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Abstract 

Passive micromixers have applications mainly in the chemical, pharmaceutical, and 

materials industries. Two or more fluids mix while flowing through microchannels in 

these devices. Due to the small dimensions and low flow rates, the flow is essentially 

laminar, and mixing takes place mainly by mass diffusion. One way to increase the 

mixing rate in micromixers is the addition of obstacles that increase the advective effects. 

This work aimed to introduce high-performance designs of passive micromixers with 

multiple obstacles. These designs were obtained by combining the Constructal Design 

method with the Response Surface Optimization method and Computational Fluid 

Dynamics (CFD). The micromixers were Y-shaped tubes with grooves and circular 

obstacles in cells that repeated along the device. From the first design inspired by a high-

performance design from the literature, the evolutionary design of the system was 

achieved by increasing the number of obstacles and finding the best configuration for 

each evolution level (number of obstacles per cell, from three to seven). The effects on 

mixing percentage, pressure difference, and mixing energy cost (MEC) of obstacles’ 

vertical and horizontal distances were investigated with CFD simulations. Increasing the 

number of obstacles made it possible to increase the mixture percentage of the 

micromixer. At the same time, the total pressure drop rises faster than the mixing 

percentage. However, analyzing the pressure locally, it was shown that the lower the 
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number of obstacles, the greater the local pressure drop, which could cause flow 

obstructions. The vertical distance of the obstacles had a more significant impact on the 

mixing than their horizontal distance. Both vertical and horizontal distances had a 

substantial effect on the pressure drop. As the number of obstacles increased, the effect 

of the horizontal distance became weaker as its variation was limited. The three-obstacles 

design presented a MEC equal to 2.47 and a mixing percentage equal to 67.12% mixing 

index. The latest design evolution (i.e., seven obstacles) achieved the best mixing 

percentage, 70.30%, with MEC equal to 2.97. By modifying the degrees of freedom, it 

was possible to understand and propose a path to the evolutionary design of the system 

to increase its performance while still using simple designs. 

 

Keywords: Constructal Design; Evolutionary Design; Computational Fluid Dynamics; 

Microfluidics; Micromixers. 

 

1 INTRODUCTION  

Microfluidics is the fluid mechanics field that studies fluids' behavior on small 

scales, from millimeters to micrometers (Lee and Fu, 2018). Due to the compact size of 

devices in this field, many application opportunities are emerging, such as pathogen 

detection in food (Lonchamps et al., 2022), microfluidic sensors (Li et al., 2022), and 

organ-on-a-chip (Saorin, Caliguri, and Rizzolio, 2022). Thus, microfluidics is a strategic 

area for engineering, chemistry, computing, and health evolution.  

Micromixers are one of the most used devices in microfluidics. Such devices mix 

two or more liquid substances isolated or coupled on a chip. The range of applications is 

varied, with examples in the chemical, biological, and medical areas involving diagnosing 

diseases and producing pharmaceuticals and new materials (Li et al., 2022). Chips 

coupled with micromixers are used in many applications. One of the most important 

nowadays is the lab-on-a-chip, a device that conducts laboratory functions on a 

miniaturized scale. Another example is the organ-on-a-chip, which combines biological 

and microtechnological aspects to reproduce aspects of human physiology via 

microchannels that guide and manipulate solutions (Leung et al., 2022). 

The devices may employ two distinct mixing mechanisms: active and passive. The 

first uses external forces, such as electromagnetic fields, sound waves, electric fields, or 

heat transfer (Li et al., 2022). By using such a methodology, it is possible to achieve high 

mixing rates and have greater control of the process through the intensity of the applied 



flow. However, external devices and energy are required, which can become a hindrance 

depending on the application. 

In passive micromixers, two or more different fluids enter the device through 

separate inlets and flow through a mixing channel. The fluids are expected to mix by the 

molecular diffusion mechanism while they flow through the channel. The flow system 

design may enhance the mixing by adding advection and mixing by disturbing the main 

flow. For example, curved channels, obstacles, baffles, and indentations are usually 

employed in different shapes designed to increase mixing in the flow that is 

fundamentally laminar due to the device’s small size. Conversely, as the flow is disturbed 

to increase mixing, the pressure difference required to maintain the flow rate can greatly 

increase. Thus, the design of geometries for micromixers seeks to optimize the conflicting 

objectives of mixing and flow resistance. 

Cai et al. (2017) extensively reviewed micromixers, encompassing active and 

passive devices. In this article, the authors cite numerous papers addressing mixing 

efficiency as a function of passive micromixer design. The authors highlight the role of 

3D printing manufacturing processes, which have boosted the development of 

microdevices with increasingly complex geometries with more precision, less time, and 

less cost.  

 Micromixer performance analysis can be done experimentally and via simulation 

models. Computational Fluid Dynamics (CFD) has been used to simulate micromixers 

using distinct numerical methods. Experimental methods can be challenging and limited, 

considering the difficulty and cost of prototyping and sensing. Using computational 

simulation methods, for example, CFD, presents virtually no restrictions, allowing a wide 

variety of cases to be evaluated quickly. However, the results of CFD models must be 

appropriately validated by comparison with experiments. In the literature are present 

numerous works with experimental, numerical applications and association of both, 

enabling the verification and validation of numerical models, such as the studies of Wang 

et al. (2012), Khaydarov, Borovinskaya and Reschetilowski (2018), and García, 

Mousaviraad, and Saraji (2022). Santana et al. (2019), using CFD, introduced a new 

micromixer design (MTB – micromixer with triangular baffles and circular obstructions) 

aiming the combination of three mass transfer enhancements mechanisms: reduction of 

molecular diffusion path, split and recombination of streams and vortex generation. This 

work obtained optimal configurations considering mixtures of vegetable oil/ethanol and 

water/ethanol, and a wide range of Reynolds numbers, from 0.1 to 100. The objective 



functions for optimization were the mixing performance and the pressure drop. This work 

corroborates the use of obstacles to obtain high-performance micromixers. Antognoli et 

al. (2021) employed optimized obstacles (pillars) sequences in T-microchannels to 

improve the mixing of miscible fluids of similar density and viscosity. In further work, 

Antognoli et al. (2023) performed investigations aiming for more realistic mixing 

applications, employing fluids with significantly different fluid properties. They studied 

how fluid velocity and the obstacles configurations affected the formation of horseshoe 

vortices, which were the main mixing flow structure. They analyzed water-water, and 

water-ethanol mixtures at Reynolds numbers from 10 to 100, showing efficiency and 

pressure drop dependence on physical properties. These works give strong motivation for 

the use of micromixers with obstacles. 

Since mixing performance and pressure difference are highly sensitive to the 

micromixer geometry, advanced optimization methods, coupled with CFD simulation, 

have been employed to develop new and better micromixer designs. The authors Chen 

and Lv (2022) presented a brief review of previous works that used different optimization 

tools for different ideas of micromixer design. In their work, these authors employed 

Cantor fractal theory in designing obstacles for a passive micromixer, aiming to find the 

design that would result in the highest mixing rate and lowest pressure difference. 

Optimization techniques such as Response Surface Analysis (RSA) and a multi-objective 

genetic algorithm were combined. The results showed that using the genetic algorithm 

and the Pareto curve analysis effectively obtained optimal designs. Using these 

techniques, the authors improved the mixing rate by 21% and 14% when operating with 

Reynolds numbers equal to 1 and 10, respectively. Furthermore, applying fractal theory 

in micromixer design proved an assertive alternative since high mixing rates and low-

pressure differences were obtained. Santana et al. (2022) introduced a method for design, 

optimization, and prototyping micromixers inspired by plate column trays with high 

mixing efficiency. The authors used CAD modeling, Design of Experiments (DoE), and 

CFD to obtain the best designs. The optimal configuration was scaled-up, and a prototype 

was manufactured by 3D printing and used in the experimental synthesis of (Z)-5-(4-

hydroxy benzylidene)thiazolidine-2,4-dione (HBT), obtaining competitive results and 

showing the practical applicability of the design method by optimization based on CFD. 

Hasheminejad and Fallahi (2022) investigated using CFD, a flow-mixing methodology 

that uses vortex-induced vibrations (VIVs) of elastically-suspended cylinders. The 

authors studied the effects of mixer cross-sectional shapes (circular, square, tilted square, 



tilted elliptical, and vertical elliptical), channel blockage ratio, and velocity on mixing 

performance. The best performances for the stationary vertical elliptical and tilted square 

cylinders in narrow channels were achieved. At the same time, the VIV-based mixing 

designs did not lead to appreciable improvements in the mixing performance for those 

specific geometries. These findings indicate that high-performance micromixers can be 

designed by obstacle shape optimization. 

Adrian Bejan established the Constructal Theory in 1996 (Bejan, 1997). 

According to this theory, which was further explained and explored by Bejan and Lorente 

(2008) and many other books and articles, we understand that living systems evolve their 

configurations to facilitate access to the flows that keep them alive (Bejan and Lorente, 

2008). Thus, many engineering works have used a design method for thermal and flow 

systems called Constructal Design Method (CDM) (Bejan and Zane, 2012, Rocha, 

Lorente and Bejan, 2018, Borahel et al., 2022, and references therein). This method 

consists of identifying the flows that keep the system alive, i.e., the purpose of that 

system. These flows must be facilitated for the system’s best performance. Then the 

degrees of freedom (parameters) and constraints for the metamorphosis of the system are 

defined, and the effects of the parameters on the system's performance are determined. 

Thus, it seeks to evolve designs from basic to better performance forms. 

The application of CDM in the analysis of passive micromixers is scarce. The 

work by Cetkin and Miguel (2019) was the most relevant and similar to the ideas 

developed in the present study. The authors evaluated three passive micromixer designs 

- branched duct systems, branched ducts with spherical mixing units, and branched ducts 

with obstacles - regarding higher mixing and lower flow impedance, the latter parameter 

being a unique perspective in micromixer analysis. Concerning the first design, the 

authors identified that a longer, larger diameter main channel performs better. The other 

configurations showed higher mixing rates but higher impedance as well. Although, for 

a given flow impedance, the first design provides better mixing efficiency. All those 

designs were developed for volume-constrained systems, corroborating with Constructal 

Theory principles and thus offering an innovative way to evaluate micromixing devices. 

Among the works that motivated this study, we cite that of Ortega-Casanova 

(2017), who applied the Response Surface Method (RSM) to optimize the geometry of a 

T-type micromixer with two-bar mixing units. Starting from a reference geometry, the 

authors determined degrees of freedom, varying geometry parameters via computer 

simulation until an optimal configuration was obtained. Authors Rahmannezhad and 



Mirbozorgi (2019) performed a multiobjective analysis via CFD and RSM on a Y-type 

grooved micromixer with different obstacle shapes – circular, diamond square, seeking 

the highest mixing rates and lowest energy costs (pressure difference). They successfully 

obtained geometries that met the objectives for each obstacle shape. This idea was further 

improved by Mainochi et al. (2022) using machine learning tools. A neural network 

algorithm was used to train the data with the evaluated parameters, while a genetic 

algorithm was used to find the best geometry (high mixing and low pressure). Finally, 

Nikpour and Mohebi (2022) combined CFD, RSM, and different meta-heuristic 

algorithms for multi-objective optimization. They obtained satisfactory results in 

designing passive Y-type micromixers with obstructions, sharing a similar design with 

the previous works. The authors provided an insightful analysis of different multi-

objective optimization algorithms and identified the best one that suited their objectives. 

They found that diamond-shaped obstacles performed the best in mixing index and 

pressure difference.  

The present work proposes the evolution of micromixers from the designs 

introduced by Rahmannezhad and Mirbozorgi (2019) and Mainochi et al. (2022). Thus, 

the Constructal Design method, coupled with the Response Surface method and CFD, is 

used as a methodology of an evolutionary design for high-performance passive 

micromixers. For this, the geometry optimized by Mainochi, et al. (2022) is taken as a 

reference, and the design evolution, i.e., design change of a flow system with freedom to 

morph (Bejan, 2016), is proposed. 

 

2 METHODOLOGY 

2.1 Constructal Design Method 

The Constructal Design Method was used to design micromixers based on the 

workflow depicted in Figure 1. The method assumes the definition of a finite size system, 

the identification of the flow is the purpose of the system, i.e., which keeps the system 

alive, the definition of a performance indicator, the definition of constraints and degrees 

of freedom, evaluation of configurations, and a method for the identification 

(optimization) of the best-performing designs. The method was lightly adapted from the 

workflow presented by Borahel et al. (2022) and Cunegatto, Gotardo, and Zinani (2023). 

It follows the steps detailed below. 

 



 

Figure 1 – Constructal Design Method workflow. 

 

Step 1: Flow system 

The system under analysis is a two-dimensional micromixer, whose reference 

design was proposed by Mainochi et al. (2022). Two distinct species enter the device via 

two separate inlets and mix while they flow in the direction of the outlet, as shown in 

Figure 2(a). The micromixer is divided into two main sections: the Y-shaped inlets and 

the channel. A different species enters the device at the same speed at each inlet. The 

mixing process occurs in the mixing channel, which is 20 mm long and 200 m wide. 

The channel comprises semicircular structures – grooves – and circular obstacles 

responsible for changing the flow path and enhancing mixing. The region between every 

two following grooves is considered a cell. Grooves are separated by 1000 m. Figure 

2(b) represents the alternative design introduced to improve the reference design. The 

idea is to keep the area occupied by the obstacles constant (and equal to 0.256 mm2), and 

to increase the number of obstacles from the initial configuration, in which there is a total 

of 19. In the reference configuration, the obstacles are off-centered by 20 μm, as this was 

the best design found by Mainochi et al. (2022). In new configurations, the positions of 

the obstacles are defined by horizontal and vertical distances among them, denoted by H 

and V, respectively, followed by a number that represents the number of obstacles in each 

cell at each configuration. The obstacles are placed in staggered configurations, centered 

by the channel centerline. 



 

 

Figure 2 – Schematic drawing of the geometry: (a) General information of the reference geometry; (b) 

General information of the proposed geometry. 

 

Step 2: Flow and system’s purpose 

The system promotes mixing between the two species that flow through the 

channel. According to Constructal Theory, systems evolve to facilitate the flows that keep 

them alive. Thus, the flow to be eased is the advective-diffusive flow of mixing species. 

 

Step 3: Performance indicator 

Usually, the parameter used to evaluate the performance of a micromixer is the 

mixing percentage (φ), which is measured by the concentration profile in a vertical section 

of the main channel. We use this indicator in the present work. In this case, the position 

for measurement and evaluation is the outlet boundary of the micromixer. 

Mathematically, the mixing percentage is expressed by: 

 



 𝜑 = (1 −
𝜎

𝜎𝑚𝑎𝑥
) ∙ 100 [%𝑚𝑖𝑥]  (1) 

 

where σ represents the standard deviation and the subscript max indicates the maximum 

standard deviation, which is 0.5 for a mixture of two species. The expression used to 

calculate the standard deviation is: 

 

 𝜎 = √
1

𝑁 − 1
∑(𝐶𝑗 − 𝐶𝑗̅)

2
𝑁

𝑗=1

  (2) 

 

where N is the number of sample points in the vertical section, Cj is one species 

concentration in a j point, and C̅j is the average value of the concentration of that species 

in that section: 

 

 𝐶𝑗̅ =
∑ 𝐶𝑗

𝑁
𝑗=1

𝑁
 (3) 

 

However, configurations that improve mixing percentage usually increase the pressure 

difference (ΔP) along the channel, increasing flow resistance, and possibly impairing the 

flow. Thus, ΔP can also be a performance indicator of ease to flow: the lowest ΔP, the 

easiest the flow. In addition, it is helpful to define an alternative performance indicator. 

Ortega-Casanova (2017) has introduced the Mixing Energy Cost (MEC) design parameter 

for micromixers. MEC is defined as: 

 

 𝑀𝐸𝐶 =
𝑄𝑣∆𝑃

𝜑
 [

𝑊

%𝑚𝑖𝑥
] (4) 

 

where Qv represents the flow rate. Reducing the MEC is a way to simultaneously improve 

the mixing rate and pressure difference for a constant flow rate. So, in the present work, 

we analyze the system’s performance regarding φ, ΔP, and MEC. 

 



Step 4: Constraints 

 The system constraints are the area occupied by the obstacles and the mixer 

dimensions, as described in Figure 2(a). In addition, we restrict obstacle positions to 

guarantee that they do not overlap or occupy the spaces under or above the grooves, i.e., 

they can only occupy the main channel.  

 

Step 5: Degrees of freedom 

We propose to keep the area occupied by obstacles constant and to vary the 

number of obstacles per cell. For each number of obstacles per cell, the degrees of 

freedom are the horizontal and vertical distance between two co-linear obstacles. These 

are denoted by H and V, respectively, followed by the number of obstacles in a cell for 

that specific case. Each configuration, given by a certain number of obstacles per cell, 

and their distances, H and V, is replicated along the mixing channel.  

 

Step 6: Design of experiments (simulations) 

The experiments to evaluate the system`s response to parameter changes were 

done by numerical simulation (CFD). The system response variables were the mixing 

percentage and pressure difference, while the parameters were the degrees of freedom 

(horizontal and vertical distances) at each level of system evolution. The Design of 

Experiments (DOE) was carried out using the Central Composite Design (CCD) method. 

This method consists of a 2k factorial model, an axial model, and a central point, where k 

represents the number of factors (parameters/degrees of freedom). The distribution of the 

points of the CCD method allows, with few experiments (simulations), to have a general 

idea of the behavior of the response variable within the experimental space. Thus, the 

CCD was used to perform a screening in the search space to find the optimal 

configuration. Once such a configuration was found, a simulation was performed to assess 

whether the value predicted by the model was reliable. If the value was outside the curve, 

a new surface, including the previous optimal point, was generated to evaluate a new 

optimum. The process was repeated until both predicted and simulated values were 

agreed. This methodology was applied through the R Statistic programming language via 

the RStudio programming environment. Table 2 presents the values used in the 

configuration of the CCD model to create the experimental space for the case of three 

obstacles per cell. 

 



Table 1- Factor values used in the initial CCD screening space. 

Variable 

Levels 

Low Axial 

Level 
Low 2k 

Level 

Central 

Level 

High 2k 

Level 
High Axial 

Level 

V3 [μm] 50 57.32 75 92.68 100 

H3 [μm] 200 258.58 400 541.42 600 

  

The Response Surface Method (RSM) consists of creating a metamodel capable 

of predicting the behavior of the response variable from the results of experiments 

performed on specific combinations of parameters. Optimization via RSM is obtaining 

the optimal configuration through the generated metamodel (Montgomery, 2012). The 

advantage of RSM is that, in addition to determining a global optimum, it also allows the 

effects of independent variables and their interactions on the system response to be 

evaluated, called response surface. The mathematical models commonly employed are 

second-order regressions, whose solution can be obtained using least squares 

(Washington, 2011). The quality of the model fit is attested by the parameters MAE (mean 

absolute error), which represents the absolute difference between the results of the 

experiments and the model, and R-Squared or R² (coefficient of determination), which 

determines how well the model fits the experimental results (El Hami and Pougnet, 2020). 

It should be noted that the results of the experiments, in the present case, were the results 

of numerical simulations. The values of R² and MAE were calculated, respectively, by: 

 

 𝑅2 = 1 −
∑ (𝜑𝐶𝐹𝐷𝑖

− 𝜑𝑅𝑆𝑀𝑖
)

2𝑚
𝑖=1

∑ (𝜑𝐶𝐹𝐷𝑖
− 𝜑𝐶𝐹𝐷𝑖

̅̅ ̅̅ ̅̅ ̅)
2𝑚

𝑖=1

 (5) 

 

 

𝑀𝐴𝐸 =
∑ |𝜑𝑅𝑆𝑀𝑖

− 𝜑𝐶𝐹𝐷𝑖
𝑚
𝑖=1 |

𝑚
 

(6) 

 

where φ represents the mixing percentage (response variable), and the subscripts RSM 

and CFD represent the values predicted by the regression model and the simulated values, 

respectively; m represents the number of simulated data used to build the model. The bar 

in the denominator of Equation 5 indicates the mean value of the variable. 

 



Step 7: Experiments/simulations 

The mixing percentage and pressure difference for each numerical simulation 

necessary in the DOE was determined using ANSYS Fluent 2022R2 CFD software based 

on the Finite Volume Method (Patankar, 1980). 

 

Step 8: System’s evolution 

 Constructal theory predicts that for a system to survive, it must facilitate flows, 

over time, in a way that improves its goal. In this case, the design of a micromixer must 

change so that its objective, to mix substances, is improved. Based on this principle, we 

proposed to modify the geometry of Figure 2(b) by increasing the number of obstacles 

per cell. Therefore, as the number of obstacles per cell increased, their diameter should 

also change so that the restrictions concerning the finite size of the device and the constant 

area occupied by the obstacles were satisfied. Therefore, the proposed evolution path is 

illustrated in Figure 3. 

 



 

 

Figure 3 – Schematic drawings of the proposed micromixer system evolution: (a) 4 obstacles; (b) 5 

obstacles; (c) 6 obstacles; (d) 7 obstacles. 

 

 According to the workflow in Figure 1, the process was repeated according to the 

steps described above, adjusted to each evolution level. For the proposed evolutions, the 

adjustments were the new degrees of freedom and the determination of the search space 

for the new designs; the other steps followed the same procedure. Following the 

methodology and nomenclature employed in the previous steps, Table 2 presents the 

search space for the geometries at each degree of evolution, i.e., with each number of 

obstacles per cell. 

 

Table 2 - Factor values used in the initial CCD screening space for the new geometries. 

Variable Levels 



Low Axial 

Level 
Low 2k 

Level 

Central 

Level 

High 2k 

Level 
High Axial 

Level 

V4 [μm] 70 77.32 95 112.68 120 

H4 [μm] 150 193.93 300 406.06 450 

V5 [μm] 80 85.86 100 114.14 120 

H5 [μm] 170 196.36 260 323.64 350 

V6 [μm] 70 77.32 95 112.68 120 

H6 [μm] 140 160.50 210 259.50 280 

V7 [μm] 70 77.32 95 112.68 120 

H7 [μm] 160 171.72 200 228.28 240 

 

2.2 Mathematical modeling 

The flow inside the micromixers was modeled via a mixture model. The following 

equations model the momentum and the mass transfer for the two-dimensional problem 

domain depicted in Figure 4. These are the mixture mass balance equation, mixture 

momentum balance equations, and species 1 mass fraction equation, given by: 

 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (7) 

 𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑥
+ 𝜇∇2𝑢 (8) 

 𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑃

𝜕𝑦
+ 𝜇∇2𝑣 (9) 

 (𝑢
𝜕𝐶1

𝑑𝑥
+ 𝑣

𝜕𝐶1

𝜕𝑦
) = 𝐷12∇2𝐶1 (10) 

 

where u and v are the velocity vector components in directions x and y, respectively, P is 

the pressure,  is the mixture mass density (998 kg/m³),  is the mixture viscosity (8.9.10-

4 Pa.s), C1 represents the molar concentration of species 1. The concentration of species 

2 may be calculated as the molar concentration of all species at a particular place must 

sum one. D12 is the mass diffusion coefficient (1.10-9 m²/s) and 𝛻2 represents the tensorial 

relation: 

 



 𝛻2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 (11) 

 

As depicted in Figure 4, the boundary conditions associated are the following. 

Two distinct fluids, 1 and 2, enter the domain via inlets 1 and 2, with uniform velocity 

and concentration profiles. The velocity at both inlets is  Vin and the concentrations are 

C1 equal 100% and 0% at inlets 1 and 2, respectively. The microchannel walls and the 

surface of the obstacles are assumed to be no slip and impermeable. A manometric 

pressure equal to 0 Pa is prescribed in the outlet section. 

The Reynolds and mass Peclet numbers for this problem are given by: 

 

 𝑅𝑒𝑊 =
𝜌𝑊𝑉𝑖𝑛

𝜇
 (12) 

 
𝑃𝑒𝑊 =

𝑊𝑉𝑖𝑛

𝐷12
  

(13) 

 

where W is the main channel width, 200 μm. The velocity Vin was chosen so that ReW = 1 

and PeW = 891.8, typical ranges found in the literature (Wang et al., 2012; Rahmannezhad 

and Mirbozorgi, 2019; Chen et al., 2020; Mainochi et al., 2022). 

 

 

Figure 4 – Scheme for the problem domain and boundary conditions. 

 

2.3 Regression models 

The regression models used are exploratory and predictive and have been 

employed in previous works (e.g., Cunegatto, Gotardo, and Zinani, 2023). All the 

geometries idealized in this work present two independent variables (H and V) for one 



dependent variable (φ or ΔP). In this case, a second-order polynomial model was applied, 

with an interaction term included: 

  

 𝜑 = 𝛽0 + 𝛽1𝐻3 + 𝛽2𝑉3 + 𝛽3𝐻3𝑉3 + 𝛽4𝐻32 + 𝛽5𝑉32 (14) 

 𝐷𝑃 = 𝛽0 + 𝛽1𝐻3 + 𝛽2𝑉3 + 𝛽3𝐻3𝑉3 + 𝛽4𝐻32 + 𝛽5𝑉32 (15) 

 

where β represents the regression coefficients, determined using the least squares method 

(Washington, 2011). 

  

2.4 Numerical method 

The mathematical model was solved using the software ANSYS Fluent 2022 R2, 

using the scheme COUPLED for pressure-velocity coupling, interpolation equations of 

types PRESTO (Pressure Staggering Option) for pressure, QUICK (Quadratic Upstream 

Interpolation for Convective Kinematics) for momentum; Third Order MUSCL 

(Monotonic Upstream-centered Scheme for Conservation Laws) for species 

concentration. The convergence criteria were 10-6 for mass, 10-8 for momentum and 10-7 

for species concentration. 

The choice of these models was based on the results of the works of Ortega-

Casanova (2017) and Kouadri et al. (2021), which showed higher fidelity using these 

configurations when compared to experimental data. 

 

2.4.1 Computational mesh 

The construction of the numerical mesh was based on a standard element size for 

the main channel. In addition, a prism (inflation) structure was applied around the 

obstacles to organize the mesh better and capture the flow around these structures. The 

value adopted for the element size is based on the value employed in the works of 

Rahmannezhad and Mirbozorgi (2019) and Mainochi et al. (2022), which use Batchelor's 

Scale methodology as criteria. As per the application of this methodology, the estimated 

element size value for the works in question is at most 6 μm. 

Therefore, for fitting the parameters of the cited studies, the present work used the 

value of 5.2 μm as a reference for the determination of the mesh element size and, from 

this value, applied the GCI methodology (CELIK et al., 2008) for evaluation of 

subsequent refinements. As reported by Ortega-Casanova (2017) and Rahmannezhad and 



Mirbozorgi (2019), the mesh significantly influences this type of application, and coarser 

configurations tend to underestimate the mixture value, justifying the application of the 

GCI test. The values of the test are presented in Table 3. 

 

Table 3 – Mesh Parameters and Grid Convergence Index (GCI) test results. 

GCI - 3-cylinder arrangement – Central point configuration 

Mesh Nº elements 
Element size 

[μm] 

φ 

[%mix] 

ΔP 

[Pa] 
GCIφ GCIΔP 

1 (Fine) 479406 3.078 66.895 165.347 
2.216%12 0.464%12 

2 (Int.) 293022 4.000 67.998 165.035 

3 (Coarse) 177530 5.200 70.179 164.554 4.208%23 0.701%23 

 

The GCI test was performed on the mixing percentage (φ) results in the outlet 

section and the pressure difference (ΔP) between the inlets and the outlet of the 

micromixer. It can be seen that ΔP is little affected by mesh refinements since the 

maximum value found in the test (GCIΔP) was 0.701%, indicating that the influence of 

mesh on this variable is low. Inversely, the effect of mesh on φ is much more significant, 

reaching 4.216%. This effect has been observed in other works in the literature (Ortega-

Casanova, 2017; Kouadri et al., 2021) and is related to the methods to calculate pressure 

drop and mixing percentage. The area average of a primal variable - the pressure - 

calculates the pressure drop. The meshes may be considered converged for this variable 

because they are very fine. However, considering that the data set's mean and standard 

deviation are used to calculate the mixing percentage, a larger number of points tends to 

produce more scattered results. Because of this, a more refined mesh has more elements, 

and similarly, the solution is more distributed, which influences the calculation of the 

mixing percentage. Thus, we used the most refined mesh (1) depicted in Figure 5. 



 

Figure 5 – Computational mesh: (a) Mesh around the obstacle; (b) Mesh between the obstacles. 

 

2.4.2 Model validation 

The mathematical and numerical model validation was performed by comparison 

with the experimental results of Wang et al. (2012), considering the "Design 3" of that 

work, which is similar to the design in Figure 2 of the present work. The comparison of 

our numerical results with theirs is exposed in Figure 6. In the graph, the concentration 

profiles of one species at a specific position in the mixing channel (16 mm from the inlet 

of the main channel) are confronted. As described in the methodology of Wang et al. 

(2012), the experimental data were obtained through image analysis of the mixture. By 



color difference, it was possible to determine the concentration at each point of the 

channel cross-section. These results are for Reynolds number equal to one.  

 

Figure 6 – Validation of the mathematical model comparing the concentration profile of experimental and 

numerical results. 

Figure 6 allows us to observe the agreement between the results. In the low-

concentration region, the difference is more pronounced. The numerical simulation 

predicted a value close to 0.2, while the experiment predicted around 0.1. This difference 

can be related to numerous factors, such as the numerical mesh, discretization models, or 

experimental methodology. This difference was also presented in the works of 

Rahmannezhad and Mirbozorgi (2019) and Mainochi et al. (2022). It is important to note 

that a flatter profile, i.e., with a smaller concentration difference (lower standard 

deviation), indicates more mixing. The global numerical result is in good agreement with 

the experiments. The experimental result for mixing percentage was 39.1% for Wang et 

al. (2012) and 41.7% for the present work. 

We also compared our results with the numerical results of Rahmannezhad and 

Mirbozorgi (2019), named Ref.1, and Mainochi et al. (2021), named Ref.2, as identified 

in Table 4. The variables used as a comparison were the pressure difference (ΔP) and 

mixing percentage (φ) as a function of obstacle diameter (OD) and offset (OF), which are 

the variables studied by the authors. Regarding the former work, four different cases 

(including the optimized geometry) were compared, while in the latter, only the optimal 



configuration was compared. In Table 4, the subscript ref represents the reference result, 

while CFD represents the result obtained in the present work. 

Table 4 – Numerical verification of the results for basic designs. 

Geometric 

Parameters 
Variable Difference 

Reference 
OD 

[μm] 

OF 

[μm] 

ΔPref 

[Pa] 

ΔPCFD 

[Pa] 

φref 

[%mix] 

φCFD 

[%mix] 
ΔPdif φdif 

110.75 30 143.24 144.31 64.00 62.06 0.75% 3.03% Ref.1 

131 20 227.67 226.22 57.98 58.20 0.64% 0.38% Ref.2* 

90 0 141.27 142.47 54.81 53.66 0.85% 2.10% Ref.1 

105 22.5 151.14 152.96 62.92 61.00 1.20% 3.05% Ref.1 

90 30 108.69 109.09 60.14 58.87 0.37% 2.11% Ref.1 

Ref.1: Rahmannezhad e Mirbozorgi (2019) 

Ref.2: Mainochi, et al. (2022) 

*The results extracted from this reference were obtained at 16 mm from the main 

channel inlet. The other results were taken at the outlet section of the channel. 

 

The values in bold are for optimized configurations. It can be seen that the most 

significant differences are in the percentage of mixing, especially about Ref.1. This 

difference was already expected, mainly because of the numerical mesh, which, as 

demonstrated by the same authors, has influence depending on the element size (refining), 

mainly because of the calculation of the standard deviation, necessary to determine the 

percentage of mixing. Conversely, ΔP does not present significant differences. About 

Ref.2, the results are closer, as the mesh and methods employed were more similar. So, 

the results exposed here meet the project’s scope. 

 

3 RESULTS 

3.1 Performance indicators: mixing percentage and pressure difference 

The cases studied here represent geometries with two degrees of freedom: vertical 

distance between obstacles (V) and horizontal distance between obstacles (H). The 

response variables used to evaluate the geometries are the mixing percentage (φ) and the 

pressure difference (ΔP), assessed at the outlet section of the micromixers. The response 

surfaces were generated using the second-order model (Equation 11). Figure 7 presents 

the projections of the response surfaces for φ (left) and ΔP (right) for all levels of system 

evolution, i.e., from 3 to 7 obstacles. 

 



 

Figure 7 – Response surfaces for the proposed designs regarding mixture percentage (left) and pressure 

difference (right): (a) 3 obstacles, (b) 4 obstacles, (c) 5 obstacles, (d) 6 obstacles, (e) 7 obstacles. 

 

Regarding the surfaces of the mixing percentage (left), it can be noted that for 

cases (a), (b), and (c), it was possible to determine an optimal region at the intermediate 

limits of the experimental field. In contrast, cases (d) and (e) are closer to the maximum 

H limit. These results indicate that, in the latter cases, the obstacles should be more 

horizontally separated to ensure good mixing. Conversely, the modeling of φ for the 

cluster of three obstacles was more complex. Therefore, a third-order model, a simplified 



version of the model proposed by Cunegatto, Gotardo, and Zinani (2023), was used to 

ensure more accurate metrics. 

The vertical distance V has a more significant effect on the results for φ than the 

horizontal distance H, and this effect is more important as the number of obstacles 

increases. In case (e), the effect of H is minimal since φ varies only with respect to V.  

Regarding ΔP, the trend reverses for cases (a) and (b) so that H has a significant 

effect, especially at the lower bounds. As H increases from the region of optimal φ, the 

effect of V becomes more important since, from this point on, the obstacles become more 

separated for larger V and H, reducing ΔP considerably. The effects of H and V are 

practically equivalent to the other cases. It is important to note that the optimal 

configuration of mixing percentage is in intermediate regions of the maximum and 

minimum limits of ΔP. The evaluation of the metrics of the models used in generating 

the response surfaces is presented in the fit plots in Figure 8. 

 

 

Figure 8 – Fit plots for mixture percentage (left) and pressure difference (right): (a) 3 obstacles; (b) 4 

obstacles; (c) 5 obstacles; (d) 6 obstacles; (e) 7 obstacles 

 



The graphs in Figure 8 show that obtaining models with high fit and accuracy was 

possible. Case (b), referring to the mixing percentage, is the one that presented the worst 

metrics. It can be observed that the red points tend to be farther from the straight line in 

the range of values below the maximum, contributing to a lower fit and higher MAE. 

However, points near the region of interest, the maximum, are very close to the line, 

which is satisfactory. 

In case (a), the points are further away from the straight line in the region of 

maximum, but this difference is slight since the MAE is low. The MAE values of the 

graphs of ΔP have larger values than those of φ because of the difference in scale. It is 

important to note that the mathematical models of φ and ΔP are of the same order (order 

three for three obstacles and two for the other cases). 

Overall, the models fitted ΔP better than φ, indicating that the mixing percentage 

is more sensitive to the model. Finally, the models obtained sufficient metrics to provide 

the work’s scope. The optimal values of φ are shown in Table 5, with their respective ΔP. 

Table 5 – Table of maximum e optimal values. 

Nº 

obs. 
Vn,opt 

[μm] 

Hn,opt 

[μm] 

φmax,CFD 

[%mix] 

ΔP,CFD 

[Pa] 

φmax,RSM 

[%mix] 

ΔP,RSM 

[Pa] 

φ  

diff. 

ΔP 

diff. 

3 86.8 311.6 67.12 165.48 67.35 162.98 0.34% 1.51% 

4 91.6 287.1 67.93 174.01 67.88 177.73 0.07% 2.14% 

5 96.5 251.0 68.90 191.01 68.80 192.14 0.15% 0.59% 

6 93.9 262.6 69.55 195.82 69.60 197.26 0.07% 0.74% 

7 98.2 240.0 70.30 208.49 70.26 211.60 0.06% 1.49% 

 

The relative difference between the φ and ΔP obtained at the optimal points from 

the response surfaces by simulation is low, especially for φ. Conversely, ΔP shows more 

significant differences, even with more precise metrics, as seen in Figure 8, but still 

satisfactory.  

Regarding the optimal geometric configurations, there is a tendency for vertical 

spacing to increase and horizontal spacing to decrease as the number of obstacles grows. 

The H spacing decreases because of more obstacles, which limits its range of variation. 

It is important to note that because of the constant area constraint, the diameter of the 

obstacles decreases as the number of obstacles increases. Regarding the increase in V, this 

can also be associated with the system's head loss since, as seen in the ΔP surfaces, its 

influence is more significant, especially for a larger number of obstacles. With this, the 

geometry had to evolve so the flow had room for mixing. Finally, it is noted that φ also 



increases as the number of obstacles grows, in the same way as ΔP. Figure 9 illustrates 

the concentration contours in the optimal configurations for each design. 

 

 

Figure 9 – Concentration contours for each design evolution level at the optimal configuration: (a) 3 

obstacles; (b) 4 obstacles; (c) 5 obstacles; (d) 6 obstacles; (e) 7 obstacles. 

 

The concentration contours in the inlet region of the micromixer (left) show that 

the mixing layer between the two fluids is thin near the channel inlet. As it reaches the 

first groove, a slight disturbance in the flow occurs, which causes an increase in its 

thickness. This process intensifies as the mixture enters the "mixing unit" (arrangement 

of obstacles), which causes more significant disturbances in the flow. Upon reaching the 

second groove, the concentration layer is thicker than in the first groove, showing the 

effect of the obstacles on species mixing. 

 In the outlet section, one notices that the central axis interface is green, indicating 

100% mixing. Also, compared to the initial region, there are no longer regions of pure 

species (red or dark blue) but a mixture gradient along the channel cross-section. 

 The presence of more obstacles causes more disturbances to the flow, which 

improves the mixing rate by adding advective effects to an extremely slow flow. 

However, comparing cases (a) and (e), the difference in concentration is almost 

imperceptible, so the best design can be indicated only via a percentage of mixing 



analysis. In the evolution from (a) to (e), φ increases from 67.4% to 70.3% at the outlet 

of the micromixer. 

 

3.2 Performance indicator: Mixing Energy Cost 

The Mixing Energy Cost (MEC, Equation (4)) can be used to evaluate the 

performance of systems after analysis using φ and ΔP as response variables. Table 5 was 

built to evaluate the MEC of the best configurations obtained using the RSM, emphasizing 

the importance of having a high mixing percentage and keeping a low-pressure drop. The 

first two lines in Table 6 show the optimum results presented by Rahmannezhad and 

Mirbozorgi (2019) (Ref.1) and Mainochi et al. (2021) (Ref.2). The following lines present 

the optimal results for φ obtained in the present work. 

 

Table 6 – Mixing Energy Cost comparison of some of the best designs in this work. 

Design φ [%mix] ΔP [Pa] 
MEC 

[Pa/%mix] 

MEC Diff 

[%] 

Ref.1opt 62.06 144.31 2.33 - 

Ref.2opt 58.20 226.22 3.87 - 

3 obstacles 67.12 165.48 2.47 6.01% 

4 obstacles 67.93 174.01 2.56 3.65% 

5 obstacles 68.90 191.01 2.77 8.20% 

6 obstacles 69.55 195.82 2.81 1.44% 

7 obstacles 70.30 208.49 2.97 5.69% 

Ref.1: Rahmannezhad e Mirbozorgi (2019) 

Ref.2: Mainochi, et al. (2022) 

 

Table 6 shows that the MEC of Ref.1 was below the MEC obtained for the optimal 

configurations in the present work. However, the MEC of the optimal design in Ref.2 was 

above the values in the current work. The range of values obtained in this work is 

competitive. With the case of 3 obstacles, it was possible to increase, relative to Ref.1, 

the mixture by 8%, against a 6% increase in the MEC, which is a positive indication. The 

design with four obstacles showed a rise of 9.46% for the mixture and 9.87% for the 

MEC, which already became undesirable. In the cases of 3 and 7 obstacles, there is a 

4.74% increase in φ, against 20.24% in MEC, showing that the first design (3 obstacles), 

in terms of MEC, is the most efficient. Furthermore, considering the case of Ref.2, whose 

result was obtained at a distance of 16 mm from the junction point, the design with three 

obstacles obtained a mixing percentage of 57.10%, with ΔP of 136.14 Pa in the same 

region, a reduction of 39.82%.  



The last column of the table shows the difference between the MEC of the 

corresponding design versus the previous one. For example, the transition between 5 and 

6 obstacles showed a difference of only 1.44%, while the most significant difference is 

between the 4 and 5 obstacle design. Such metrics indicate that one has dramatically 

increased the overall pressure difference for little mixing percentage, which does not 

compensate for the use of this design. 

 The pressure difference analysis in micromixers can be easily performed using 

CFD since this practice at the experimental level has yet to be verified. Even if the 

microscale pressure is relatively low, the MEC becomes an important parameter for 

evaluating micromixer designs.  

 Some micromixers are employed as reactors to produce micro or nanoparticles. 

These particulates can accumulate in slow-flow locations, making it increasingly difficult 

for fluid to pass through, requiring more energy. With that in mind, designs that offer 

lower resistance to flow (ΔP) can mitigate this effect. This principle is associated with the 

Constructional Theory perspectives of facilitating the flow and ensuring system survival. 

Figure 10 depicts the pressure fields for the optimal cases of 3 and 7 obstacles. 

 

 

Figure 10 – Pressure contours for the optimal geometries: (a) 3 obstacles; (b) 7 obstacles. 

 

The pressure, in both cases, does not present any specific region of high gradient, 

presenting a practically uniform distribution along the flow direction. This behavior is 

beneficial for both designs since, from the images, it is not possible to detect any region 

of risk for obstructions. The behavior of the pressure difference is presented graphically 

in Figure 11. 

 



 

Figure 11 – Pressure difference profile along the channel length. 

 

The graphs show the pressure drop is much steeper overall for the seven-obstacles 

design. However, the distribution is more uniform than the three-obstacles design. The 

picture also contains the pressure difference at each mixing unit. At first, this difference 

is relatively small. However, each time the fluid passes through a mixing unit, it must 

overcome this pressure drop. Considering that both designs consist of 19 mixing units, 

the overall ΔP difference between them tends to increase linearly as the number of units 

increases. 

The regions where the pressure shows a nearly constant behavior represent the 

section between grooves and arrangements. Note that for the case of three obstacles, the 

area of constant pressure is larger due to the greater distance between the cylinder 

arrangements. Because of this, the pressure difference in the mixing unit is slightly 

steeper. This phenomenon can indicate both positive and negative aspects. The positive 

aspect is that this greater distance between the groove and obstacle arrangement 

contributes to lower ΔP, as little energy is required for the fluid to flow, as these regions 

are predominant in this design. However, the steeper behavior in the area in the obstacle 

arrangement indicates a higher local pressure drop. The graph in Figure 12 presents 

information regarding the mixing unit. 

 



 

Figure 12 – Local pressure difference at each mixing unit. 

  

As shown in the figure, the actual length of each mixing unit is different because 

the occupied spacing is larger with more obstacles. In this sense, the localized pressure 

drops are better distributed. Therefore, the length of each mixing unit is shown in the 

figure, indicated in the x-axis. 

 Analyzing the pressure difference as a function of length, it is possible to 

determine how much pressure the flow must overcome when passing through each mixing 

unit through the ratio ΔPn/xn. Thus, for the case of 7 obstacles, the approximate metric 

obtained is 13.45 Pa/mm versus 21.08 Pa/mm for the case of 3 obstacles. This analysis 

reveals that the 3 obstacles mixing unit may be more susceptible to obstructions from 

particulates from reactions between mixtures or of any other nature, impairing the 

functionality of the equipment. In this sense, it can be said that the mixing unit of the 7 

obstacles design is more efficient than the others. Figure 13 illustrates the velocity 

magnitude contours and streamlines in the mixing units of the optimal configurations with 

3 and 7 obstacles.  



 

Figure 13 – Streamlines and velocity magnitude contours for optimal configuration at the mixing unit: (a) 

3 obstacles; (b) 7 obstacles. 

The results show that no recirculation occurred downstream of the obstacles due 

to the low inertia in the flow (Re = 1). Considering the velocity field, the flow is slightly 

faster in the mixing region (colored red) in design (a). Combining this with the motion of 

the streamlines, the area between the obstacles is where the velocity changes direction 

precisely because of the presence of the obstacles, causing one substance to move toward 

another, essential for the enhancement of mixing. 

The correspondence between the velocity (Figure 13) and concentration (Figure 

9) contours is remarkable. Mixing is complete (100%) in regions with the highest 

velocity. With fewer disturbances in the flow, the design with 3 obstacles has lower 

resistance, resulting in higher velocity in the mixing region, leaving it more intense. In 

contrast, in the 7-obstacles design the fluids change direction more often and perform 

slightly better in mixing percentage. 

Another issue observed in both designs is the low-velocity regions, dark blue, 

especially in the channel's upper and lower parts. According to the Constructional Theory, 

regions that do not add to the purpose of the system move it away from “optimal packing”. 

Furthermore, these upper and lower regions contribute little to mixing the substances 

because the velocity is extremely low, and the interface between one and the other is far 

away. Therefore, these stagnant zones mix with the central region purely by diffusion, 



resulting in a much slower mixing process, giving rise to a high concentration gradient 

and, consequently, a lower mixing ratio. 

A general summary of the cases studied in this work is shown in Figure 14. Figure 

14(a) presents the performance of the evaluated designs, and it can be seen that the 

increase in mixing percentage follows the increase in pressure difference. While the 

mixing percentage tends to increase uniformly with increasing obstacles, ΔP shows a less 

organized behavior with steep sections, such as the transition of cases from 4 to 5 and 6 

to 7 obstacles. Therefore, the best designs are those where the vertical distances between 

the points of φ and ΔP are larger since it is possible to identify the slope of the curve: the 

steeper the curve of φ relative to ΔP, the more efficient the design. Visually, the cases 

with the greatest vertical distance between the points are the 4 and 6 obstacles. 

The geometric evolution plot (Figure 14(b)) shows that H and V have an opposite 

effect as the number of obstacles increases. Thus, several obstacles require reducing 

horizontal spacing (H) for the cluster to fit within the desired spacing. Increasing V 

indicates that the obstacles get further apart vertically, compensating for the reduced H-

spacing, which ensures room for the mixture to flow. However, the 6-obstacles design is 

a non-standard case, as the vertical spacing has decreased while the horizontal spacing 

has increased from the previous case. This change in the spacing values brought positive 

aspects to the design since the increase in the mixing percentage offset the rise in the 

overall pressure difference. Since the 5-cylinder design was identified as the least 

efficient, this may be a point outside the curve rather than the 6-cylinder design. 

Figure 14(c) shows the behavior of the MEC (in blue) compared to the other 

references (green and red). In this case, we identify the best designs in which the MEC 

remains practically constant in the previous case. As in Figure 14(a), the cases with 4 and 

6 obstacles maintain an almost constant MEC relative to the previous design, providing 

more options. All proposed designs lay below Ref.2 (red line), which originated the 

reference geometry. 

 



 

Figure 14 – Overview of the designs studied in this paper: (a) Performance; (b) Geometric evolution; (c) 

Mixing Energy Cost; (d) Local pressure difference. 

 

Finally, Figure 14(d) presents the difference in local pressure between the designs 

studied. Again, design 5 gives an undesirable behavior of ΔP/x, which is practically 

constant about the previous case, when the expected would be a more significant 

reduction. A similar trend is presented between designs 6 and 7. As seen in the earlier 

analyses, local pressure loss is a negative aspect of the design of a micromixer and should 

be minimized. The most intense variation is between the designs with 3 and 4 obstacles. 

This variation can be interpreted as follows: there is not an optimal packing of the mixing 

unit in Design 3 since the pressure shows more significant gradients in this region. 

According to Constructal Theory, the optimal geometry is the one that best distributes the 

imperfections. 

Considering the objectives of the work, all the proposed designs met the objective, 

and, according to the most critical variable (φ or MEC), one of the designs can be selected. 



However, it is essential to note that there will always be a design that will perform better 

than another in some specific aspect. In this sense, it is of fundamental importance to 

analyze the parameters of each design to choose the one that best suits its function.  

 

4 CONCLUSIONS 

In this study, an evolutionary design of passive micromixers was performed based 

on the principles of Constructal Theory. The Constructal Design Method, associated with 

Response Surface Optimization Method and Computational Fluid Dynamics, was a guide 

from an initial configuration, morphing to a better performance configuration and adding 

different degrees of freedom, evolving to even better designs.  

The mixing percentage at the channel outlet, the pressure difference from inlet to 

outlet, and the Mixing Energy Cost (MEC) measured system performance. From an 

evolution level of 3 obstacles per cell, vertical and horizontal distances between obstacles 

were optimized. Then, more obstacles were added, up to 7 per cell, and obstacles 

distances were optimized, increasing the mixing percentage for each evolution level. 

The initial design results (i.e., three obstacles) showed that vertical distance has a 

more significant effect on the mixing percentage, as the horizontal distance effect is more 

substantial on the pressure difference. From the response surfaces, it was possible to 

notice that the best mixing performance was in an intermediate range of the pressure drop. 

In terms of MEC, this design performed better than previous studies, with a 2.47 and 

67.12% mixing index value, satisfying this study’s objectives. As for the other designs, 

the vertical distance effect trend was the same, and the horizontal distance effect on 

pressure drop was weaker. The latest design evolution (i.e., seven obstacles) achieved the 

best mixing percentage, 70.30%, meaning an increase of 4.74%, with a pressure drop of 

208.49 Pa, 20.24% higher than the initial design. This design returned a MEC of 2.97, 

which is greater than the initial design but lower than the reference design. From this 

point of view, the three-obstacle design was better. However, considering the local 

pressure drop gradient, it was observed that the seven-obstacle design had the lowest, 

13.45 Pa/mm, which makes it less susceptible to obstructions. At the same time, the 

highest one, 21.08 Pa/mm, occurred for the three-obstacle design. This analysis revealed 

a new performance indicator for micromixer designs, which might be valuable in 

choosing the best design. 

Based on the principles of a system’s survival by its evolution towards facilitating 

the flows that keep it alive, this work presented the evolutionary design of a micromixer 



from the perspective of the Constructal Theory. When the system had more freedom, it 

favored its performance. From the Constructal Theory, the best designs presented herein 

are not final. They could be even better improved if more freedom is given. Adding 

degrees of freedom can lead to endless possibilities for design evolution. The most 

straightforward approach would be changing the shape of the obstacles, the shape of 

grooves, or the dimensions (length, width) while respecting the constraints or relaxing 

constraints for a greater design range. From the Constructal Law perspective, greater 

performance designs might be found while the system is free to evolve.  

Optimization of the design of micromixers may contribute to increasing the 

performance of such devices and motivating research on the manufacturing processes of 

microdevices. With the rapid development of manufacturing processes, building 

prototypes of optimized micromixers tends to be more feasible and cheaper over the 

following years. With the possibility of building low-cost prototypes, the optimized 

designs shall be tested and validated.  

Overall, micromixer design brings opportunities regarding applications in various 

industries such as chemical, pharmaceutical, biotechnology, energy, and food production, 

being also a test bench for the development of optimization methods, especially for 

passive micromixers, which rely on geometry to increase the mixture. Also, Constructal 

Theory brings the idea of evolutionary design for engineering systems. Thus, the 

proposed and every micromixer design could evolve to achieve better mixing.  
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