Supplemental information **Electronic properties of lithium-ion** battery cathodes studied in ion-gated transistor configuration Federico Poli, José Ramón Herrera, Tian Lan, Prajwal Kumar, Clara Santato, and Francesca Soavi **Figure S1.** XRD pattern of NMC532 composite deposited on SiO₂/Si. Related to Figure 2 and Figure 3. **Figure S2.** SEM images of NMC532 composite deposited on SiO₂/Si substrate at different magnifications. Related to Figure 2 and Figure 3. **Figure S3.** XRD pattern of LNMO composite deposited on SiO₂/Si substrate. Related to Figure 2 and Figure 4. **Figure S4.** SEM images of LNMO composite deposited on SiO₂/Si substrate at different magnifications. Related to Figure 2 and Figure 4. **Figure S5**. Working principle of the IGT (top) without V_{gs} and (bottom) with V_{gs} bias applied. Before application of V_{gs} , the channel is lithiated (top). When a negative V_{gs} is applied, the channel is delithiated (bottom): Li^+ ions move towards the carbon gate, where an electrical double layer forms at the carbon/electrolyte interface. The value of I_{ds} depends on V_{gs} (i.e. on the state-of-charge of the LIM). Related to Figure 2. **Figure S6.** Output curves of NMC532- based IGTs at V_{ds} scan rate of 20 mV s⁻¹ for: **a)** forward scan with V_{gs} from 0 to -1.6 V, corresponding to potentials from 3 V to 4.6 V vs Li^+/Li ; **b)** reverse scan with V_{gs} from -1.6 V to 0 V, corresponding to potentials from 4.6 V to 3 V vs Li^+/Li . Related to Figure 2 and Figure 3. Related to Figure 2 and Figure 3. **Table S1.** NMC532 composite electronic resistance evaluated from the output tests at different V_{gs} during forward and backward V_{ds} sweeps at 20 mV s⁻¹, reported in Fig. S6. Related to Figure 2 and Figure 3. | V _{gs} (V vs. Li/Li ⁺) | R (Ω) Forward | R (Ω) Backward | |---|---------------|----------------| | 0.0 V (3.0 V vs. Li/Li ⁺) | 340 | 310 | | -0.4 V (3.4 V vs. Li/Li ⁺) | 336 | 312 | | -0.8 V (3.8 V vs. Li/Li ⁺) | 318 | 310 | | -1.2 V (4.2 V vs. Li/Li ⁺) | 302 | 303 | | -1.6 V (4.6 V vs. Li/Li ⁺) | 292 | 290 | **Figure S7.** Output curves of LNMO-based IGTs at V_{ds} scan rate of 20 mV s⁻¹ for: **a)** forward scan with V_{gs} from 0 to -1.4 V, corresponding to potentials from 3 to 4.4 V vs Li⁺/Li; **b)** reverse scan with V_{gs} from -1.4 to 0 V, corresponding to potentials from 4.4 to 3 V vs Li⁺/Li. Related to Figure 2 and Figure 4. **Table S2**. LNMO composite electronic resistance evaluated from the output tests at different V_{gs} during forward and backward V_{ds} sweeps at 20 mV s⁻¹, reported in Fig. S7. Related to Figure 2 and Figure 4. | V _{gs} (V vs. Li/Li ⁺) | R (Ω) Forward | R(Ω) Backward | |---|---------------|---------------| | 0.0 V (3.0 V vs. Li/Li ⁺) | 412 | 417 | | -0.4 V (3.4 V vs. Li/Li+) | 389 | 400 | | -0.6 V (3.6 V <i>vs.</i> Li/Li ⁺) | 375 | 380 | | -1.0 V (3 V vs. Li/Li ⁺) | 365 | 363 | | -1.4 V (4.4 V vs. Li/Li ⁺) | 351 | 346 |