11]). Notice that the simultaneous resolution is in fact locally trivial as a morphism
(that is, has local trivializations overX). In particular, the fibers of the resolution deform globally
trivially. Therefore, the fiber π−1(x) is rationally chain connected as the fibers π−1

ti
(x) are.

We can now prove our main deformation-theoretic result.

Proof of Theorem 1.1. (1) By Proposition 3.7, the map f deforms in a family of dimension 2n−2.
By Theorem 3.8, the general deformation of f in X can meet Xsing only in its codimension 2 irre-
ducible components, and from Proposition 2.2, we infer that the singularities of X are transversal
ADE surface singularities along such components. As observed in [BL22, Lemma 4.9], the func-
torial resolution of Bierstone–Milman and Villamayor [BM97, Vil89] applied to the locally trivial
family X −→ S gives a simultaneous resolution Π: Y −→ X (here we need that S is reduced).
We also refer to [Kol07, Chapter 3] and [GKK10, Section 4] for properties of this resolution. By
functoriality with respect to smooth morphisms, we conclude that Π is crepant over the locus of
transversal ADE singularities. Now we can lift the generic deformation of f in X along Π and
apply Proposition 3.5. Note that the term deg g∗KY vanishes because Π is crepant at the generic
deformation of [f ]. Then M is smooth at a general deformation of [f ] because the dimension
equals the expected dimension.

To show statement (2), one can argue as in the smooth case. It suffices to consider the case
where B has dimension 1 and passes through a very general point of the Hodge locus. Let M
be an irreducible component of the space of relative genus zero stable maps M0(X /B, f∗[C]) in
the local universal family X −→ B ⊂ Def lt(X) of locally trivial deformations Xt of X. Suppose
that M contains M ; then M dominates B by item (1). Let D ⊂ X −→ B be the locus in X
covered by the deformations of f parametrized by M . Since M dominates B, any irreducible
component of D dominates B. Since the fiber of D −→ B over b0 is a divisor in Xb0 = X, this
means that at a smooth point, the evaluation morphism has maximal rank. Therefore, it remains
maximal over an open set, and as a consequence, the fiber of D −→ B at a general point b is
a divisor, which is uniruled by construction. To see that for every b, the corresponding variety Xb

contains a uniruled divisor, it suffices to argue with the irreducible component of the relative
Hilbert scheme that contains D. By the above, such a component surjects onto the base B and
yields a uniruled divisor in each fiber.

The Néron–Severi group of a general fiber Xb is generated by the dual of [R], which shows
the result on the cohomology class. Notice however that we cannot deduce that the class of the
divisor Db inside Xb equals that of D. Indeed, the restriction Mb0 of M over b0 could well be
reducible,

Mb0 = M ∪
(⋃

j

Mj

)
,

and therefore Db0 could contain D as well as all the other images Dj of the evaluation morphisms
associated to the other components Mj . Nevertheless, the curves in the ruling of each of the Dj

lie in the same homology class α. Therefore, by deforming to a general point b where the Néron–
Severi group is generated by the dual of α, we see that the divisor Db has class proportional to
a (positive) multiple of the dual of α, and we are done.

Remark 3.12. Let us point out that if X is terminal, the conclusion of Theorem 1.1(1) follows
directly from Corollary 3.9 and Proposition 3.5(2). In the general situation, the existence of a
Q-factorial terminalization would simplify the proof slightly to the effect that one would not
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need any properties of the functorial resolution but could instead work with a simultaneous Q-
factorial terminalization (obtained by deforming a Q-factorial terminalization of X, see [BGL22,
Corollary 2.29]) and apply Corollary 3.9 to it. For primitive symplectic varieties, one possibly
needs to pass to a different birational model in order to have a Q-factorial terminalization, see
[BL22, Theorem 9.1], and therefore it seemed easier to work over the given variety at the cost of
possibly introducing discrepancies.

In the case of a prime exceptional divisor, that is, an irreducible and reduced divisor E on
X such that qX(E) < 0, using the minimal model program (MMP for short), we can do slightly
better and deform at least a multiple of the initial divisor. We refer the reader to, for example,
[BCHM10] and [BBP13] for the relevant definitions that we will need in the proof.

Proof of Theorem 1.2. (1) Since X has canonical singularities, we can choose a rational number
ϵ with 0 < ϵ ≪ 1 such that the pair (X, ϵE) is Kawamata log terminal (klt for short). By, for
example, the Boucksom–Zariski decomposition [KMPP22, Theorem 1.1] applied to ϵE, we see
that the divisor E coincides with its negative part and is also equal to the restricted base locus
B−(E). Recall that

B−(E) :=
⋃

A ample Q-divisor

B(E +A) ,

where B(·) denotes the stable base locus. Now we can argue exactly as in the proof of [BBP13,
Theorem A]; see also [Dru11, Theorem 3.3]. We recall the proof to record further information that
will be used below. By [ELM+06, Lemma 1.14], there exists a Q-Cartier ample effective divisor A
on X such that E is a component of the augmented base locus B+(ϵE + A). Since A is ample,
we may furthermore assume that (X, ϵE +A) is still klt. Using [BCHM10, Corollary 1.4.2], it is
shown in [BBP13, Proof of Theorem A] that the MMP directed by A leads to a birational model
f : X 99K X ′ of X, together with a birational proper morphism c : X ′ −→ W ′ of relative Picard
number ρ(X ′/W ′) = 1 whose exceptional locus coincides with the strict transform E′ of E.
Therefore, E′ is uniruled by [Kaw91], and since ρ(X ′/W ′) = 1, the dual to E′ is proportional
to the class of the general curve R′ in its ruling. Therefore, the same conclusions hold for E;
namely E is uniruled, and since f∗ is an isometry, its dual E∨ is proportional to the class of
a general curve R of its ruling. The variety X ′ is a locally trivial deformation of X by the
Q-factoriality hypothesis and [BL22, Theorem 6.16].

Proposition 2.2 implies that R′ is either a smooth rational curve or a union of two smooth
rational curves meeting transversally. Indeed, the singularities of W ′ are generically transversal
ADE surface singularities along the image of the exceptional locus of c : X ′ −→ W ′. Hence the
dual intersection complex of a general fiber is a subgraph of an ADE graph. As the exceptional
divisor is irreducible and the monodromy acts by a graph automorphism, the possibilities for R′

are as claimed.

Since, as observed above, R′ does not meet the indeterminacy locus of f−1, the same holds
for R. Moreover, for each irreducible component C ′ of R′, we have

NC′/X′ = ωC′ ⊕ O
⊕(2n−2)
C′ . (3.4)

The claim about the primitivity of E now follows from the fact that

E ·R = deg(ωR) = −2 .

(2)(a) Let R be a general curve in the ruling of E given by item (1). Let X −→ B :=
Hdg[R](X) ⊂ Def lt(X) be the restriction of the Kuranishi family of locally trivial deformations
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of X to the Hodge locus of R. We know by Theorem 1.1 that the deformations of R inside X
continue to cover a divisor Et on Xt. This divisor specializes to a divisor E0 ⊂ X0 = X such
that E ⊂ E0. Let us write E0 = mE + F for some m > 0 and some effective divisor F on X.
It suffices to show that F = 0. Suppose F ̸= 0. For very general t ∈ B and a rational curve
Rt ⊂ Et that is a deformation of R, we see that [Rt]

∨ is a positive multiple of [Et]. Indeed, up to
multiples, there is only one Hodge class, and both [Rt]

∨ and [Et] pair positively with any Kähler
class. In particular, Rt.Et = λqX(R) for some λ > 0 and for all t ∈ B.

As deformations of R cover F and E, we must have R · F ⩾ 0 and R · E ⩾ 0. We therefore
have

λq(R) = Et ·Rt = R · E0 = mR · E +R · F ⩾ 0 ,

which gives a contradiction. This finishes the proof.

(2)(b) By Theorem 1.1, an irreducible component C ′ of R′ deforms along its Hodge locus B,
and the deformations of C ′ inside

πX : X −→ B ⊂ Def lt(X)

continue to cover a divisor Eb on Xb. Let πH ′ : H ′ −→ B be an irreducible component of the
relative Douady space containing the point representing the pair (X ′, C ′), which dominates B
and is smooth at (X ′, C ′) by Theorem 1.1, and let C ′ ⊂ H ′ ×B X be the universal subscheme
that is smooth along C ′. We have the following commutative diagram:

C ′

p
��

ev //X

πX

��
H ′

πH ′
// B .

Then we claim that

the differential dev : TC ′ −→ ev∗TX is injective along C ′ . (3.5)

Indeed, we can argue exactly as in [Mar13, Proof of Lemma 5.1] because (3.4) holds as in the
smooth case and because by Theorem 3.8, the tangent sheaf ev∗TX is locally free along C ′. First,
we notice that both TC ′ and ev∗TX have a filtration given by, respectively,

0 ⊂ Tp ⊂ TπH ′◦p ⊂ TC ′

and

0 ⊂ TC ⊂ (ev∗TX)|C′ ⊂ (ev∗TX )|C′ .

The differential dev is compatible with the filtrations. Notice that the first and third graded

summands of both filtrations (restricted to C ′) are, respectively, TC′ and O
⊕(2n−2)
C′ , and dev

obviously induces the identity on them. Therefore, it suffices to prove injectivity on the middle
graded summand. Condition (3.4) implies that the evaluation morphism

H0(C ′, NC′/X′)⊗ OC′ −→ NC′/X′

is injective, which in turn implies the injectivity of the differential dev on the middle graded
summand restricted to C ′.

Thanks to (3.5), we obtain that the divisor ev(C ′) is reduced over an open subset of B, and
we are done.

The following general result is a converse to one of the statements of Theorem 1.2 that we
will use in the proof of Theorem 1.4.
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Lemma 3.13. Let E ⊂ X be a uniruled prime Q-Cartier divisor inside a projective primitive
symplectic variety, and choose a ruling. If the general curve of the ruling either is smooth or has
two irreducible components meeting transversally in a single point, then qX(E) < 0.

Proof. By the condition on the general curve R in the ruling of E and the adjunction formula, we
have E ·R = degE|R = degKR = −2. If H is a Q-Cartier effective ample divisor on X such that
the pair (X, ϵE +H) is still klt, then any MMP for the pair (X, ϵE) directed by H terminates
and contracts the strict transform of E by [BCHM10, Corollary 1.4.2] (compare with the proof
of Theorem 1.2). Note that having negative intersection number with E, the curve R has to be
in the restricted base locus of E, and as the curves of class [R] cover E, we deduce E = B−(E).
Therefore, the dual E∨ must be equal to λR for some λ > 0. As a consequence,

qX(E) = λE ·R = −2λ < 0 .

4. Rational curves on moduli spaces of sheaves

We will start with a general lemma on the images of movable divisors under generically finite,
dominant rational maps p : Y 99K X between normal projective varieties; see Lemma 4.3. For
this purpose, let us first discuss a notion of pushforward under such maps. If D is a Cartier
divisor on Y , we take a resolution of indeterminacies

Z
π

��

q

  
Y

p // X

and define p∗D as follows. Let D ⊂ Y × |D| be the universal family over the linear system, and
denote by D̃ ⊂ Z × |D| the strict transform of D . If t ∈ |D| denotes the point corresponding
to D, then we define p∗D := q∗D̃t, where D̃t denotes the fiber over t. Note that by construction,
p∗D is linearly equivalent to p∗D

′ if D is linearly equivalent to D′. Note that p∗D is in general
only a Weil divisor. This notion of pushforward has to be digested with care, as the following
examples show.

Example 4.1. We continue to use the above notation and let D′ be a general element of |D|.
Assume for simplicity that D′ is irreducible and not contracted by p. Then p∗D is linearly
equivalent to deg(p|D′) ·p(D′), where by p(D′) we mean the closure of the image of D′|U , where U
is the domain of definition of p. However, this does not hold for every element in |D|. Let
Y = X = P2, and take p to be the Cremona transformation; that is, p([x : y : z]) = [yz : xz : xy].
If L ⊂ Y is a line not meeting any of the three points of indeterminacy of p, then p∗L = p(L) is
a conic. Otherwise, the image p(L) is either a line or a point, but in both cases, p∗L is a union
of two lines. We also have p∗L = q∗π

∗L in this case.

Example 4.2. Let Σ := Bs|D| ⊂ Y be the base locus of the linear system of D, and suppose that
the blowup π : X := BlΣ(Y ) −→ Y is normal. For p := π−1 : Y 99K X, we see that p∗D ̸= q∗π

∗D,
even if D is general in its linear system. (We have Z = X and q = id here.) The linear system of
cubics through eight general points in P2 gives an example where D is even big and nef. More
precisely, we take Y to be the blowup of P2 in the eight given points, and we let D be the strict
transform of a cubic in P2 passing through these points so that following the above procedure
yields X as a blowup of Y in one point.

Now we come to the actual purpose of our discussion of pushforwards.
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Lemma 4.3. Let p : Y 99K X be a generically finite, dominant rational map between normal
projective varieties, suppose that X is Q-factorial, and let H ⊂ Y be a Q-Cartier divisor. If H
is movable or big, then the same holds for p∗H.

Proof. Recall that by the definition of pushforward, a general element of p∗|H| has support equal
to the image of a general element of |H| under p. In particular, if D ⊂ X is a fixed component
of p∗|H|, then it must be in the image of p; in other words, p is well defined at a point lying over
the generic point of D. A fortiori, this holds for fixed components of |p∗H|. As p is generically
finite, over a given divisor in X, there are at most finitely many divisors in Y . In particular,
there is an irreducible component of p−1(D) that is a fixed component of |H|. Thus, if H is
movable, then so is p∗H. Note that we have also seen that dim p∗|H| ⩽ dim |p∗H|. Applying this
to multiples of H shows the bigness statement.

4.1. Uniruled ample divisors. We use the construction introduced in [PR18, Lemma 3.9] and
already used in Proposition 2.15. Let S be a projective K3 surface with an ample divisor H.
Consider the Mukai vector v = (0,m ·H, 0) with m ⩾ 1 and the moduli space Mv := Mv(S,H).
From the proof of Proposition 2.15, we know that Mv is generically finitely dominated by an
irreducible holomorphic symplectic manifold Y of K3[n]-type and such that ρ(Y ) ⩾ 2, by Mukai’s
isomorphism v⊥ ∼= H2(Y ). Here, Y is a crepant resolution of the moduli space Mv′(S,H) given
by Claim 2.16, where v′ =

(
0,m ·H, 1− 1

2m
2H2

)
and the dominant map is given in (2.6).

We claim that the manifold Y contains infinitely many ample uniruled divisors. To see this,
we argue as in [CMP21, Corollary 4.7]. Since Y is projective and has Picard rank at least 2, its
Picard lattice is indefinite and contains primitive elements of arbitrarily positive BBF square. The
same holds for ample classes. Let h be any ample divisor on Y such that q(h) ⩾ (2n−2)2(n−1).
Recall that if h is a non-zero element of a (non-degenerate) lattice Λ, the divisibility div(h) of h
is the non-negative integer t such that h ·Λ = tZ. Let α ∈ H2(Y,Z) be such that α∨ = h/div(h),
where (·)∨ denotes the dual as in Definition 2.6. In particular, α is a Hodge class. We know that
H2(Y,Z) = ΛK3 ⊕ ⟨2− 2n⟩, where ΛK3 denotes the unimodular K3-lattice, so the divisibility
of h is at most 2n−2. Therefore, if q(h) ⩾ (2n−2)2(n−1), the class α has square at least n−1, so
that [CMP21, Proposition 4.6] applies and our claim follows from [CMP21, Theorem 4.5]. Notice
that the natural pushforward from H2(Y,Q) to H2(Mv,Q) is surjective, so that the images of
the uniruled divisors on Y span the full Picard lattice of Mv, which has rank 2 for very general S
by Mukai’s isomorphism (see [PR18, Theorem 1.23]).

As Mv is Q-factorial by [KLS06, Theorem A] and [Per10, Theorem 1.1], the pushforward of
any ample uniruled divisor DY on Y yields a big and movable uniruled divisor Dv on Mv by
Lemma 4.3. Being movable implies that qMv(Dv) ⩾ 0, which can be seen from the formula (2.1).
By termination of an MMP with scaling for the pair (Mv, Dv), see [BCHM10, Corollary 1.4.2],
we obtain a birational model (X,D) such that D is nef. But Dv is movable, so the MMP
Mv 99K · · · 99K X only consists of flops. In particular, X has Q-factorial terminal singularities
by [KM98, Proposition 3.37] and qMv(Dv) = qX(D) > 0. Here we use that D is big and nef so
that its top self-intersection and hence, by Fujiki’s formula [BL22, Proposition 5.15], its BBF
square are positive. By the terminality of Mv, see [PR18, Remark 1.21], Proposition 2.10, and
Theorem 3.8, the general curve in the ruling of DMv does not meet the singular locus of Mv. By
all the above, we obtain the following.
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Proposition 4.4. Let S be a general K3 surface and H a primitive ample divisor. Let m ⩾ 1
be a positive integer, and consider the moduli space of stable sheaves Mv of Mukai vector
v := (0,mH, 0) (and v-generic polarization). Then Mv contains infinitely many non-proportional
uniruled divisors with different positive squares, and the general curve in the ruling of such
a divisor avoids the singular locus of Mv.

As observed in [PR18, Lemma 3.9], we have an analogous map in the abelian case. In this
case, one argues exactly in the same way, replacing Mu and Mv with Ku and Kv and invoking
[MP21, Corollary 2.3] instead of [CMP21, Corollary 4.7]. We then record the following.

Proposition 4.5. Let A be a general abelian surface and H a primitive ample divisor. Let m ⩾ 1
be a positive integer, and consider the Albanese fiber of the moduli space of stable sheaves Kv

of Mukai vector v := (0,mH, 0) (and v-generic polarization). Then Kv contains infinitely many
non-proportional uniruled divisors with different positive squares, and the general curve in the
ruling of such a divisor avoids the singular locus of Kv.

Proof of Theorem 1.3. Let M be any moduli space of polarized primitive symplectic varieties
equivalent under locally trivial deformations to a moduli spaceMv(S, σ) (respectively, toKv(S, σ)).
By our hypothesis, σ is v-generic. By Corollary 2.13, there is a point in M corresponding to
a moduli space of sheaves X = Mv(S,H) (respectively, to X = Kv(S,H) in the abelian case),
where v = (0,mH, 0) and NS(S) = ZH.

By Propositions 4.4 and 4.5, the variety X contains infinitely many uniruled divisors Dv of
different positive squares. Let h be a positive primitive generator of the image of ⟨Dv⟩ under the
marking φ : H2(X,Z) −→ Λ. Let Mh be the connected component of M containing X endowed
with the polarization Dv. By Theorem 1.1, at each point b of Mh, the corresponding variety Xb

contains a uniruled divisor whose dual class is a positive multiple of the polarization h, and we
are done.

Remark 4.6. If S is a K3 (or an abelian) surface with ρ ⩾ 2, H an ample divisor on it, and
v = (0,mH, 0) such that H is v-generic, the proof above still yields the existence of a connected
component of the moduli space of marked locally trivial deformations of the moduli spaces
of sheaves Mv(S,H) (or Kv(S,H)). However, as long as we do not control the singularities
of Mv(S,H), this variety could possibly have Picard rank 1, in which case we cannot obtain
infinitely many non-proportional uniruled divisors.

Remark 4.7. A natural follow-up question to Theorem 1.3 would consist in determining the
cardinality of connected components of M that are not covered by the above construction. This
would require two ingredients: First one would need to compute precisely the classes of the
uniruled divisors, aiming to obtain all (or with finitely many exceptions) isometry orbits of
positive divisors. Then one would need to determine their orbit under the monodromy group as
these orbits give connected components of M. The monodromy group is a finite-index subgroup
of the isometry group of H2 by [BL22, Theorem 1.1(1)], and it is given by all isometries that can
be obtained by parallel transport. A careful study of the Perego–Rapagnetta map could give the
first ingredient, but it could still happen that infinitely many of these isometry orbits split into
more than one monodromy orbit. Therefore, even if we were able to construct uniruled divisors
in all but finitely many isometry orbits, we might still fail to cover countably many monodromy
orbits and hence countably many components of M. To control the splitting behavior, one would
need to determine the monodromy groups for the moduli spaces Mv.
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4.2. Prime exceptional divisors. Let S be a general K3 surface and H a primitive ample
divisor. Let m ⩾ 1 be a positive integer, and consider the moduli space of sheaves Mv of Mukai
vector v := (0,mH, 0) (and v-generic polarization). It has dimension 2g, where g is the arithmetic
genus of mH. A general element in this moduli space is an invertible sheaf of degree g − 1 on a
smooth curve C ∈ |mH|. In other words, Mv contains as open dense subset the relative Picard
variety J g−1

|mH|◦ −→ |mH|◦ fibered over the open subset |mJ |◦ ⊂ |mJ | parametrizing smooth

curves. For a general choice of (g − 1)-points ξ = P1 + P2 + · · · + Pg−1 on S, there is a pencil
P1
ξ
∼= PH0(S,OS(mH) ⊗ Iξ) of curves passing through them. This pencil comes with a map

P1
ξ −→ Mv sending a point t in the pencil to the sheaf OCt(P1 + P2 + · · · + Pg−1) in the Picard

variety of the curve Ct and thereby gives rise to a section of the Lagrangian fibration (2.5)
restricted to the pencil. This also proves that the rational curve defined in this way is smooth.

By letting the points vary, we have a (2g − 2)-dimensional family of rational curves. To see
that we cover a divisor D in Mv, observe that for any smooth C ∈ |mH|, the image of the
Abel–Jacobi morphism C(g−1) −→ Jg−1(C) is a divisor (that is a translate of the theta divisor;
see, for example, [GH94, Section 2.7, subsection “Riemann’s Theorem,” p. 338]). Therefore, the
image of the relative Abel–Jacobi morphism over |mJ |◦

C
(g−1)
|mJ |◦ −→ J g−1

|mJ |◦ ⊂ Mv

is a uniruled divisor, which has negative square by Lemma 3.13.

By the terminality of Mv proven in Proposition 2.10 and by Theorem 3.8, the general curve
in the ruling of D does not meet the singular locus of Mv.

By all the above, we obtain the following.

Proposition 4.8. Let S be a general K3 surface and H a primitive ample divisor. Let m ⩾ 1
be a positive integer, and consider the moduli space of stable objects Mv of Mukai vector v :=
(0,mH, 0) (and v-generic stability condition). Then Mv contains a prime exceptional divisor, and
the general curve of its ruling avoids the singular locus of Mv.

Proof of Theorem 1.4. Let M0 ⊂ MΛ be the connected component containing the moduli space
Mv(S,H) (endowed with some marking). For the latter, Proposition 4.8 ensures the existence of
a prime exceptional divisor D.

Note that by the generality assumption on S, the moduli space Mv(S,H) has Q-factorial
singularities thanks to [PR18, Remark 1.21] and therefore up to the choice of a marking lies
in the same connected component as Mv(S, σ). Let us choose a marking φ on Mv(S,H), put
e := φ(D) ∈ Λ, and consider the Hodge locus D0 ⊂ M0 of e. By Theorem 1.1, there exists a
non-empty open subset Do

0 of D0 whose points (X, f) correspond to varieties X all containing
a uniruled prime exceptional divisor. On special points of D0, the exceptional divisor may not
be prime anymore. In this case, one of its components (with the reduced structure) must have
negative square and therefore be prime exceptional. We obtain the statement on all the connected
components of MΛ by the action of the orthogonal group (X, f) 7−→ (X, g ◦ f) for (X, f) ∈ M0

and g ∈ O(Λ).
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Supér. (4) 50 (2017), no. 4, 973–993; doi:10.24033/asens.2336.

AV21 , Contraction centers in families of hyperkähler manifolds, Selecta Math. (N.S.) 27
(2021), no. 4, paper no. 60; doi:10.1007/s00029-021-00677-8.

Art69 M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. Inst.
Hautes Études Sci. 36 (1969), 23–58; doi:10.1007/BF02684596.

BBT22 B. Bakker, Y. Brunebarbe, and J. Tsimerman, o-minimal GAGA and a conjecture of Griffiths,
Invent. Math., to appear, arXiv:1811.12230v3.

BGL22 B. Bakker, H. Guenancia, and C. Lehn, Algebraic approximation and the decomposition theorem
for Kähler Calabi–Yau varieties, Invent. Math. 228 (2022), no. 3, 1255–1308; doi:10.1007/
s00222-022-01096-y.

BL21 B. Bakker and C. Lehn, A global Torelli theorem for singular symplectic varieties, J. Eur.
Math. Soc. (JEMS) 23 (2021), no. 3, 949–994; doi:10.4171/jems/1026.

BL22 , The global moduli theory of symplectic varieties, J. reine angew. Math. 790 (2022),
223–265; doi:10.1515/crelle-2022-0033.

BHT15 A. Bayer, B. Hassett, and Y. Tschinkel, Mori cones of holomorphic symplectic varieties of K3
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Elk81 R. Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), no. 1, 1–6; doi:
10.1007/BF01393930.

FP97 W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic
Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., vol. 62 (Amer. Math. Soc., Provi-
dence, RI, 1997), 45–96; doi:10.1090/pspum/062.2/1492534.

GGK19 D. Greb, H. Guenancia, and S. Kebekus, Klt varieties with trivial canonical class: holonomy,
differential forms, and fundamental groups, Geom. Topol. 23 (2019), no. 4, 2051–2124; doi:
10.2140/gt.2019.23.2051.
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