
Citation: Girelli Consolaro, N.;

Shinde, S.S.; Naseh, D.; Tarchi, D.

Analysis and Performance

Evaluation of Transfer Learning

Algorithms for 6G Wireless

Networks. Electronics 2023, 12, 3327.

https://doi.org/10.3390/

electronics12153327

Academic Editors: Jose

Costa-Requena, Adamantia Stamou

and Vasos Vassiliou

Received: 24 July 2023

Revised: 31 July 2023

Accepted: 31 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Analysis and Performance Evaluation of Transfer Learning
Algorithms for 6G Wireless Networks
Niccolò Girelli Consolaro, Swapnil Sadashiv Shinde , David Naseh and Daniele Tarchi *

Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna,
40126 Bologna, Italy; niccolo.girelli@studio.unibo.it (N.G.C.); swapnil.shinde2@unibo.it (S.S.S.);
david.naseh2@unibo.it (D.N.)
* Correspondence: daniele.tarchi@unibo.it; Tel.: +39-0512093135

Abstract: The development of the 5G network and the transition to 6G has given rise to multiple
challenges for ensuring high-quality and reliable network services. One of these main challenges is
the emergent intelligent defined networks (IDN), designed to provide highly efficient connectivity,
by merging artificial intelligence (AI) and networking concepts, to ensure distributed intelligence
over the entire network. To this end, it will be necessary to develop and implement proper machine
learning (ML) algorithms that take into account this new distributed nature of the network to
represent increasingly dynamic, adaptable, scalable, and efficient systems. To be able to cope with
more stringent service requirements, it is necessary to renew the ML approaches to make them more
efficient and faster. Distributed learning (DL) approaches are shown to be effective in enabling the
possibility of deploying intelligent nodes in a distributed network. Among several DL approaches,
transfer learning (TL) is a valid technique to achieve the new objectives required by emerging
networks. Through TL, it is possible to reuse ML models to solve new problems without having to
recreate a learning model from scratch. TL, combined with distributed network scenarios, turns out
to be one of the key technologies for the advent of this new era of distributed intelligence. The goal of
this paper is to analyze TL performance in different networking scenarios through a proper MATLAB
implementation.

Keywords: 6G; intelligent defined networks; distributed machine learning; transfer learning

1. Introduction

Through network programmability and integrated intelligence, 6G technology is
expected to converge the digital, physical, and personal domains into a cyber–physical
continuum [1]. Various innovative technologies, such as edge computing, the Internet of
Things (IoT), and machine learning (ML), are expected to play a key role in enabling the
6G network. In recent times, advanced ML methods have been adapted to solve complex
wireless networking problems effectively [2]. However, the traditional ML approaches, such
as centralized ML techniques, suffer from several issues, particularly resource-constrained
wireless networks. The unprecedented training time and associated costs are one of the
main challenges that limit large-scale deployments of ML methods over wireless settings
and can be a major obstacle in enabling full-scale distributed intelligence in 6G networks.
Therefore, it is important to optimize the ML frameworks to improve their performance
over resource-constrained wireless domains. Different ML frameworks are considered
in terms of, e.g., distributed learning, multi-agent systems, hierarchical learning, and
meta-learning, to effectively improve the ML training process [3–6].

Artificial intelligence (AI)-assisted 6G wireless communications is a burgeoning re-
search area [7]. Some of the key benefits of exploiting AI in 6G networks are given as:

• Improved spectral efficiency: AI can be employed to optimize the use of a spectrum
in 6G networks, which could lead to increased capacity and improved performance [8].

Electronics 2023, 12, 3327. https://doi.org/10.3390/electronics12153327 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153327
https://doi.org/10.3390/electronics12153327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2716-6441
https://orcid.org/0009-0006-0767-7622
https://orcid.org/0000-0001-7338-1957
https://doi.org/10.3390/electronics12153327
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153327?type=check_update&version=1


Electronics 2023, 12, 3327 2 of 21

• Reduced latency: AI can be used to reduce latency in 6G networks, which is critical
in many applications, particularly in real-time video streaming and autonomous
driving [9].

• Enhanced security: 6G network security can be improved by using AI, which is vital
for preventing cyberattacks [10].

However, there are still a number of challenges that need to be addressed before AI can be
fully deployed in 6G networks, including the following:

• The necessity for large datasets: AI algorithms require large datasets for training,
which could be challenging in 6G networks, where data collection may be difficult.

• The need for high-performance computing: AI algorithms can be computationally
expensive to run, which is potentially a challenge in 6G networks, particularly where
computing resources may be limited. The authors in [11] discuss the difficulties of uti-
lizing AI in enormous MIMO frameworks, for example, the necessity for huge datasets
and the requirement of high-performance computing, and endeavor to recommend
strategies to address these issues.

• The necessity for security: AI algorithms could be susceptible to cyberattacks, a
challenge that must be addressed before AI can be fully deployed in 6G networks. The
authors in [12] address the security challenges of using transfer learning (TL) in 6G
networks. The authors proposed numerous techniques to secure TL systems, such as
using encryption and authentication.

Despite these difficulties, AI-supported 6G wireless communications is a promising field
of study, as AI can make 6G networks even more powerful and efficient. This also moti-
vates further exploration of the traditional ML-enabled approaches when implementing
AI solutions.

Transfer learning (TL) is a recently introduced ML tool that can enable an efficient
learning process over resource-constrained networks [13]. The key fundamental of TL
is knowledge transfer (KT), corresponding to the utilization and transfer of knowledge
and experience gained from similar source tasks in the past to facilitate the learning
of new related target tasks. Thereby, TL approaches can increase the convergence rate,
minimize reliance on labeled data, and improve the robustness of ML techniques in different
wireless settings.

With the integration of IoT subsystems into wireless networks, an unprecedented
amount of data are available at the network edge. However, these data are highly dis-
tributed, so using them for training centralized ML models through centralized server
entities can be highly challenging in terms of resource requirements. On the other hand,
with several new hardware innovations, the end devices are capable of training models
effectively with onboard resources. This has enabled an edge intelligence trend to enable
large-scale distributed intelligence. Although edge devices are capable of training ML
models effectively, they still have limitations in terms of onboard resources. This limits
their ability to train complex ML models such as deep neural networks (DNN). TL meth-
ods can reduce training costs for generic ML settings. TL can be effectively used to train
complex DNN models with limited resources. Such a deep transfer learning approach
has already gained some attention [14]. However, it is important to take into account
the end devices’ capabilities, task features, available data, and several other factors while
inducing the TL methods into deep learning techniques. These features can greatly impact
the performance of deep TL models in training and test environments. Therefore, analyzing
the performance of deep TL solutions with respect to the above-mentioned features can
help us to understand the interesting trade-off between the performance measures and the
device/network capabilities.

With this motivation in mind, in this work, we have analyzed the performance of
the deep TL methods with respect to the memory requirements in terms of training data
and the total number of layers selected for retraining the TL models for performing tasks
that are different from the original one. A Matlab-based pre-trained SqueezeNet model is
considered for performance analysis.



Electronics 2023, 12, 3327 3 of 21

The main contributions of this work are:

• ML for 6G: Given the importance of distributed intelligence in the upcoming 6G
systems, several ML frameworks are introduced and analyzed from a 6G perspective.

• TL Analysis: TL can be an important tool to enable distributed intelligence over
resource-constrained wireless networks with an efficient training process. The different
features of the TL methods and their impact on training environments are described
in detail.

• Simulation Environment and Model: To analyze the performance of TL methods
and the impact of its features in terms of layer selection, training data requirements,
etc., a pre-trained SqueezeNet model in a Matlab environment is considered.

• Performance Analysis: With the considered SqueezeNet model, different simula-
tions are performed by varying the number of training and data during the ML
model training process. The proper analysis and conclusions are drawn from the
studies performed.

2. Machine Learning for 6G

ML is a branch of AI that develops algorithms and models capable of learning from
past experiences and data. It is essentially a form of applied statistics to estimate the
performance of a target function designed for a particular learning task. The ML process
involves several phases, including data collection and preprocessing, model selection and
hyperparameter settings, model training and testing, validation, performance analysis, etc.
In general, the model training procedure consists of identifying a function f p(w) (the cost
function) for the task p with learning parameters, i.e., weights w, and finding the optimal
value of w for which the cost is minimal, that is:

w∗ = arg min f (w)

One of the most explored approaches is to use a gradient descent method that uses a
gradient of a function f , ∇ f , to reduce the cost value (by moving in an opposite direction
and updating the weight parameters) iteratively. In each step, parameters w can be updated
as w′ = w− ε(∇w f (w)) [15] with ε being the learning rate.

ML solutions can be classified into several groups, including supervised learning,
unsupervised learning, semi-supervised learning, reinforcement learning (RL), etc. Super-
vised learning uses a labeled dataset to train the ML models, while unsupervised learning
can work with unlabeled datasets. Additionally, RL agents aim to learn the optimal policies
for selecting proper actions over unknown environment states through interaction and
proper feedback. Several of these ML techniques can be used to solve complex wireless net-
work problems. Some examples include device scheduling, resource allocation, congestion
control, network routing, etc. [16].

In the case of wireless networks, end devices collect the data through different sensory
nodes over time. ML methods can exploit such complex datasets to harness intelligence
through pattern analysis. In the case of traditional ML frameworks, the data collected by
the devices are often communicated with centralized servers with powerful computation
hardware. The centralized server nodes then are able to build common and powerful ML
models with adequate performances. Such an approach can be adequate when the end
device data are of limited size and service requirements are less stringent. However, in
recent decades, with the evolution of 5G technology, several new services and applications
have been added with heterogeneous demands. In addition to the innovative IoT use
cases and high-quality sensor nodes, the data quality and corresponding data sizes have
changed dramatically. This limits the use of centralized ML frameworks to enable intelligent
solutions in the different 5G domains. The upcoming 6G technology dreams of building
a fully connected and intelligent world through connected intelligence. This can put a
tremendous burden on a traditional ML framework, and innovative solutions are needed.



Electronics 2023, 12, 3327 4 of 21

With such demands in mind, in recent times, different distributed learning methods
have been proposed and analyzed over wireless settings for enabling large-scale intelli-
gence [17]. Distributed learning methods allow the training of ML models in a distributed
manner to reduce data collection and training costs compared to traditional ML methods.
With several hardware innovations in the recent past, novel computation and storage hard-
ware are present at the end devices, which can be exploited to train the ML model locally.
Then, through collaborative mechanisms, the devices share their knowledge to generalize
the training performance. This framework is often known as distributed learning. There
are different types of distributed learning methods available, including federated learning,
split learning, collaborative learning, multi-agent RL, etc. Although distributed learning
methods such as FL have several advantages in terms of ML model training operations,
data security, and energy efficiency, further performance improvements are still needed, in
particular, for handling the large-scale distributed intelligence of 6G use cases. Advanced
learning tools such as TL can be extremely useful to enable efficient distributed learning
methods in resource-constrained 6G wireless environments.

TL is a type of learning that is based (as the term suggests) on a transfer of knowledge
from one ML model to another. It is, therefore, a possible approach for the different learning
categories: supervised, unsupervised, and reinforcement. The goal is to transfer knowledge
from a designated learning model to solve a specific problem, called the source task, to
another model thought to solve another one, called the target task. It is important to note
that, in general, the performance of ML models is guaranteed by the hypothesis that the
training set has the same probability distribution as the test set. Therefore the training
data must be independent and identically distributed with respect to test data; in other
words, the probability distribution that generates the training data must be the same one that
generates the test data. The advantage of using TL comes from the fact that this hypothesis
cannot necessarily be respected a priori but is achieved due to the TL itself [14].

Let us now explore a little more in detail the TL, introducing the concepts of domain
and task, necessary for understanding the more formal definition of TL, in which we have
two models, and one of the two must transfer knowledge to the other. A domain consists of
two elements:

1. A feature space X = {Xi}, with Xi = x1, · · · , xk, · · · , xK with all data classes.
2. A marginal probability distribution of XiP(Xi).

Given a domain, a task is also defined in two parts:

1. A label space L.
2. A predictive function f () that is learned by the relation xi and li with xi ∈ X, li ∈ L.

Hence, a task is composed as T = {L, f ()}. For more clarity, the function f () can be defined
qualitatively as:

f (xi) = {P(lk|xi)|lk ∈ L, k = 1...|L|}

which is the conditional probability that xi belongs to a certain class [18]. Always keeping
in mind the scenario in which a knowledge transfer takes place, we consider a starting
domain (source):

Ds = {(xs1 , ls1), . . . , (xsi , lsi ), . . . , (xsns , lsns )}

with xsi ∈ Xs, lsi ∈ Ls. We also consider a target domain:

Dt = {(xt1 , lt1), . . . , (xti , lti ), . . . , (xtnt
, ltnt

)}

with xti ∈ Xt, lti ∈ Lt. In the considered case, the number of instances in the target domain
is definitely much lower than that of the source domain (we have a small dataset on which
to train the network) or 0 ≤ nt ≤ ns.

With TL, the learning process of the target domain can be improved by exploiting the
transfer of “knowledge” from the source domain, as represented in Figure 1. It is, therefore,
possible to give the most rigorous definition of TL [18]:



Electronics 2023, 12, 3327 5 of 21

Given a Ds source domain with its source task Ts and a target domain Dt with
respect to target task Tt, the goal of TL is to learn the target f ()t predictive function
using the knowledge acquired by Ds and Ts in a situation where Ds 6= Dt or
Ts 6= Tt.

Figure 1. Difference between traditional ML and TL.

Feature extraction and fine-tuning are the two primary types of TL. In the feature
extraction TL, a previously trained model in the source domain is used to extract features
from the new target dataset that will later be used to train the new target model for the
specific target task, whereas, in fine-tuning, the pre-trained model’s weights are slightly
adjusted on the new target data to improve the performance or accuracy of the target task
in the target domain. There are several advantages to using TL over traditional ML:

1. Save time and resources: Gathering and labeling a large dataset for a new task is
unnecessary,

2. Enhance performance: The pre-trained model has already learned to extract relevant
features for the new target task,

3. Transfer knowledge across different domains: e.g., a model previously trained to
recognize cars can be used to recognize trucks.

TL is specifically helpful in these applications:

• Image Classification (IC): A pre-trained model can be employed to extract features
from new images, which can then be utilized to train a new model in a target domain
for a specific classification task,

• Natural Language Processing (NLP): Acquires knowledge of the meanings of words
and phrases to use in another NLP task, such as text classification or machine translation,

• Speech Recognition (SR): Learns the acoustic features of speech to use in other spe-
cific speech recognition tasks.

In conclusion, TL is a potent technique to enhance the performance of machine learning
models, especially when limited data, samples, or labels are available for the target task.

2.1. Deep Learning

Deep learning techniques are expected to enable intelligent services in the upcoming
6G world. They are a subset of ML that focuses on using artificial neural networks to
analyze and understand data. These neural networks are made up of many processing
units (called neurons) organized in successive layers, which work together to recognize
patterns and relationships within the data to provide an output based on the characteristics
of the data input to them.

Deep feedforward networks, also called feedforward neural networks, are one of
the most widely explored neural networks for different applications. In general, the



Electronics 2023, 12, 3327 6 of 21

feedforward network can be defined as y = f (x, θ), with θ representing a parameter or a set
of parameters that needs to be optimized to have the best approximation of the function f ∗.

Deep neural networks (DNN) can have an input layer, several hidden layers, and an
output layer. The number of hidden layers depends on the complexity and behavior of the
network and provides the overall length of the chain of functions or depth of the model.
As for the design and training of a neural network, there are not many differences from
what happens for any other model of ML. The gradient descent technique can be used to
train DNNs. However, a DNN often requires an extensive amount of training data and
resources for building a proper ML model with adequate performance. This limits the
uses of DNN over highly distributed wireless networking scenarios where both data and
device resources are limited. This opens a new door to improving the performance of the
DNN training process through the integration of advanced tools such as TL. In fact, several
forms of deep TL strategies were considered in the recent past through the integration of
knowledge transfer procedures into DNN models.

The Deep TL strategies refer to the use (or better to the reuse) of pre-trained models to
improve the DNN training process. In this regard, there are three types of TL techniques
that use pre-trained models:

1. Off-the-shelf pre-trained models: This category refers to DNNs that were already
trained and used in the past for tasks having some similarities to the current learning
task to exploit the previous knowledge. For example, if one aims to solve an image
recognition problem, pre-trained neural networks such as GoogleNet or VGG can be
used to achieve good levels of accuracy. However, in practice, it is difficult to find
pre-trained models that fit perfectly into new tasks without making any changes. Even
small differences between the domain and the source task and the domain and the
target task can have a huge impact on the performance, and that makes this method
ineffective in many cases.

2. Pre-trained models as feature extractors: The problem encountered before in the off-
the-shelf pre-trained models case can be tackled through the use of pre-trained models
as feature extractors. Traditional ML algorithms, such as classification and regression,
require a data pre-processing step in order to extract the main features to be able to
train the model effectively. In many occasions, this procedure can take a long time
and many resources if performed manually. The ability of a neural network to extract
characteristics can be helpful in such situations to make the feature extraction process
automatic. In this case, neural networks can only extract characteristics of the target
domain that can be applied to generic problems. The target data can be processed
by the network for highlighting and extracting features. These features can then be,
for example, further elaborated by a regression or classification model to output the
number or category to which the “raw” data belongs at the beginning [18].

3. Fine-tuning of pre-trained models: This technique allows the portion of the network
to be trained by using data from the target domain in order to have a task-specific
model enabled through “transferred knowledge” [18]. This can be achieved through
the following procedures:

(a) Weights initialization: In this case, the parameters of the target model are
initialized with the values of the pre-trained network, after which the network
is trained using all the target domain data. This procedure is adopted when
there are many available data in the target domain.

(b) Selective fine-tuning: In this procedure, the model parameters are initialized to
the values of the parameters of the pre-trained network as in the previous case.
However, only part of the network is trained. Some layers of the network are
frozen during the new training phase, and consequently, the weights related
to these layers are not updated. The logic that can lead to a correct selection of
levels to freeze depends on how similar the tasks of the source and destination
are. In general, the first levels of a neural network extract low-level features,
while the deeper levels capture more high-level features, such as shapes and



Electronics 2023, 12, 3327 7 of 21

objects, giving rise to a hierarchical extraction of characteristics. Therefore,
if the problem to be solved is similar to that for which the network was pre-
trained, only a few layers can be trained, while if the two problems are rather
different from each other, it may be necessary to use several layers for the new
network training.

2.2. Transfer Learning in 6G Scenarios

TL can enable intelligent solutions in the 6G world, particularly to enable large-
scale distributed intelligence, with particular attention to the IoT subsystem characterized
by resource-constrained devices. However, IoT systems often have resource limitations,
heterogeneous natures, and data diversity. Therefore, TL solutions should be adapted
according to the characteristics of different IoT systems and user demands. TL can be an
effective tool for enabling high-quality ML models with a reduced amount of data. An
example is the compressed sensing (CS) technique, which is considered in 6G-IoT scenarios
to reduce the transmission overhead for high-dimensional IoT data. The performance of
CS techniques can be enhanced through deep-learning-based CS approaches. However,
such complex learning methods often demand a large amount of training data, which
can be difficult to produce. In [19], authors have studied such deep-learning-based CS
solutions and applied TL to counter the challenges. The importance of TL from the 6G
network perspective is analyzed in [20], including the possible modifications required in
6G network architecture to adapt TL solutions. In [21], authors proposed a TL-enabled deep
learning solution for 5G industrial edge networks for optimizing the device latency and
energy performance with limited resources. A detailed review of TL solutions that can be
effectively used in 6G networks is provided in [13], along with the example scenarios and
possible challenges to be considered. In [12], authors have proposed TL-based solutions
for the case of the 6G-enabled Internet of Vehicles. In addition, they analyzed the security
issues and proposed a secure and reliable TL framework with the help of blockchain
technology. The network slicing approach is an important aspect to consider in 5G and
beyond 5G networks to enable heterogeneous services simultaneously [22]. In [23], authors
have proposed a TL-based deep RL solution for RAN slice resource allocation.

Moreover, there are some specific 6G scenarios where TL seems to impact a lot with
its characteristics. In the following, we have summarized several TL-based solutions for
non-terrestrial networks (NTN) and industrial IoT cases. Both of these frameworks can
be extremely useful in the upcoming 6G world, and integrating proper TL solutions over
them can be highly recommended.

2.2.1. TL for Non-Terrestrial Networks

Various air- and space-based NTN platforms are expected to play a key role in enabling
a fully connected and intelligent 6G world [24]. NTN platforms can boost the coverage
and capacity of terrestrial networks. In addition to this, NTN platforms can also enable
edge computing in the space through the onboard deployments of storage and processing
units. With the onboard computation and storage resources, NTN platforms can enable
various intelligent services in the space. However, with their limited size, NTN platforms
can only have a limited number of services onboard. Based on the user demands and
other local environment characteristics, it is important to optimize and update the services
over such resource-limited NTN nodes. Such optimal service placement problems can
be solved through different ML methods for enabling intelligent solutions. However,
such solutions can be computationally expensive, platform dependent, and may require
frequent retraining, mainly due to the dynamic behaviors of NTN nodes. Performing the
ML model training from scratch can be costly or even infeasible with the limited NTN
resources. In such scenarios, TL can be extremely useful in performing efficient ML model
training operations.

In [25], the authors have proposed a distributed multi-agent learning solution for
service scheduling over UAVs. In particular, the performance of independent and transfer-



Electronics 2023, 12, 3327 8 of 21

learning-based solutions is compared to show the various advantages in terms of resource
requirements, overall performance, etc. Furthermore, in [26], the authors have proposed a
joint UAV deployment and resource allocation scheme based on TL methods. The space-
based computation environment can also be exploited for processing user data through a
computation offloading process [27,28]. However, given the limited computation resources,
optimizing the amount of data to be offloaded to each edge server is important. Such
computation offloading problems can be solved through innovative ML-based solutions.
However, it can induce large training overheads. TL can be explored to provide efficient
ML solutions for computation offloading problems. For example, in [29], the authors have
proposed RL-based solutions for the computation offloading problem and used TL to
optimize it further. Such studies need to be analyzed further by taking into account the
diverse nature of NTN nodes, resource limitations, data diversity, etc., to further improve
the performance of TL solutions in space.

2.2.2. TL for Industrial IoT

The industrial Internet of Things (IIoT) is another important usage case that can be
extremely useful in the 6G world for automating different industrial processes. In partic-
ular, different ML solutions can be adopted over IIoT environments to enable intelligent
solutions. However, data scarcity and the unavailability of quality data can limit ML appli-
cations over IIoT scenarios. In such cases, TL methods can be adapted to enable intelligent
solutions. In [30], a broad analysis of the applicability of TL solutions in IIoT scenarios is
provided, including work principles, main challenges, and building blocks. Data privacy
can be another challenge that can reduce the applicability of traditional ML solutions in
IIoT environments. In [31], the authors have proposed federated transfer-learning-based
solutions for smart manufacturing problems. With the added advantage of federated
learning and TL, such solutions can enable efficient and private learning processes in IIoT
environments. Apart from data availability, the limited computation capabilities of IIoT
nodes can also impact the ML adaptation process in IIoT. In [32], the authors have discussed
such issues and proposed deep TL solutions to reduce training overhead. Similar to the
NTN case, the IIoT environment is filled with heterogeneous and resource-constrained
devices with limited data. Optimizing the TL solutions to provide appropriate learning
frameworks based on the IIoT environment characteristics can be highly useful.

2.2.3. TL Testbeds in 6G and B5G Scenarios

The application of TL can be effectively executed in real-world scenarios by taking
into account the subsequent factors:

• The hardware requirements: TL necessitates a robust computing infrastructure to
train and deploy deep learning models. This could pose a challenge in resource-
constrained environments. Furthermore, since 6G networks must support a wider
variety of applications, especially AI-based applications, their hardware requirements
are significantly higher than those of the current 5G networks.

• The infrastructure necessary to support AI: 6G networks will have to be able to
support the high bandwidth and low latency requirements of AI-based applications.
This will necessitate significant investment in network infrastructure. The authors
in [20] discuss the hardware and infrastructure requirements for TL in 6G networks,
and propose a number of techniques to improve the efficiency of TL, such as using
quantized neural networks and caching the models in the edge devices.

• The similarity between the source and target tasks: The success of TL greatly de-
pends upon the similarity of the source-target domains and/or tasks. If the tasks/do-
mains are too different, TL may not be effective [33].

2.2.4. Contribution with Respect to the State-of-the-Art

Though the above-mentioned TL-based studies are able to improve the learning
performance in different dimensions, further optimization is needed. Several of these past



Electronics 2023, 12, 3327 9 of 21

studies where TL-based solutions are applied to increase learning efficiency are not taking
into account the heterogeneity of devices in terms of computation resources, training data,
etc. These factors can have an impact on the TL performance, especially in the case of
diverse IoT devices. Therefore, it is important to study the TL solutions’ performance in
different training environments to cope with the system-level restrictions in the upcoming
era of 6G networks. It is essential to examine the training performance of TL solutions
with different levels of training data. Additionally, it is also important to analyze the
performance of TL solutions based on the number of layers selected for the training process.
Moreover, it is also important to analyze the impacts of the number of layers selected and
the level of fresh data available for mode training operations.

The current state-of-the-art technology presented lacks in in-depth analysis of TL solu-
tion performance, and thus, there is a scope to further enhance the TL solution performance
with such studies. Moreover, this kind of analysis can be an important step to further opti-
mize the TL solutions and provide adaptive TL-based training frameworks over diverse IoT
environments in the 6G networks. Therefore, in this article, we first consider the TL solution
based on the SqueezeNet model for image data analysis. We analyze the performance of the
SqueezeNet-based TL method for the image data classification problem. Next, we provide
several simulation results showing the impacts of the training layer selection policies and
the different levels of training data over the learning process. Furthermore, the simulation
results are discussed in detail and proper remarks are presented in the discussion section.
Some examples of 6G IoT scenarios are also presented in the discussion section where such
analysis can be helpful. Moreover, further future directions for the studies performed are
also highlighted in the conclusion section.

3. Experimental Setup for TL Performance Evaluation

The main aim of this work is to analyze the performance of deep TL techniques
through experimental simulations. We have considered a well-known image classification
problem and aim to build a DNN model through knowledge transfer. The experiments
are performed over a Matlab-based simulator using a pre-trained SqueezeNet model. A
proper image dataset containing 10 different classes of fruits is used [34]. The experimental
analysis is based on the following two problems:

1. Number of training levels: In general, wireless nodes can have limited training
resources, limiting their ability to train DNNs. For the case of deep TL, a set of layers
from a pre-trained DNN can be retrained over a fresh dataset for solving the new
task. The device’s ability and task requirements can impact the number of layers
selected for pretraining. Selecting a limited number of layers can reduce the overall
performance of the DNN when applied to a new task. However, if an unprecedented
amount of layers are selected to train again with fresh data, the overall training process
can be prolonged, reducing the chances of satisfying the service demands. Thus, it is
extremely important to analyze the performance of deep TL methods to find a suitable
number of layers to be trained.

2. Amount of training data: Another interesting factor that affects the deep TL process
is the amount of data available. With the integration of IoT nodes with heterogeneous
characteristics, wireless nodes are highly diversified. Different devices can collect
and store a different number of data samples and can have differing data qualities.
The amount of data available for retraining operations can highly impact the DNN
training process. The proper number of DNN layers should be considered based on
the available datasets to avoid issues such as underfeeding, overfeeding, etc.

SqueezeNet is a convolutional neural network (CNN) that represents the pre-trained
model for image classification problems [35]. It is developed for image-processing appli-
cations on mobile and embedded devices. SqueezeNet’s distinctive feature is its highly
compressed network architecture, which allows it to achieve high performance, com-
parable to networks with a much more complex nature with a relatively small number
of parameters.



Electronics 2023, 12, 3327 10 of 21

In general, CNN is an artificial neural network designed to process data with a grid
structure, such as images. This type of network was developed to solve problems of
classification and detection of objects in images. The basic structure of a CNN includes three
types of layer sets: (i) convolution layers, (ii) pooling layers, and (iii) fully connected layers.

• Convolution layers are the core of CNN and are composed of a set of filters, each
designed to detect a particular characteristic of the image in input. Each filter is mixed
in the input image, calculating the sum of the products of the filter elements and
the corresponding image pixels. This process produces a feature map (feature map),
which is passed to the next layer [15].

• The pooling layers are used to reduce the size of maps in the characteristics. Pooling
is performed using a preset size window, which slides over the input image and
calculates a statistic on each window region, such as the maximum or average value.
This reduces the amount of data that need to be processed in subsequent layers and
helps prevent overfitting.

• Fully connected layers are used for the final classification. These layers receive in
input the representation of the characteristics calculated from the previous levels and
produce a distribution of probabilities on the possible outputs of the CNN.

SqueezeNet—A DNN Model for Image Data Analysis

The SqueezeNet model consists of 18 layers in total, of which 14 are convolutional
layers and the other 4 are fully connected layers. It is important to note that the SqueezeNet
version developed in Matlab as a pre-trained model contains more layers than the original,
totaling 68 levels.

The sequence of levels that distinguishes SqueezeNet is called the Fire module. This
module is a block of operations that takes an input tensor and returns an output tensor. It
consists of two main layers, a compression convolution layer (squeezing), and an expansion
layer (expanding). The compression layer consists of convolutions with 1× 1 filters and
aims to reduce the number of input channels, thus, obtaining a compressed representation
of the information. This helps to reduce the number of parameters needed for the network
and improve computational efficiency.

The expansion layer consists of a combination of 1× 1 and 3× 3 filters and is intended
to increase the number of input channels and, consequently, the information represented.
The use of 1× 1 filters is to provide more flexibility for the network to control the number
of output channels for subsequent layers [35].

The size of the filters in the expansion and compression layers are adjustable parame-
ters of the Fire module and are s1× 1, e1× 1, and e3× 3. In particular, s1× 1 is the number
of filters in the compression layer (all 1× 1), e1× 1 is the number of filters 1× 1 in the
expansion layer, and e3× 3 is the number of 3× 3 filters in the expansion layer.

When using Fire modules, it is important to set the value of s1× 1 less than the sum
of e1× 1 and e3× 3 to limit the number of input channels for 3× 3 filters and then check
the number of parameters needed for the network [35].

In general, the ML model performance can be modeled by using the concept of the
capacity of the model. In particular, the main challenge of an ML and deep learning
model is to be able to have an optimal performance in the presence of unknown data that
have not yet been observed, especially during the training process. This feature is called
generalization and can be estimated by calculating the error on a data set other than the
one used for training, i.e., the test set, and the corresponding error is called the test error.
During the training phase, error measurements can also be made using the training set. For
example, using a subset of the data to see the model in action. The error generated by this
measurement is called a training error, given the origin of the data. From this, it turns out
that the capacity of the model can be estimated from these two aspects:

1. ML models that have a reasonably small training error during the training process.
2. ML models that have a small difference between training and test error (generalization

gap).



Electronics 2023, 12, 3327 11 of 21

The imperfect training process with large training errors can induce the problem of
underfitting, while with the high generalization gap, trained models can have an overfitting
problem [15]. The capacity measure can be defined as the ability of a model to adapt
according to the underneath function. Therefore, it is the space of the functions over which
the model can use to make predictions with proper performance.

Several factors can impact both training and generalization gaps. In particular, in the
case of deep TL, the number of layers selected to pre-train (L) can increase/decrease the
error values. Additionally, the total amount of data considered in terms of memory space M
can also affect training/test performance. In the following, we introduce the minimization
problem, which aims to minimize the training error and generalization gap error values as
a function of L and M in deep TL models. The problem is defined as follows:

P1 : min
L,M

Etr(L, M) (1)

P2 : min
L,M

Gtr(L, M) (2)

where training error (Etr(L, M)) and generalization gap (Gtr(L, M)) are defined as a func-
tion of L and M.

4. Methodology for Performance Evaluation

For the case of model training operations, the image dataset is considered split between
training and test data. Next, to measure the impact of memory size M, that is, the amount
of data in terms of memory space, we have further divided the training dataset into several
forms in terms of the percentage number of samples used from the original training data.
In particular, we have defined 20 datasets of different sizes. The smallest dataset contains
5% of data samples from the original training data, while the largest data set contains all
the training data from the original data source. The other datasets have 5% incremental
data samples compared to the previous one.

We have considered different layer selection options to measure the impact of selected
layers L. In particular, the 68 layers of the Matlab-based SqueezeNet network are considered
during the knowledge transfer operations. Different levels of training operations, i.e., from
low to high, are considered based upon the layer selection policies for the knowledge
transfer and/or the training process. We have considered 10 different configurations of
active levels, defined as active levels for training = [5, 12, 19, 26, 33, 40, 47, 54, 61, 68].

These levels were chosen in relation to the position of the convolution levels within the
SqueezeNet network present on Matlab to extract different characteristics from the images.
The code used in the Matlab simulation for the dataset import (training and testing) and
subsequent dataset partitioning is resorted in Listing 1.

Listing 1. Dataset import and partitioning in Matlab.
fruit_train=imageDatastore('C:\Users\nicco\Downloads\archivio\MY_data\train','IncludeSubfolders

',true,'LabelSource','foldernames');

fruit_test=imageDatastore('C:\Users\nicco\Downloads\archivio\MY_data\test','IncludeSubfolders',

true, 'LabelSource','foldernames');

new_fruit_train = shuffle(fruit_train);

new_fruit_test = shuffle(fruit_test);

net = squeezenet;

inputSize = net.Layers(1).InputSize;

new_augimdsTrain = augmentedImageDatastore(inputSize(1:2),new_fruit_train);

new_augimdsTest = augmentedImageDatastore(inputSize(1:2),new_fruit_test);

data_partition = cvpartition(numel(indeces),'holdout',0.2);

tenperc_Trainingds = subset(new_augimdsTrain,training(data_partition));

tenperc_Validationds = subset(new_augimdsTrain,test(data_partition));

The image Datastore function [36] allows for the storage of a dataset containing images,
and the additional inputs within the function served to import the labels of the images.
The two lines of code after the dataset import were introduced to mix the data through
the shuffle [36] function. After that, a pre-trained SqueezeNet [37] network was added.



Electronics 2023, 12, 3327 12 of 21

Additionally, the input layer is defined as [227× 227× 3] which is also the input image
size. The cvpartition function is used to divide the dataset into different sizes with random
samples selected from the original data.

For the model training, the following procedure was carried out. For each different
training set, 10 different nets were trained using the different active layer configurations
mentioned before.

The pretrained model of SqueezeNet is able to perform classification on a problem
of 1000 classes. However, the new task aims to perform the classification on a problem of
10 classes. To this end, the appropriate changes should be made, especially from the output
side. These changes are performed over the last convolution layer and the classification
layer form predicting the outputs that are different classification from the pre-trained
network. Next, the training process is performed through the Matlab Script in Listing 2.

Listing 2. Training Process Script in Matlab.
%networks training

i = 0;

for j=1:10

layers(firstUnFrozen(j):63)=unFreezeWeights(layers(firstUnFrozen(j):63));

lgraph=createLgraphUsingConnections(layers,connections);

i = i+1;

switch i

case 1

network5_full = trainNetwork(full_Trainingds,lgraph,options);

case 2

network12_full = trainNetwork(full_Trainingds,lgraph,options);

case 3

network19_full = trainNetwork(full_Trainingds,lgraph,options);

case 4

network26_full = trainNetwork(full_Trainingds,lgraph,options);

case 5

network33_full = trainNetwork(full_Trainingds,lgraph,options);

case 6

network40_full = trainNetwork(full_Trainingds,lgraph,options);

case 7

network47_full = trainNetwork(full_Trainingds,lgraph,options);

case 8

network54_full = trainNetwork(full_Trainingds,lgraph,options);

case 9

network61_full = trainNetwork(full_Trainingds,lgraph,options);

case 10

network68_full = trainNetwork(full_Trainingds,lgraph,options);

end

end

The unFreezeWeights function [37], is used over the levels that were previously frozen
in the network in order to use them for training. Different memory sizes are used to train
the networks.

In the test phase, the training error was first calculated by evaluating the error over
each network instance on the relative validation set. The script in Listing 3 is used to
calculate the training error and the test error.

The readLabel function [37] is used to assign the corresponding label to the images
contained in the dataset in order to test the model. The classify function [37] is also
considered to perform the classification, taking the input parameters from the trained
network and categorical data to be classified.



Electronics 2023, 12, 3327 13 of 21

Listing 3. Training error and test error evaluation in Matlab.
load('Big10%ofdataset_trained_networks.mat');

width = 10;

training_error10 = zeros(width,1);

test_error10 = zeros(width,1);

Classnames=['Apple';'avocado';'Banana';'cherry';'kiwi';'mango';'orange';'pinenapple';'

strawberries';'watermelon'];

y_true = readLabel(tenperc_Validationds.Files,Classnames);

y_true_test = readLabel(new_augimdsTest.Files, Classnames);

y_pred = classify(network5_ten,tenperc_Validationds);

y_pred_test = classify(network5_ten,new_augimdsTest);

L = logical(y_pred ~= y_true);

training_error10(1) = (numel(y_pred(L))/numel(y_pred))*100;

L = logical(y_pred_test ~= y_true_test );

test_error10(1) = (numel(y_pred_test(L))/numel(y_pred_test))*100;

5. Numerical Results

The test results were analyzed using a polynomial regression model. In order to view
the data and understand the reciprocal relationships between them, we decided to explore a
multivariable regression model that could express, in the form of a surface, the dependence
between the number of levels used for the end-tuning, the memory needed to train the
model vs the training error in one case, and the difference between training error and test
error (generalization gap) in the other. In general, the regression function can be defined as
Z = f (x, y).

For example, z can represent the training error/generalization gap, being a function
of the amount of memory, and the number of layers designated for training. Due to the
noise between the results and the dependence on two variables, it is difficult to understand
their impact on each other without such functional relationships between dependent and
independent variables. Figure 2 shows the impact of memory size and the layer selections
over the training error values in the form of surfaces.

Figure 2. Surface related to the training error.

Notably, in order to visualize such plots with complex interdependencies, a polynomial
regression problem between two variables needs to be solved by using the performance
data collected for different cases. Given the relatively small number of observations, the
quadratic polynomial regression equation is considered, to avoid overfitting problems. It
represents the value of the dependent variable less than an error. The relation is, therefore,
the following [38]:



Electronics 2023, 12, 3327 14 of 21

Zi = b0 + b1xi + b2yi + b3x2
i + b4y2

i + b5xiyi + ei

The problem includes determining the value of the coefficients of the function that minimize
the error in the prediction; for this, we have used the cost function defined as the mean
squared error (MSE):

1
n

n

∑
i=1

e2
i =

1
n

n

∑
i=1

(
Zi −

(
b0 + b1xi + b2yi + b3x2

i + b4y2
i + b5xiyi

))2

To find the minimum of this function, we must derive the function for each coefficient and
put it equal to zero; then, it is sufficient to solve the linear system containing the 6 equations
described. The areas obtained are, therefore, two:

1. a surface expressing the relationship between the number of levels for training x, the
memory needed to train the y model, and the training error z(x, y), as represented in
Figure 3.

2. a surface that expresses the relationship between the number of levels for training
x, the memory needed to train the y model, and the gap generalization z(x, y), as
represented in Figure 4.

It is possible to analyze the projection of the surface both on the plane (x, z) and (y, z),
in order to make considerations on the results obtained. Initially, we evaluated the case
of the plan (y, z), of the training error/generalization gap, as a function of the number
of layers used to train the model. Then, we carried out the same analysis for the plan
(x, z) to study the dependence on the amount of memory used, in relation to the two
functions considered.

Figure 3. Relative surface derived from the polynomial regression model of the training
error.



Electronics 2023, 12, 3327 15 of 21

Figure 4. The relative surface derived from the polynomial regression model of the gener-
alization gap.

Case 1: the y− z plane analysis

The generalization gap shown in Figure 5 has a large area between the maximum
and the minimum value for each level, and one can notice that the area is maximum at
the highest number of levels. This, therefore, means that the generalization gap can be
impacted largely by the increasing number of levels. The highest gap value is 22.3% near
the trained network instance, having all levels thawed, and the minimum gap in value,
7.8%, is in the vicinity of the case where the number of inactive layers is equal to 61 (i.e.,
complete training).

Figure 5. y− z plane shows the generalization gap (z), depending on the number of layers
used for training (y).



Electronics 2023, 12, 3327 16 of 21

In the vicinity of a smaller number of frozen layers, however, the difference between
the maximum and minimum gap decreases, allowing us to limit the damage in the ability
to generalize new data. We define Xmin as the amount of memory associated with the
minimum generalization gap and Xmax as the amount of memory associated with the
maximum generalization gap; therefore, one can have:

dZ(Xmax, Y)
dY

< −dZ(Xmin, Y)
dY

Therefore, using multiple layers for training does not bring benefits in this case, because it
induces the risk of having a performance that is not adequate for the workload associated
with the training process. It can increase the capacity of the model and lead to overfitting,
i.e., the network is training on new data and loses the ability to generalize. The same
consideration may be carried out for the case of the training error (in Figure 6), and in this
case, it is notable that the minimum function occurs in the intermediate case of 47 levels
used with an error of 4.8%.

Figure 6. y− z plane shows the training error (z), depending on the number of layers used
for training (y).

Case 2: The x− z plane case

For the case of the x− z plane, it can be seen that the generalization gap (as in Figure 7)
becomes high when the amount of training data is increased, denoting a tendency of the
model to induce overfitting issues more than underfitting.

Regarding the case of the training error (in Figure 8) instead, an underfitting trend
with less than 50% of the dataset can be noticed, as well as an overfitting risk for data close
to the full dataset size.



Electronics 2023, 12, 3327 17 of 21

Figure 7. y− z plane shows the generalization gap (z), depending on the memory used for
training (x).

Figure 8. y − z plane shows the training error (z), depending on the memory used for
training (x).



Electronics 2023, 12, 3327 18 of 21

6. Discussion

The upcoming 6G technology is expected to demand large-scale distributed intelli-
gence networks with extremely high performance. The TL methods can surely enable
the efficient learning process by allowing pre-trained networks to be used for new tasks
through different knowledge transfer mechanisms. However, the performance of TL so-
lutions can be impacted by several factors, such as the number of layers considered for
retraining, the amount of data available, the device capabilities, etc.

In this work, we have analyzed the performance of the deep TL model for under-
standing the impact of the number of layers selected and the considered amount of data
for the training operations. It can be seen that using an unprecedented amount of data
with a limited number of layers to be trained can badly impact the performance of the
retrained DNN model. On the other hand, retraining a large number of network layers
from a pre-trained TL model with a reduced amount of data can also induce several issues.
Therefore, it is highly important to select the optimal number of layers to be trained and/or
the amount of training data to be considered for retraining the models to be used for
new tasks.

The proposed analysis of the TL performance can be used to understand the impact of
different training mechanisms adopted during the integration of TL solutions, in particular,
for the case of resource-constrained IoT devices in next generation networks. Moreover, 6G
technology is expected to span several IoT usage cases with reduced-capacity devices, in
particular, to enable distributed intelligence. Several of these IoT paradigms can benefit
from enabling the proper TL-based learning solutions with enhanced performance. Some
of these are listed below.

Vehicular IoT: To enable the autonomous driving case in the next generation of
vehicular networks with the help of various IoT nodes and different communication
mechanisms requires large-scale ML solutions. Such a vehicular paradigm can benefit
from the proposed TL solutions, in particular, to analyze the distributed vehicular data.
The inherent dynamicity, unstable communication environments, limited datasets, and
on-board resources are some of the major challenges in vehicular networks. With this,
enabling fully autonomous driving scenarios can be challenging with traditional learning
methods. With the use of TL approaches, in particular, those that can adapt according to
the vehicular nodes’ limited capabilities and datasets, can be highly effective.

NTN IoT: The satellite IoT is another important communication paradigm that is
expected to play an important role in 6G networks to enable the intelligence in air and space
technology for several different types of users. However, the limited on-board computation
resources in satellite networks can be challenging to enable these intelligent solutions with
the appropriate performances. The TL methods can be applied over satellite networks to
enable efficient learning processes to analyze the satellite IoT data. The proposed studies
can be important to understand the impacts of different TL solutions according to the
varying datasets and the learning processes.

Industrial IoT: With the help of industrial IoT data and 6G technology, various in-
dustrial processes are expected to be optimized, automated, and revolutionized. The
distributed learning solutions, enabled through small-scale datasets generated by differ-
ent industrial IoT devices, are expected to play a key role. However, with such limited
datasets, it is important to optimize learning frameworks to enable proper solutions. The
proposed ideas of TL solutions and the analysis of the impacts of varying datasets over
the TL performance can be useful during the application of TL solutions in industrial IoT
paradigms.

The considered studies can further be explored in other dimensions to analyze the
impacts of device capabilities, learning environments, and other similar aspects on the TL
models that can be useful to improve the learning performance.



Electronics 2023, 12, 3327 19 of 21

7. Conclusions

In this work, we performed an experimental analysis of the deep TL method to analyze
its performance in terms of training errors and generalization gaps. The performance is
analyzed by varying the number of training layers and the amount of training data in
terms of memory size. A Matlab-based pre-trained SqueezeNet model was considered for
analyzing the performance. The simulation results show the importance of optimizing
the number of layers and/or the data size while training the SqueezeNet model for a task
differing from the one for which it was already trained. Our study shows that different
levels of training processes in terms of data or selected layers can have different training
performances, and the performance can be improved with adequate sets of parameters.
This study can be an excellent start for the TL model performance analysis and can be
extended further by using the proper optimization algorithms to select the layers/training
data based on the differing wireless environment characteristics. This can be considered as
the future direction for this work.

Author Contributions: Conceptualization, D.T.; methodology, S.S.S.; software, N.G.C.; validation,
N.G.C., S.S.S. and D.T.; formal analysis, N.G.C. and S.S.S.; investigation, N.G.C.; data curation,
N.G.C.; writing—original draft preparation, N.G.C.; writing—review and editing, S.S.S. and D.N.;
visualization, N.G.C.; supervision, D.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially supported by the ECOSISTER project funded under the National
Recovery and Resilience Plan (NRRP), Mission 04 Component 2 Investment 1.5—NextGenerationEU,
Call for tender n. 3277 dated 30/12/2021. Award Number: 0001052 dated 23/06/2022 and by the
European Union under the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE00000001—program “RESTART”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available on request due to restrictions, e.g., privacy
or ethical.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the Road to 6G: Visions,

Requirements, Key Technologies, and Testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [CrossRef]
2. Shinde, S.S.; Bozorgchenani, A.; Tarchi, D.; Ni, Q. On the Design of Federated Learning in Latency and Energy Constrained

Computation Offloading Operations in Vehicular Edge Computing Systems. IEEE Trans. Veh. Technol. 2022, 71, 2041–2057.
[CrossRef]

3. Shinde, S.S.; Tarchi, D. Joint Air-Ground Distributed Federated Learning for Intelligent Transportation Systems. IEEE Trans.
Intell. Transp. Syst. 2023, early access. [CrossRef]

4. Yue, S.; Ren, J.; Xin, J.; Zhang, D.; Zhang, Y.; Zhuang, W. Efficient Federated Meta-Learning Over Multi-Access Wireless Networks.
IEEE J. Sel. Areas Commun. 2022, 40, 1556–1570. [CrossRef]

5. Feriani, A.; Hossain, E. Single and Multi-Agent Deep Reinforcement Learning for AI-Enabled Wireless Networks: A Tutorial.
IEEE Commun. Surv. Tutor. 2021, 23, 1226–1252. [CrossRef]

6. Shinde, S.S.; Tarchi, D. Collaborative Reinforcement Learning for Multi-Service Internet of Vehicles. IEEE Internet Things J. 2023,
10, 2589–2602. [CrossRef]

7. Yang, H.; Alphones, A.; Xiong, Z.; Niyato, D.; Zhao, J.; Wu, K. Artificial-Intelligence-Enabled Intelligent 6G Networks. IEEE Netw.
2020, 34, 272–280. [CrossRef]

8. Eichler, G.C.; Ralha, C.G.; Farhang, A.; Marotta, M.A. Combining NOMA-OMA with a Multiagent Architeture for Enhanced
Spectrum Sharing in 6G. In Proceedings of the NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium,
Miami, FL, USA, 8–12 May 2023; pp. 1–7. [CrossRef]

9. Adhikari, M.; Hazra, A. 6G-Enabled Ultra-Reliable Low-Latency Communication in Edge Networks. IEEE Commun. Stand. Mag.
2022, 6, 67–74. [CrossRef]

10. Algarni, A.M.; Thayananthan, V. Autonomous Vehicles with a 6G-Based Intelligent Cybersecurity Model. IEEE Access 2023,
11, 15284–15296. [CrossRef]

http://doi.org/10.1109/COMST.2023.3249835
http://dx.doi.org/10.1109/TVT.2021.3135332
http://dx.doi.org/10.1109/TITS.2023.3265416.
http://dx.doi.org/10.1109/JSAC.2022.3143259
http://dx.doi.org/10.1109/COMST.2021.3063822
http://dx.doi.org/10.1109/JIOT.2022.3213993
http://dx.doi.org/10.1109/MNET.011.2000195
http://dx.doi.org/10.1109/NOMS56928.2023.10154422
http://dx.doi.org/10.1109/MCOMSTD.0001.2100098
http://dx.doi.org/10.1109/ACCESS.2023.3244883


Electronics 2023, 12, 3327 20 of 21

11. Huo, Y.; Lin, X.; Di, B.; Zhang, H.; Hernando, F.J.L.; Tan, A.S.; Mumtaz, S.; Demir, O.T.; Chen-Hu, K. Technology Trends for
Massive MIMO towards 6G. Sensors 2023, 23, 6062. [CrossRef]

12. Xu, M.; Hoang, D.T.; Kang, J.; Niyato, D.; Yan, Q.; Kim, D.I. Secure and Reliable Transfer Learning Framework for 6G-Enabled
Internet of Vehicles. IEEE Wirel. Commun. 2022, 29, 132–139. [CrossRef]

13. Wang, M.; Lin, Y.; Tian, Q.; Si, G. Transfer Learning Promotes 6G Wireless Communications: Recent Advances and Future
Challenges. IEEE Trans. Reliab. 2021, 70, 790–807. [CrossRef]

14. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Artificial Neural Networks and
Machine Learning—ICANN 2018, Proceedings of the 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7
October 2018; Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 270–279. [CrossRef]

15. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.
deeplearningbook.org (accessed on 1 March 2023).

16. Tang, F.; Mao, B.; Kawamoto, Y.; Kato, N. Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G:
From Network Access, Routing to Traffic Control and Streaming Adaption. IEEE Commun. Surv. Tutor. 2021, 23, 1578–1598.
[CrossRef]

17. Muscinelli, E.; Shinde, S.S.; Tarchi, D. Overview of Distributed Machine Learning Techniques for 6G Networks. Algorithms 2022,
15, 210. [CrossRef]

18. Nguyen, C.T.; Van Huynh, N.; Chu, N.H.; Saputra, Y.M.; Hoang, D.T.; Nguyen, D.N.; Pham, Q.V.; Niyato, D.; Dutkiewicz, E.;
Hwang, W.J. Transfer Learning for Wireless Networks: A Comprehensive Survey. Proc. IEEE 2022, 110, 1073–1115. [CrossRef]

19. Liang, J.; Li, L.; Zhao, C. A Transfer Learning Approach for Compressed Sensing in 6G-IoT. IEEE Internet Things J. 2021,
8, 15276–15283. [CrossRef]

20. Parsaeefard, S.; Leon-Garcia, A. Efficient Transfer Learning in 6G. In Proceedings of the 2022 IEEE Future Networks World Forum
(FNWF), Montreal, QC, Canada, 10–14 October 2022; pp. 314–319. [CrossRef]

21. Yang, B.; Fagbohungbe, O.; Cao, X.; Yuen, C.; Qian, L.; Niyato, D.; Zhang, Y. A Joint Energy and Latency Framework for Transfer
Learning Over 5G Industrial Edge Networks. IEEE Trans. Ind. Inform. 2022, 18, 531–541. [CrossRef]

22. Shinde, S.S.; Marabissi, D.; Tarchi, D. A network operator-biased approach for multi-service network function placement in a 5G
network slicing architecture. Comput. Netw. 2021, 201, 108598. [CrossRef]

23. Nagib, A.M.; Abou-Zeid, H.; Hassanein, H.S. Transfer Learning-Based Accelerated Deep Reinforcement Learning for 5G RAN
Slicing. In Proceedings of the 2021 IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, AB, Canada, 4–7
October 2021; pp. 249–256. [CrossRef]

24. Azari, M.M.; Solanki, S.; Chatzinotas, S.; Kodheli, O.; Sallouha, H.; Colpaert, A.; Mendoza Montoya, J.F.; Pollin, S.; Haqiqatnejad,
A.; Mostaani, A.; et al. Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey. IEEE Commun. Surv. Tutor. 2022,
24, 2633–2672. [CrossRef]

25. Zhang, K.; Si, D.; Wang, W.; Cao, J.; Zhang, Y. Transfer Learning for Distributed Intelligence in Aerial Edge Networks. IEEE Wirel.
Commun. 2021, 28, 74–81. [CrossRef]

26. Si, D.; Zhang, K.; Wu, F. Transfer Learning Empowered Resource Scheduling in Aerial Edge Networks. In Proceedings of the
2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021; pp. 976–981.
[CrossRef]

27. Shinde, S.S.; Tarchi, D. Network Selection and Computation Offloading in Non-Terrestrial Network Edge Computing Envi-
ronments for Vehicular Applications. In Proceedings of the 2022 11th Advanced Satellite Multimedia Systems Conference and
the 17th Signal Processing for Space Communications Workshop (ASMS/SPSC), Graz, Austria, 6–8 September 2022; pp. 1–8.
[CrossRef]

28. Shinde, S.S.; Tarchi, D. Towards a Novel Air-Ground Intelligent Platform for Vehicular Networks: Technologies, Scenarios, and
Challenges. Smart Cities 2021, 4, 1469–1495. [CrossRef]

29. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-Based Computation Offloading for IoT Devices with Energy
Harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]

30. Coutinho, R.W.L.; Boukerche, A. Transfer Learning for Disruptive 5G-Enabled Industrial Internet of Things. IEEE Trans. Ind.
Inform. 2022, 18, 4000–4007. [CrossRef]

31. Wang, K.I.K.; Zhou, X.; Liang, W.; Yan, Z.; She, J. Federated Transfer Learning Based Cross-Domain Prediction for Smart
Manufacturing. IEEE Trans. Ind. Inform. 2022, 18, 4088–4096. [CrossRef]

32. Liu, X.; Yu, W.; Liang, F.; Griffith, D.; Golmie, N. Toward Deep Transfer Learning in Industrial Internet of Things. IEEE Internet
Things J. 2021, 8, 12163–12175. [CrossRef]

33. Cody, T.; Beling, P.A. A Systems Theory of Transfer Learning. IEEE Syst. J. 2023, 17, 26–37. [CrossRef]
34. Abdulnabi, K. Fruit Classification (10 Class). Available online: https://www.kaggle.com/datasets/karimabdulnabi/fruit-

classification10-class (accessed on 1 March 2023).
35. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. Available online: https://arxiv.org/abs/1602.07360 (accessed
on 1 March 2023).

36. MATLAB. Available online: https://www.mathworks.com/products/matlab.html (accessed on 1 March 2023).

http://dx.doi.org/10.3390/s23136062
http://dx.doi.org/10.1109/MWC.004.2100542
http://dx.doi.org/10.1109/TR.2021.3062045
http://dx.doi.org/10.1007/978-3-030-01424-7_27
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/COMST.2021.3073009
http://dx.doi.org/10.3390/a15060210
http://dx.doi.org/10.1109/JPROC.2022.3175942
http://dx.doi.org/10.1109/JIOT.2021.3053088
http://dx.doi.org/10.1109/FNWF55208.2022.00062
http://dx.doi.org/10.1109/TII.2021.3075444
http://dx.doi.org/10.1016/j.comnet.2021.108598
http://dx.doi.org/10.1109/LCN52139.2021.9524965
http://dx.doi.org/10.1109/COMST.2022.3199901
http://dx.doi.org/10.1109/MWC.011.2100061
http://dx.doi.org/10.1109/ICCT52962.2021.9657981
http://dx.doi.org/10.1109/ASMS/SPSC55670.2022.9914757
http://dx.doi.org/10.3390/smartcities4040078
http://dx.doi.org/10.1109/TVT.2018.2890685
http://dx.doi.org/10.1109/TII.2021.3107781
http://dx.doi.org/10.1109/TII.2021.3088057
http://dx.doi.org/10.1109/JIOT.2021.3062482
http://dx.doi.org/10.1109/JSYST.2022.3224650
https://www.kaggle.com/datasets/karimabdulnabi/fruit-classification10-class
https://www.kaggle.com/datasets/karimabdulnabi/fruit-classification10-class
https://arxiv.org/abs/1602.07360
https://www.mathworks.com/products/matlab.html


Electronics 2023, 12, 3327 21 of 21

37. Deep Learning Toolbox Version: 9.4 (R2022b). Available online: https://www.mathworks.com/products/deep-learning.html
(accessed on 1 March 2023).

38. Edwards, J.R. Polynomial regression and response surface methodology. In Perspectives on Organizational Fit; Jossey-Bass: San
Francisco, CA, USA, 2007; pp. 361–372.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.mathworks.com/products/deep-learning.html

	Introduction
	Machine Learning for 6G
	Deep Learning
	Transfer Learning in 6G Scenarios
	TL for Non-Terrestrial Networks
	TL for Industrial IoT
	TL Testbeds in 6G and B5G Scenarios
	Contribution with Respect to the State-of-the-Art


	Experimental Setup for TL Performance Evaluation
	Methodology for Performance Evaluation
	Numerical Results
	Discussion
	Conclusions
	References

