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Abstract—Structural Health Monitoring (SHM) is crucial for the development of safe infrastructures. Onboard vibration
diagnostics implemented by means of smart embedded sensors is a suitable approach to achieve accurate prediction
supported by low-cost systems. Networks of sensors can be installed in isolated infrastructures allowing periodic
monitoring even in the absence of stable power sources and connections. To fulfill this goal, the present paper proposes
an effective solution based on intelligent extreme edge nodes that can sense and compress vibration data onboard, and
extract from it a reduced set of statistical descriptors that serve as input features for a machine learning classifier, hosted
by a central aggregating unit. Accordingly, only a small batch of meaningful scalars needs to be outsourced in place of long
time series, hence paving the way to a considerable decrement in terms of transmission time and energy expenditure. The
proposed approach has been validated using a real-world SHM dataset for the task of damage identification from vibration
signals. Results demonstrate that the proposed sensing scheme combining data compression and feature estimation at
the sensor level can attain classification scores always above 94%, with a sensor life cycle extension up to 350x and
1510x if compared with compression-only and processing-free implementations, respectively.

Index Terms—Compressed Sensing, On-sensor Feature Extraction, Vibration Monitoring

I. INTRODUCTION

Structural Health Monitoring (SHM) systems supported by em-
bedded smart devices allow for the automatic inspection of technical
facilities, providing a suitable solution to control their health status
with minimal cost and invasiveness. This result can be reached by
designing a novel generation of intelligent sensor systems, equipped
with data processing and mining capabilities [1]. On the one hand, the
literature confirms that combining information from all the sensing
nodes is crucial to obtain accurate structural predictions [2]. On
the other, sharing information within the network requires a large
amount of energy and is the primary source of power consumption
in wireless sensor networks built on the sensor-to-cloud continuum
[3]. Therefore, the current challenge in sensor network design is to
maximize the accuracy of the structural health assessment process
while minimizing the amount of information transmitted inside the
monitoring network as an indirect means to optimize the overall
sensor power budget.

To address this goal, this paper presents a solution based on
smart sensing nodes, placed on different areas of the facility under
analysis. Figure 1 schematizes the proposed sensing system. Extreme
edge sensors collect and compress data; then, they extract a set of
statistical descriptors which are forwarded to a low-end centralizing
node featuring resource-constrained computing units. The latter is
in charge of data aggregation and damage identification directly
from the reduced set of compressed features by resorting to a low-
complexity predictor built on a Machine Learning (ML) classifier. We
investigate this problem in the specific context of vibration-based
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diagnostics, i.e., scenarios in which the structural conditions are
typically judged by analysing vibration (e.g., acceleration) signals
induced by the dynamic response of the target asset. As a major
advantage, communication inside the network of sensors can be
handled using extremely low-power protocols (e.g., LoRaWan), that
fail to support cloud-based alternatives involving a continuous and
burdensome flow of data.

Three main contributions are fulfilled: 1) we offer one of the
very first attempts for structural inference directly in the compressed
domain, overcoming the need to reconstruct the original time series; 2)
the combination of on-sensor data compression and feature extraction
leads to a sensor network with minimal data transfer among nodes
(up to 2500x lower payload); 3) we perform a cost-energy analysis
demonstrating that sensor-near analytics introduces a negligible data
pre-processing overhead with respect to full data transfer solutions;
in turn, we prove that this can extend the energy autonomy of
battery-powered sensors at a large extent.

II. BASICS

Compressed Sensing (CS) approaches are data reduction strategies
capable to encode long time series into a preset number of coefficients,
under the hypothesis that the class of processed signals is sparse
in a specific representation domain [4]. Such condition perfectly
applies to vibration signals, since they can be completely described
by a small batch of peak spectral features (also known as modal
frequencies), once transformed in the Fourier domain [5].

One of the main advantages of CS lies in its low-cost implementation
via simple multiply and accumulate operations [6]. Assuming that a
sensing node 𝑆𝑖 records an 𝑁-long vibration signal 𝑥𝑖 ∈ 𝑅𝑁×1, the
latter can be transformed into a reduced vector 𝑥𝑖 ∈ 𝑅𝑀×1 (𝑀 << 𝑁)
according with:
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Fig. 1: Schematic description of the processing flow described

𝑥𝑖 = Ψ𝑥𝑖 (1)

Ψ ∈ 𝑅𝑀×𝑁 is the so-called compression (or sensing) matrix and
has to be appropriately selected to maximize the information content
which is retained at the reduction stage.

After compression, vibration data are still organized as ordered
sequences carrying information about the structure’s health state. A
variety of approaches proves effective in mining information from
time series and, more in general, sequences [7]. Deep Learning
[8] and dedicated similarity metrics for sequence comparison, like
Dynamic time warping (DTW) [9], prove state-of-the-art in modeling
dependencies and recurrent patterns. When limited resources are
available, recent works demonstrated that statistical features with
low-cost computing requirements can equate the accuracy of more
demanding procedures while reducing the computing requirements
[10], [11]. Such solutions avoid facing the multitude of issues related
to the deployment of deep data mining architectures on resource-
constrained devices [12], that is still a very active line of research
[13], [14]. A similar observation holds for DTW and affine metrics
that involve solving an optimization problem in a streaming fashion.

III. DAMAGE DETECTION FROM COMPRESSED
FEATURES

The proposed sensing system (as per Fig. 1) resorts to a network
of vibration sensors, each of them equipped with an ultra-low-power
module that records, compresses, elaborates, and sends feature data.
The novelty of our scheme is that, rather than transmitting the entire
𝑥 as it is conveniently done in standard CS-based settings, we further
reduce the payload dimension by extracting, directly at the sensor
node level, a set of hardware-friendly statistical features. The extreme
compression of the data on the sensing node limits, by construction,
the cross-sensor information used in the learning process. However,
this risk is unavoidable when aiming to minimize the transmission
rate. The latter are organized in a vector 𝒙̃ ∈ 𝑅𝐹 , 𝐹 being the
number of features; accordingly, 𝐹 << 𝑀 << 𝑁 holds, imposing a
compression ratio 𝐶𝑅𝐶𝑆+𝐹𝑒𝑎𝑡 = 𝑁/𝐹 which is 𝑀/𝐹 times higher
than the one attainable by CS-only alternatives, i.e., 𝐶𝑅𝐶𝑆 = 𝑁/𝑀 .

Among the wide variety of statistical indicators, the following
quantities were computed, since they are suited for time series analysis
using low-power embedded systems [11]: statistical moments (SM),
i.e., median, variance, skewness, and kurtosis; stationary points and

energy (SPE), namely maximum, minimum, maximum-minimum
distance, and energy; inter-samples differences (ISD), i.e., mean
absolute deviation, median absolute deviation, mean of differences
between adjacent samples, and mean of absolute differences between
adjacent samples.

The reason for extracting statistical features in the compressed
domain rather than from raw vibrations is that, together with the
cost of transmission, the number of computations performed by the
embedded device to extract them must be considered. Obviously, the
latter is proportional to the number of samples in the time series.
Amidst SPE, ISD and SM, the computation of skewness requires
the largest number of operations and it is proportional to 10𝑙 (𝑙
being the generic dimension of the vector to be processed), while
the computational complexity reduces to 4𝑙 for median, and 2𝑙 for
the remaining and less demanding features [11]. The number of total
floating point operations (FLOPS) necessary for the extraction of
the whole feature set grows linearly with the length of the input
sequence, making the approach suitable for constrained devices.

The aggregator unit hosts the instance of a standard ML classifier
and performs structural inference upon aggregation of 𝑆 different
feature sets 𝑥𝑖 , with 𝑆 equal to the number of sensors. In this
work, a Random Forest (RF) is selected because it offers excellent
generalization performance with modest computing requirements
[15]. In fact, it consists of an ensemble of classification trees and
performs prediction by means of simple comparisons with preset
threshold values. The literature proposes a plethora of efficient
implementations, including highly optimized C libraries suitable
for microprocessor-based computing units. Importantly, it is worth
highlighting that the choice of the RF as a predictor is non-binding, and
it can be substituted, in principle, with any other detector capable to
infer data from the extracted feature set. However, RF proves robust to
outliers and missing input values thanks to the regularization properties
of ensemble learning. This becomes useful when considering that the
extracted feature set has not been designed to handle input nodes’
malfunctions.

IV. EXPERIMENTS

A. Materials and methods

1) Dataset: The Z24 bridge dataset represents a benchmark use
case for vibration-based SHM [16]. The entire data collection consists
of 5651 time series acquired by eight force-balance-type FBA-11
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uni-axial accelerometers installed at different locations on the bridge
deck and pillars: 4922 instances were taken in healthy configurations,
the remaining 729 in damaged ones. Each sensor was configured to
collect 32768 vibration data per hour at a sampling frequency of
50 Hz, over a measurement period of one year.

2) Processing framework: Among the manifold CS techniques,
the Model-assisted Rakeness-based (MRak-CS) strategy in [5] has
been chosen, which belongs to the class of adaptive CS mechanisms,
i.e., methods exploiting statistical priors about the properties of the
processed signals to design the sensing matrix. MRak-CS offers a
conservative approach, meaning that it prevents overadaptation to the
spectral distributions used for the design of the compression matrix
itself. This working principle is crucial to capture structural variations
over time; more importantly, it permits to store Ψ statically in the
sensor memory, hence avoiding the need to compute it in a streaming
way, a choice which would imply a prohibitive expenditure in terms
of power consumption and execution time.

Additionally, it is worth recalling that severe memory constraints
characterize low-end microprocessors, as those typically equipped
by smart low-cost sensors, where the flash space hardly exceeds
1 MBytes (e.g., cut-of-the-shelf STM32 or ESP32 microcontroller
units). To fulfill this limitation, each time series has been split into
subsequent windows of dimension 𝑁 = 512 samples, while the
compression ratio 𝐶𝑅𝐶𝑆 has been swept from 4 to 256, doubling it
at each iteration. By doing so, the maximum memory slot necessary
for the allocation of Ψ amounts to 512 kBytes.1

Beside, the code for the RF classifier was implemented in Python
by considering a standard 5-fold cross-validation: for each fold, a
validation set was extracted from the training set selecting a random
subset of 20% of the training data.

B. Results

The performance of the RF classifier versus the impact of increasing
𝐶𝑅𝐶𝑆 has been evaluated first: results are summarized in Table 1
and are provided in terms of standard classification metrics (i.e.,
accuracy, precision, recall, and F1), following the same validation
setup proposed in [17]. As can be observed, all the indicators remain
stably above 94% even in the most severe setting, with negligible drop
when moving from the lowest to the deepest 𝐶𝑅𝐶𝑆 . This outcome
can be justified by the adopted MRak-CS scheme, which is designed
to preserve the statistical properties of the signals after compression.
Hence, it perfectly combines with the selected feature set.

Additionally, scores have been compared with three alternative
data-driven solutions already proposed in the literature for the
same benchmark. Gaussian Mixture Model (GMM) has firstly been
introduced in [18] as a non-supervised model for anomaly detection
from vibration data, while the One Class Classifier Neural Network
(OCCNN) and the Autoassociative Neural Network (ANN) in [17]
address the same task by means of small-size ML architectures.
The CS+Feature extraction workflow presented in this work differs
remarkably from the ones envisioned in the previous attempts. Indeed,
in [18], data compression procedures are totally neglected, hence
sensing nodes are meant to transfer to a central unit the entire raw time
series (32768 time samples). Conversely, in [17], the compression
stage has been introduced at the sensor level to maximize the overall

1It is assumed that each piece of information is represented in float32 format,
i.e., as a word of 4 Bytes.

Table 1: Classification performances of the implemented RF compared
with existing ML models dealing with the same benchmark: analysis
in terms of increasing 𝐶𝑅 and network payload.

Classifier 𝐶𝑅𝐶𝑆 Accuracy Precision Recall F1 Payload
[%] [%] [%] [%] [# samples]

RF 4 94.00 96.17 96.97 96.57 13
RF 8 94.01 96.27 96.89 96.56 13
RF 16 93.79 96.11 96.79 96.45 13
RF 32 94.07 96.36 96.85 96.60 13
RF 64 94.35 96.41 97.14 96.77 13
RF 128 93.65 96.00 96.75 96.37 13
RF 256 94.04 96.27 96.91 96.59 13

OCCNN [17] 6 93.00 94.00 95.00 91.00 5462
ANN [17] 6 95.00 99.00 94.00 97.00 5462
GMM [18] 1 95.00 98.00 93.00 95.00 32768

energy consumption, but signal decompression is encompassed at the
centralizing unit before extracting damage sensitive features. In both
cases, the latter coincide with modal frequencies, whose reconstruction
and identification passes through computationally expensive structural
identification techniques.

On top of that, the last column of Table 1 quantifies the number
of floating point elements that the edge sensor should send to the
aggregator unit to perform the inference of a single datum. As can be
seen, our solution can achieve comparable or even better results with
respect to state-of-the-art alternatives (only GMM can obtain a slight
improvement in accuracy and precision, whereas OCCNN and ANN
score always worst), moreover allowing for a huge limitation of the
data dimension: indeed, in our implementation, we only require 13
feature values to be transmitted over the sensor network, leading to
a data payload which is 420x and 2500x lower with respect to that
involved by [17] and [18], respectively.

V. COST-BENEFIT ANALYSIS

A cost-benefit analysis has been performed to effectively evaluate
the superiority of the proposed workflow from an energy budget
point of view. To this end, the tool in [19] has been exploited to
simulate the power expenditure of a target device when featuring
different wireless communication protocols typically employed for
the deployment of battery-operated monitoring networks in modern
sensor installations [20]: the BLE 5.0 technology, the LoRaWan
connectivity, WiFi HaLoW based on the 802.11ah and the IEEE
802.15.4 standard2.

A sensor life cycle estimation has been performed under the
following assumptions: i) data are sampled on a hourly basis, which
is a common duty-cycle for this kind of structures where degradation
phenomena undergo a slow inertia; ii) power is drawn from a battery
with a capacity of 3600 mAh and reference voltage of 3.3 V, iii)
each device is equipped with a low-end microprocessor clocked at
80 MHz and featuring 15 mA and 7 µA current consumption in normal
and idle operating mode, respectively. Starting from these electrical
parameters, the energy spent in one hour has been estimated first as

𝐸1ℎ = 𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 + 𝐸𝐷𝑆𝑃 + 𝐸𝑖𝑑𝑙𝑒 (2)

namely by summing together the contribution due to data sensing
(𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔), on-board data processing (𝐸𝐷𝑆𝑃) and the one consumed
in absence of any operation (𝐸𝑖𝑑𝑙𝑒). While 𝐸𝑠𝑒𝑛𝑠𝑖𝑛𝑔 is a constant

2A communication distance equal to 50 m has been chosen to perform a realistic
study and be compatible with the considered protocols.
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Fig. 2: Gain in the sensor life cycle of the CS+Feature extraction
framework proposed in this work with respect to the absence of on-
sensor analytics (yellow background and round markers) and purely
CS-based setting (blue background and cross markers) for various
𝐶𝑅𝐶𝑆 and communication protocols.

quantity, 𝐸𝐷𝑆𝑃 varies depending on the level of sensor-near
functionalities charged to the extreme edge sensor. To investigate this
point, we have compared the CS+Feature extraction setting proposed
in this work with two alternatives: absence of any on-board processing
functionality (No_DSP label) and CS-only configurations (label CS).
Then, the gain in the sensor battery life cycle has been computed as

𝐿𝐶𝐺 =
𝐸

†
1ℎ

𝐸𝐶𝑆+𝐹𝑒𝑎𝑡
1ℎ

(3)

in which the superscript † indicates either CS or No_DSP realizations.
Trends as a function of increasing 𝐶𝑅𝐶𝑆 and different communi-

cation protocols are reported in Fig. 2: they show that our approach
allows to extend exponentially the sensor autonomy with respect to
purely CS frameworks (curves in the blue background with cross
markers), from a minimum of 3x for BLE 5.0 with 𝐶𝑅𝐶𝑆 = 128
to a maximum of 337x for LoRaWan at 𝐶𝑅𝐶𝑆 = 4. Conversely,
such advancement is almost constant at values always above 250x
(reaching 1510x in case LoRaWan is used) when comparing with
processing-free solutions (yellow background and round markers).
Such outcomes are a direct consequence the data payload size imposed
by the three different settings: while the data payload is fixed to 13
and 32768 values for our implementation and No_DSP, respectively,
the amount of data to be transmitted in case of CS increases while
diminishing the 𝐶𝑅𝐶𝑆 level.

VI. CONCLUSION

This work presented a solution for low-power networks of vibration
sensors: it exploits CS and feature extraction at the extreme edge
sensor and a low-cost ML classifier at the centralizing side to trade-off
computational cost and generalization performance of the system. As
a major result, a suitable feature extraction procedure cuts down data
transfer inside the network, thus leading to power-efficient aggregation
of the information from different sensing nodes. Tests on a real-world
dataset confirm the suitability of the proposed approach. Comparison

with the existing solution highlights the effectiveness of the proposed
method.
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