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Abstract
Surface soil moisture is a key hydrologic state variable that greatly influences the global 
environment and human society. Its significant decrease in the Mediterranean region, regis-
tered since the 1950s, and expected to continue in the next century, threatens soil health and 
crops. Microwave remote sensing techniques are becoming a key tool for the implementa-
tion of climate-smart agriculture, as a means for surface soil moisture retrieval that exploits 
the correlation between liquid water and the dielectric properties of soil. In this study, a 
workflow in Google Earth Engine was developed to estimate surface soil moisture in the 
agricultural fields of the Marche region (Italy) through Synthetic Aperture Radar data. 
Firstly, agricultural areas were extracted with both Sentinel-2 optical and Sentinel-1 radar 
satellites, investigating the use of Dual-Polarimetric Entropy-Alpha decomposition’s bands 
to improve the accuracy of radar data classification. The results show that Entropy and 
Alpha bands improve the kappa index obtained from the radar data only by 4% (K = 0.818), 
exceeding optical accuracy in urban and water areas. However, they still did not allow to 
reach the overall optical accuracy (K = 0.927). The best classification results are reached 
with the total dataset (K = 0.949). Subsequently, Water Cloud and Tu Wien models were 
implemented on the crop areas using calibration parameters derived from literature, to test 
if an acceptable accuracy is reached without in  situ observation. While the first model’s 
accuracy was inadequate (RMSD = 12.3), the extraction of surface soil moisture using Tu 
Wien change detection method was found to have acceptable accuracy (RMSD = 9.4).

Keywords Surface soil moisture · Agricultural fields · Sentinel-1 · Sentinel-2 · Google 
Earth Engine · Tu Wien model

1 Introduction

Surface soil moisture (SSM) describes the water content of the top few centimeters of soil 
and is a fundamental boundary condition that influences land surface-atmosphere heat and 
water exchanges, essential for drought monitoring (Long et al., 2019), heat waves predic-
tion (Fischer et al., 2007) and soil loss by water erosion estimation (Todisco et al., 2015).
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Climate change is modifying SSM variability and its feedbacks with precipitation and 
temperature; a significant decrease in soil moisture has been registered since the 1950s in 
the Mediterranean region, particularly in south-eastern and south-western Europe (EEA, 
2017; Kurnik et al., 2015). By the end of this century, a decrease of 20% in land surface 
water availability is predicted (Mariotti et  al., 2008), due to the fast-warming trend and 
changes in the distribution and intensity of precipitations (EEA, 2017). In agricultural 
lands, SSM exerts relevant effects on yields, providing the transpirable water for plants, 
controlling rainfall-runoff response, and the diversity in ecosystems (Robinson et  al., 
2008). In a climate-smart agriculture (FAO, 2022) perspective, monitoring SSM in agricul-
tural fields at high temporal and spatial resolution is essential to safeguard soil and water 
resources, developing sustainable cropping systems, and thus positively determine the 
adaptability to new climate scenarios (Lewis, 2019). SSM estimate can find applicability 
in irrigation scheduling, to facilitate a rational use of water, reduce plant stress and improv-
ing crop yield (Pradhan et al., 2018). It could also encourage diversification of production 
orientations at the expense, in areas where it is environmentally sustainable, of low-income 
crops (Zucaro et al., 2009).

In situ measurements of SSM provide distributed point measurements which, due to the 
large dynamism of the soil moisture parameter, are not sufficient to characterize its spatial 
and temporal variability at larger scale (Panciera & Monerris, 2013). Instead, microwave 
remote sensing techniques provide an exceedingly powerful means for SSM retrieval, both 
with passive (Mohanty et al., 2017), and active sensor (Bauer-Marschallinger et al., 2019; 
Hornacek et al., 2012). These measurements exploit the correlation between liquid water 
and the dielectric properties of soil, which influence, along with several other physical 
characteristics and sensor parameters, the interaction between the electromagnetic power 
and the target material (Woodhouse, 2017).

However, many passive microwaves satellites, which are providing SSM estimation 
at low resolution from the decades (Fang et  al., 2019), are not suitable for agricultural 
monitoring.

Instead, Synthetic Aperture Radar (SAR) can provide higher-resolution data measur-
ing the backscattering coefficient,�0 , defined as the ratio of the incident to received signal 
intensity, normalized to the actual scattering area (Meyer, 2019; Pulvirenti et  al., 2018). 
Nevertheless, ground roughness and the presence of vegetation complicate the SSM 
retrieval (Bindlish & Barros, 2002).

The models which have been developed to address the soil moisture retrieval problem 
can be divided into two main approaches: snap-shot algorithms and multi-temporal algo-
rithms. Snap-shot model are usually grouped into theoretical (Fung et al., 1992; Hajnsek 
et al., 2003), empirical (Oh et al., 1992; Zribi & Dechambre, 2003)—among which the use 
of Artificial Neural Network techniques (Ge et al., 2018) has recently been introduced—
and semiempirical algorithms (Panciera & Monerris, 2013). For vegetated areas, the 
popular semiempirical algorithm Water Cloud Model (WCM) uses calibration parameters 
to isolate the soil contribution and, subsequently, employs the linear correlation between 
SAR backscatter measurement and volumetric soil moisture (Baghdadi et  al., 2006) to 
retrieve SSM. On the other side, multi-temporal approaches are popular techniques to 
generate global high-resolution soil moisture products (Bauer-Marschallinger et al., 2019; 
Bhogapurapu et al., 2022), using more acquisition to minimize the effect of vegetation and 
roughness.

Radar SSM retrieval over the Italian peninsula has been an object of interest in the last 
years, especially for the southern part of Italy, more vulnerable to drought and desertifica-
tion (Filion et al., 2016; Montaldo et al., 2021).
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Sentinel-1 mission provides dense time-series of SAR data, making possible to relate 
short term changes in the backscattering coefficient to SSM variations (Balenzano et al., 
2010; Pulvirenti et al., 2018). To take advantage of the great availability of Sentinel-1 high-
resolution acquisition, the Tu Wien multi-temporal change detection method, originally 
developed for ASCAT data, has been modified according to Sentinel-1 SAR data character-
istics by Bauer-Marschallinger et al. (2019).

Nowadays, besides these case studies, the Copernicus Global Land Service estimates 
are available for SSM with a low spatial resolution ( 1km ) and the MULESME software, 
which makes use of multi-temporal Sentinel-1 acquisition to obtain a systematic mapping 
of surface soil, is tested.

In this study, the Marche region has been considered. Located in central east of Italy and 
characterized by an agrarian landscape of sharecropping origin, it is evaluated as highly 
vulnerable to climate variations, especially regarding agricultural productivity (Shukla 
et al., 2019). In 2007, 9% of the Marche territory was considered sensitive or vulnerable 
to desertification, while only 5 years before, in 2002, the region had not been included in 
the National Atlas of the areas at desertification risk (Costantini et  al., 2007). The main 
regional soil degradation systems, that can lead to functional sterility, include denudation 
by water erosion and drought (Costantini et al., 2007).

In order to estimate the SSM in agricultural areas, a workflow has been developed in 
the cloud computing platform Google Earth Engine (GEE). Firstly, agricultural areas are 
derived from a land use/land cover (LULC) Random Forest classification, using both opti-
cal (Sentinel-2) and radar (Sentinel-1) data, and the Entropy-Alpha dual pol decomposition 
parameters. Subsequently, SSM is estimated using the semiempirical model WCM and the 
change detection Tu Wien model.

This study has two objectives:

• the first goal is to investigate the use of polarimetric decomposition’s bands H/� to 
improve the accuracy of classification (Banque et al., 2015)

• the second goal is to implement in GEE Tu Wien and Water Cloud Model (WCM) 
using calibration parameters derived from literature, to test if an acceptable accuracy is 
reached without any in situ observation.

2  Materials and method

2.1  Study area

The study area is the Marche region, located in central-northern Italy and overlooking the 
Adriatic Sea (Fig. 1a). The Foglia River and the Tronto River indicatively delimit the north-
ern and southern boundaries of the region, while the Apennines and the Adriatic Sea mark 
its western and eastern limits (Fig. 1b). The region covers a total area of 9, 694, 51km2.

The regional territory is characterized by a hillside morphology that slopes towards the 
sea; the coast extends north to south for 173km and represents the only flat area of the 
region. Marche rivers cross the region from west to east, producing valley furrows that 
gradually expand near the mouth, forming a characteristic comb-like structure. Despite 
the rapid expansion of urbanized or infrastructure-occupied areas, especially in coastal 
area (Appiotti et  al., 2014), Marche region remains largely rural (Istat, 2013), since the 
Total Farmland Area (TFA) and the Utilized Agricultural Area (UAA) cover 76.5% of 
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the territory, and the agricultural lands are widely distributed throughout the region (Istat, 
2013). Instead, forests and unused land, are found predominantly in the southwest, on the 
Appennino Umbro-Marchigiano mountains (Arzeni, 2003). The average surface area per 
farm has increased since 1980s, reaching 10.52 hectares in 2010, higher than the national 
average of 7.93 hectares (Istat, 2013).

Almost 80% of the UAA is planted with arable crops, just below 375 thousand hectares 
(Istat, 2013), and the most widely grown cereal is durum wheat. The presence of clay-rich 
soils and the rotation of durum wheat with spring–summer crops, among which sunflower, 
sugar beet and sorghum, implies the use of frequent tillage, which exposes the soil to ero-
sion by surface runoff, organic matter mineralization and nitrate leaching for long periods 
(Zucaro et al., 2009).

Water erosion is particularly critical in the hilly terrain of the Marche region, where the 
relationships between cropping systems and the environment are strongly affected by crop 
water balance and water flows (Borrelli et al., 2016). Instead, the vulnerability to droughts 
is increased by the fact that the prevalence of durum wheat crops, a dry soil cultivation, 
has discouraged public investments on the creation of irrigation facilities. Consequently, 
it is more difficult for the farmers to diversify production in reaction to the decrease 
which interested the agricultural incomes of large-scale consumer products during the last 
decades.

2.2  Dataset

The dataset was created using Sentinel-1 (S1) and Sentinel-2 (S2) data (Table 1). All data 
were georeferenced in the default cartographic reference system of GEE WGS84/Pseudo-
Mercator (EPSG: 3857). The Sentinel-1 mission comprises a constellation of two polar-
orbiting satellites, both carrying a C-band SAR dual-polarized instrument with a frequency 
of 5.405GHz and a revisit period of 12 days (Torres et al., 2012). For this study, S1A and 
S1B data at interferometric wide swath (IW) mode and Level-1 of processing were used. 
IW acquires data with a 250km swath at 5m × 20m spatial resolution, and an incidence 

Fig. 1  Study area. (a) Marche region and its provinces. (b) Elevation and rivers (Reference system: 
WGS84/Pseudo-Mercator, EPSG: 3857)
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angle, �i which ranges between 29.1◦ and 46.0◦, i.e., the angle between the incoming EM 
wave and the normal to the reference surface.

Ground Range Detected (GRD, below called S1-GRD) images are already ingested in 
Google Earth Engine (GEE), while Single Look Complex (SLC, below called S1-SLC) 
were downloaded from the Alaska Satellite Facility (https:// asf. alaska. edu/). S1-SLC 
images are used to calculate Entropy, Alpha and Anisotropy parameters through Dual-
Polarimetric Entropy-Alpha dual polarimetric decomposition. Marche region is acquired 
by path 44 and 177 for ascending orbits, and 22 and 95 for descending orbits.

Sentinel-2 is a multi-spectral imaging mission with two polar-orbiting satellites carry-
ing a Multispectral Instrument (MSI) which acquires passively in 13 spectral bands with a 
spatial resolution of 60m for the aerosol band, 10m for visible and 20m for infrared bands.

From 2015 to 2020, the land cover classification was carried out twice a year, for a total 
of 48 S1-GRD scenes, 48 S1-SLC scenes and 12 S2 intervals. The whole product names 
can be found in the Online Resource 1.

2.3  Procedure

Figure  2 shows the whole applied procedure (see GitHub repository). Each S1 and S2 
scene has been preprocessed and used to extract the agricultural areas of the Marche region 
through a supervised Random Forest classification. Subsequently, Tu Wien and Water 
Cloud Model were implemented in the GEE cloud computing platform and validated using 
in situ measurements made by two International Soil Moisture Network (ISMN) stations 
in Umbria, in August 2015. Finally, the estimates were applied to an agricultural area of 
125ha , where the relationship between different agricultural land covers, soil moisture and 
precipitation was analyzed.

Table 1  The list of acquisition dates for both radars, S1-SLC and S1-GRD, and optical datasets, S2

Bold text refers to the subset of images used for the comparison between GRD and SLC (see the details in 
the following sections)

Sentinel-1 Sentinel-2

Ascending Descending Intervals

Path 44 Path 117 Path 95 Path 22

28-08-2015 02-09-2015 01-09-2015 27-08-2015 from 10-08-2015 to 20-09-2015
26-12-2015 19-12-2015 30-12-2015 25-12-2015 from 15-12-2015 to 15-01-2016
03-09-2016 08-09-2016 26-08-2016 23-08-2016 from 15-08-2016 to 15-09-2016
26-12-2016 13-12-2016 30-12-2016 31-12-2016 from 01-12-2016 to 15-01-2017
23-08-2017 22-08-2017 21-08-2017 22-08-2017 from 15-08-2017 to 15-09-2017
27-21-2017 26-12-2017 25-12-2017 26-12-2017 from 01-12-2017 to 15-01-2018
23-09-2018 22-09-2018 27-09-2018 28-09-2018 from 15-08-2018 to 15-09-2018
28-12-2018 27-12-2018 26-12-2018 27-12-2018 from 01-12-2018 to 15-01-2019
12-09-2019 11-09-2019 10-09-2019 11-09-2019 from 15-08-2019 to 15-09-2019
04-01-2020 03-01-2020 02-01-2020 03-01-2020 from 01-12-2019 to 15-01-2020
18-09-2020 17-09-2020 16-09-2020 17-09-2020 from 15-08-2020 to 15-09-2020
23-12-2020 22-12-2020 21-12-2020 22-12-2020 from 01-11-2020 to 30-12-2021

https://asf.alaska.edu/
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2.3.1  Preprocessing

Preprocessing of S2 and S1-GRD was realized in GEE, and the obtained data were then 
exported as Asset in the Code Editor. Instead, S1-SLC dataset was preprocessed in the Sen-
tinel Application Platform (SNAP), because GEE does not support images with complex 
values, such as phase and amplitude, due to the inability to average them during pyramid-
ing ingestion (“Google Earth Engine Guides”, n.d.).

Sentinel-2 data with level 1C processing provided by GEE were used. These data have 
been orthorectified and radiometrically corrected by GEE, providing top-of-atmosphere 
reflectance values; images bands have maintained their original spatial resolution. The 
masking of the cloud areas has been realized through the probability band in the data-
set Sentinel-2 Cloud Probability, which was created with the sentinel2-cloud-detector 
library, and the Cloud Displacement Index (CDI), using the near-infrared parallax (Aleks-
Mat, 2022; Skakun et  al., 2022). To obtain a cloud-free composite, images acquired in 
30–45 days were temporally aggregated using the mean method.

Each S1-GRD scene provided by Google Earth Engine has been preprocessed using 
the SNAP Toolbox, applying the following steps: thermal noise removal, radiometric 
calibration and terrain correction using Shuttle Radar Topography Mission (SRTM) 
elevation digital model to 30m (Farr & Kobrick, 2000). The scenes for the land cover 
classification were filtered for the speckle. This is a physical phenomenon caused by the 
interference of coherent waves reflected from many elementary scatterers, corrigible 
through the Refined Lee Filter implemented in GEE by Guido Lemoine (Thorp & Drajat, 
2021). Considering the hilly topography of the study area (Fig. 1b and Fig. 3a), an angu-
lar-based radiometric slope correction was applied to the images (Fig. 3b). The model, 
implemented by Vollrath et  al. (2020), is based on the angular relationships between 
the SAR image and the terrain geometry, and it is optimized for surface scattering and, 
therefore, for soil characteristic analysis. In addition, a mask is applied for active layover 
and shadow (Fig. 4).

Fig. 2  The workflow to retrieve surface soil moisture in agricultural fields in Marche region (Italy). The 
procedure was applied to each S1 and S2 data
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S1-SLC data were processed applying the following operators through SNAP: S-1 
TOPS Split, Apply Orbit File, Calibrate, S-1 TOPS Deburst, S-1 TOPS Merge, C2 Polari-
metric Matrix Generation, Polarimetric Decomposition, Multilooking. Both S1-GRD and 
S1-SLC images were finally mosaicked in GEE. Previous investigations into radiomet-
ric consistency reveal no significant radiometric biases between SLC and GRD products 
(Small, 2016). However, considering all applied preprocessings and that S1 assets in GEE 
have been processed at different times with several Toolbox versions and settings, GRD 
and SLC datasets were compared to ensure that their mean radiometric difference was 
below S1 radiometric accuracy ( 1dB ). The comparison was carried out on GEE using the 
preprocessed datasets (bold in Table 1), except for C2 Polarimetric Matrix Generation and 
Dual-Polarimetric Entropy-Alpha dual pol decomposition. The comparison shows mean 
difference values below 1dB in each scene, with maximum difference of 0.40dB (Std Dev 
1.54 ) for band VH and 0.27dB (Std Dev 1.68 ) for band VV. Therefore, Entropy, Alpha and 
Anisotropy values derived from SLC can be considered representative of GRD images.

2.3.2  Polarimetric decomposition

Incoherent polarimetric decomposition was originally designed for full-polarimetric 
data to separate the 3 × 3 Hermitian average covariance ⟨T⟩ and ⟨C⟩ matrices as the com-
bination of simpler or canonical objects, presenting an easier physical interpretation 

Fig. 3  Comparison between an original image: (a), and a radiometric slope corrected image (b). Acquisi-
tion date: 10-09-2019. Descending orbit. RGB bands: VH, VV, VH

Fig. 4  Active layover (yellow) and 
shadow mask (red). Acquisition date: 
12-09-2019. Ascending orbit. Local �

i
 

is the background image
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(Haldar et  al., 2019; Harfenmeister et  al., 2021). In this study, the Entropy-Alpha 
decomposition modified by Cloude and Pottier (1996) for dual-polarized data is used. 
Considering the scattering matrix 

[
SVV−VH

]
(Eq. 1):

Each of the elements Spq is a complex number, describing phase and amplitude of 
transmitted, p , and received, q , polarization (Woodhouse, 2017). Sentinel-1 is a linear 
dual-polarized instrument, and, in IW acquisition mode, it mainly transmits a verti-
cal polarized signal, V  , and measures the echo in both vertical, V  , and horizontal, H , 
polarization. SVV is the co-polarized signal, while SVH is the cross-polarized signal. The 
corresponding scattering vector based on the Pauli matrices, k , is composed by the co-
polarized term and twice the cross-polarized term (Eq. 2):

k is needed as the scattering matrix 
[
SVV−VH

]
 is only able to characterize the so-called 

coherent or pure scatterers; to describe distributed target scattering ⟨CVV−VH⟩ is calculated 
from (Eq. 3):

where ⟨⟩ denotes ensemble averaging (Woodhouse, 2017). ⟨CVV−VH⟩ is decomposed (Eq. 4) 
as follows (Ji & Wu, 2015):

where [V] is the eigenvector matrix which contains the eigenvectors ��⃗vi (Eq. 5):

and [Λ] is the diagonal eigenvalues matrix, i.e., a diagonal representation of the covariance 
matrix in a Cartesian coordinate system, whose axes are the related eigenvectors.

Once ⟨CVV−VH⟩ is decomposed, the three simpler canonical scattering mechanism 
matrices 

[
Ti
]
 are derived from the Eq. 6:

Each eigenvector ��⃗vi , multiplied by its complex conjugate ��⃗vi*, corresponds to a scat-
tering mechanism

[
Ti
]
 , while the related eigenvalue �i expresses the importance of each 

mechanism on the total backscattered power, called SPAN. The analysis of the physical 
information provided by this eigen decomposition is usually carried out through three 
parameters, derived from the eigenvalues and the eigenvectors of⟨CVV−VH⟩:

• the Entropy H (Eq. 7), which expresses the degree of randomness of the scattering 
mechanism

(1)
[
SVV−VH

]
=

[
0 SHV

SVH SVV

]

(2)k =
[
SVV2SHV

]t

(3)⟨CVV−VH⟩ = k ⋅ kt

(4)⟨C
VV−VH⟩ = [V] ⋅ [Λ] ⋅ [V]−1

(5)[V] =
[
��⃗v1 ��⃗v2 ��⃗v3

]

(6)⟨CVV−VH⟩ =
�
T1
�
+
�
T2
�
+
�
T3
�
= 𝜆1( ��⃗v1 ��⃗v1 ∗) + 𝜆2( ��⃗v2 ��⃗v2 ∗) + 𝜆3( ��⃗v3 ��⃗v3 ∗)

(7)H =

3∑

i=1

p
i
⋅ log3

(
p
i

)
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where pi (Eq. 8) expresses the relative importance of this eigenvalue �i with respect to 
the SPAN:

• the Anisotropy A(Eq. 9), which quantifies the relationship between the second and the 
third eigenvalue and is complementary to the Entropy:

• the Alpha angle � (Eq. 10), which describes the averaged scattering mechanisms:

  For fully polarized data � → 0 indicates surface scattering;� → �∕4 indicates vol-
ume scattering and � → �∕2 indicates double bounce scattering.

Equations 7, 8, 9 and 10 are derived from Ouarzeddine et al. (2006). H, A and α has 
been calculated in each SLC scene. The results were uploaded in GEE in geoTIFF format, 
where they were filtered applying the Refined Lee Filter and radiometric slope corrected 
with Vollrath et al. (2020) model.

2.3.3  Agricultural areas extraction

Land use/land cover classifications were carried out through one the most frequently used 
supervised algorithm in GEE, the Random Forest (Kumar & Mutanga, 2019), with 500 
trees testing several band datasets. Normalized Difference Vegetation Index (NDVI), Nor-
malized Difference Built-up Index (NDBI), sum and ratio radar bands were considered 
also. Seven classes were selected: forest, bare soil, water, agricultural fields, urban areas, 
mixed vegetation, and snow. Training areas are manually added as polygons based on the 
official Land Cover Map created by Marche region (2007) and derived from visual inter-
pretation of S2 natural color images (Fig. 5).

Training data are 6.48% of total pixels, while validation data, randomly extracted by the 
selected polygons, are 1.62%. Ascending and descending images are classified separately 
and, to speed the classification process, each province was classified individually. Table 2 
shows the four datasets considered: optical dataset (OP, optical bands and their combina-
tions), radar dataset (RD, radar bands), polarimetric dataset (PD, polarimetric parameter H 
and α, and radar band combinations) and total dataset (TD, optical dataset, radar dataset, 
and polarimetric dataset).

Mtry hyper-parameter, which controls the split-variable randomization feature of Ran-
dom Forests, was set to 3 . Consequently, each time a split is to be performed, the search for 
the split variable is limited to a subset of three bands. The sample size parameter, which 
determines how many observations are drawn for the training of each tree, is set to 0.3 , to 
lower the correlation between trees and decrease the weight of outliers. The producer and 
user accuracy estimations were used to compare the classification accuracy between data-
sets; the producer accuracy quantifies how well reference pixels of the ground cover type 

(8)pi =
�i

∑3

k=1
�k

(9)A =
�2 − �3

�2 + �3

(10)� =

3∑

i=1

p1 ⋅ �i
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are classified, and the user accuracy represents the probability that a pixel classified into a 
given category actually represents that category on the ground. The coefficient of agree-
ment, kappa index, is also used to evaluate how well the classification performed, consider-
ing the effect of random agreement (Carrasco et al., 2019; Tang et al., 2015).

2.3.4  Surface soil moisture estimation

SSM estimations by Tu Wien and Water Cloud models were implemented and subse-
quently applied over agricultural areas extracted through the land cover classification.

Fig. 5  (a) Example of training and validations polygons (Background’s source: Google Earth), (b) forest 
example, (c) bare soil example, (d) agricultural fields and (e) vegetation example

Table 2  Dataset for classifications: optical dataset (green); radar dataset (red) and polarimetric dataset (yel-
low)



Surface soil moisture estimate from Sentinel‑1 and Sentinel‑2…

1 3

The multi-temporal change detection Tu Wien Model was originally developed at Vienna 
University of Technology (TU Wien) to estimate soil moisture using ASCAT (Advanced 
SCATterometer) data, and subsequently adapted to S1. It relies on two assumptions: i) the 
relationship between the backscattering coefficient �0 and the surface soil moisture content is 
linear; ii) considering that soil roughness and vegetation exhibit a gradual change over time, 
any sudden change observed, within an appropriate time interval, is assumed to originate from 
a change in soil moisture (Panciera & Monerris, 2013).

To account for roughness and vegetation, a reference backscatter value �0

dry

(
�ref

)
 , repre-

senting backscatter from the vegetated land surface under dry soil conditions, is subtracted 
from the actual backscatter measurement, normalized to a reference angle, �0

(
�ref

)
.

Therefore, relative soil moisture changes mr,t are calculated by dividing the result by the 
sensitivity, which is the difference between the maximum value, �0

wet

(
�ref

)
 , and the minimum, 

�0

dry

(
�ref

)
 backscattering value measured in each pixel in the chosen time interval. Equation 11 

is used:

To retrieve the volumetric soil moisture value in each scene, two parameters should be 
introduced:

• the wilting point (WP), which is set to 9%, assuming that it corresponds to the minimum 
backscatter value registered in the time interval, �0

dry

(
�ref

)
;

• the saturation point (SAT), assuming that it corresponds to the minimum backscatter value 
registered in the time interval, �0

wet

(
�ref

)
 . SAT is set to 30%, as beyond 30–35% any further 

increase in SSM does not correspond to an increase in radar backscatter (Gao et al., 2017).

Then, the volumetric soil moisture is calculated by Eq. 12:

Concerning the semiempirical Water Cloud Model, developed by Attema and Ulaby 
(1978), the total backscattering coefficient is defined in a linear scale by Eq. 13:

where �veg (Eq. 14) is the contribution from the vegetation to the total backscatter and �soil 
(Eq.  15) is the contribution from bare soil attenuated by vegetation through �2 (Eq.  16) 
(Baghdadi et al., 2017).

where V  is a vegetation’s descriptor, A and B are parameters of the model depend-
ing on the vegetation and radar’s configuration, parameter C is mainly related to surface 

(11)mr,t =
�0
(
�ref ,t

)
− �0

dry

(
�ref

)

�0
wet

(
�ref

)
− �0

dry

(
�ref

)
[
%
]

(12)mv,t = mr,t ⋅ (SAT −WP) +WP
[
m3m3

]

(13)�
0 = �

2
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roughness, while parameter D expresses the radar configuration sensitivity to soil moisture 
(Shamambo et al., 2019). In this study, the NDVI (Eq. 17) is used as vegetation descriptor.

Others calibration parameters are derived from literature (Table 3).
Finally, for SSM validation, three parameters were used (Eqs. 18, 19, 20):

where pi is the predicted soil moisture value, �i is the actual in situ moisture value and N is 
the number of agricultural fields pixel

3  Results

3.1  Classification accuracy

In order to evaluate the polarimetric characteristics contribution, a preliminary analysis for 
each land cover training class was carried out throughout mean and standard deviations statis-
tics of Entropy, α and Anisotropy bands. For Entropy mean values a range of 0.35–0.73 was 
obtained, for Alpha mean values a range of 12.0–27.5 and for a range of 0.41–0.73 (Fig. 6).

Subsequently, the classification accuracy of each dataset scenario was assessed using kappa 
indices and confusion matrices (see Online Resource 2). Only optical data lead to a mean 
kappa index of 0.927, while only radar data lead to a mean kappa index of 0.783. Entropy and 
Alpha bands improve the kappa index to 0.948 for optical data and to 0.818 for radar data. 
Optical and radar bands result in a mean kappa index of 0.942, which is slightly improved by 
0.007 by adding the polarimetric bands, obtaining a 0.949 kappa index for the entire dataset.

For every province, Fig. 7 shows the contribution of radar and decomposition’s bands to 
the optical classification, and the contribution of optical and decomposition’s bands to the 
radar classification using mean kappa indices.

The Anisotropy band was not included in the dataset as it would not improve the classifica-
tion, and it could even worsen it in some cases. The assessment of the variable’s importance 
was realized in GEE: each optical band contributes on average by 24.8%, NDVI and NDBI by 

(17)V = NDVI =
Nir − Red

Nir + Red

(18)RMSD =

√
∑N

i=1

(
pi − ai

)2

N

(19)Bias =
∑N

i=1

pi − ai

N

(20)ubRMSD =
√
RMSD2 − Bias2

Table 3  Water Cloud Model 
parameters

A
VV

B
VV

C
VV

D
VV

V

0.0950 0.5513 37.237 2.39 NDVI
Baghdadi et al. (2017) Esch (2018) S2 image
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26.5%, VV and VH by 24.8%, and Entropy, Alpha, sum and ration contribute by 23.7% in the 
final classification.

Although decomposition’s bands contribute meanly less than any other dataset, Fig. 8 
shows that these bands can greatly improve radar classification, especially in urban, snow 
and water classes. The accuracy was calculated by averaging the user and producer’s accu-
racy for each land cover class over all the classifications (Carrasco et al., 2019).

Figure 9 displays an example of comparison between the maps obtained from the differ-
ent datasets.

3.2  Surface soil moisture estimates

The surface soil moisture values were retrieved at a spatial resolution of 10 m. The vali-
dation of two models applied was carried out using RMSD, bias and ubRMSD (Eq. 18, 

Fig. 6  On the right, mean Entropy and Alpha values for each training class. On the left, mean Entropy, and 
Anisotropy values. Vertical and horizontal lines represent, respectively � , Anisotropy and Entropy standard 
deviation

Fig. 7  Mean kappa indices for each province
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Eq. 19, Eq. 20) between predicted SSM and in situ measurements acquired by the Interna-
tional Soil Moisture Network (ISMN) in Umbria region (Italy), in two stations, WEEF 1 
and WEEF 2, in August 2015.

Both stations, belonging to the HYDROL-NET-PERUGIA network, were in agricul-
tural dry-lands and measured soil moisture at three depth levels using a TDR- Soil Mois-
ture Equipment Corp. TRASE-BE sensor. Considering that the band-C radar cannot pen-
etrate the soil more in-depth, the data acquired at 5 cm were used.

Table 4 shows the validation results.

3.3  Application

Subsequently, the Tu Wien change detection method, which obtained lower RMDS, 
was applied to the agricultural area managed by the Università Politecnica delle Marche 

Fig. 8  Accuracy obtained from the three datasets in each land cover class

Fig. 9  Comparison between (a) Sentinel-2 image; (b) total dataset classification; (c) optical dataset classi-
fication; (d) radar dataset classification; (e) polarimetric dataset. Acquisition date: 21-12-2020. Descending 
orbit
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(UNIVPM, n.d.). The farm extends on a total surface of about 125ha in Agugliano and 
Gallignano (Ancona province), cultivated with trees and herbaceous crops to be part of 
research projects (UNIVPM, n.d.). The farm zone is part of the lower Esino river valley, 
whose lithologies belong to the Marche and Umbria succession, during which sedimentary 
rocks were deposited in the marine environment from the Upper Triassic ( 200ma ) until the 
Lower Pliocene ( 3, 5ma ), on which rest the subsequent Quaternary Continental Deposits 
(Barchiesi, 2017). The farm’s area is located between two opposite slopes, which form at 
their feet a flat strip consisting of alluvial deposits. The study areas lie along this strip. 
The average slope of the area of interest is 4.131%. The ASSAM weather station, located 
beside the farm, provided precipitation data, used to investigate the relationship between 
soil moisture and precipitation in different crop types (Fig. 10). The mean soil moisture/
precipitation correlation is 0.46 of Pearson correlation index.

Finally, minimum, maximum, and mean soil moisture values are retrieved from different 
land cover types in 2020 (Table 5) in order to evaluate them on the basis of the main crop 
phenological cycles.

4  Discussion

From the reported results, some observations arise. For fully polarimetric data, land cover 
classes may produce distinct clustering in the H/� plane plot, in which Entropy and � val-
ues are plotted on the x and y axis and the plane plot space is linearly separated to identify 

Table 4  Soil moisture validation 
results

RMDS [%] BIAS [%] ubRMDS [%]

Tu Wien 9.409 0.193 9.407
Water Cloud Model 12.321 −0.583 12.307

Fig. 10  Correlation between surface soil moisture and precipitation values for different crop classes
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nine zones, each related to a different scattering mechanism. Thus, H/� plane plot is often 
used for unsupervised classification.

Instead, as proven by Ji and Wu (2015), in Dual-Polarimetric H/� dual pol decompo-
sition the loss of information caused by the lack of co-polarized data, as in the case of 
S1, makes it impossible to distinguish the three canonical scattering mechanisms (surface, 
dihedral and volumetric) in the dual H/� plane plot, where most zones are diffusing and 
transferring. Therefore, VV-VH polarization cannot distinguish isotropic surface, horizon-
tal dipole, and isotropic dihedral scattering mechanism based on Alpha value, and it can 
only partially extract low, medium, and high Entropy scattering mechanisms (Ji & Wu, 
2015).

Indeed, Fig. 6 shows that each mean � value is below 45◦ , even for urban areas, which 
should be characterized by dihedral scattering ( � → �∕4) and forested areas, characterized 
by volume scattering ( � → �∕8 ). High standard deviation values indicate low discrimina-
bility especially between vegetated surfaces (agricultural areas, forested areas, and vege-
tated areas).

Comparable results are obtained from Banque et al. (2015), who define the training sites 
for each land cover class with Sentinel-1 and get similar Entropy values; instead, in their 
study the � band does not reach 20°, confirming that the use of a cross-polarized H/� plane 
plot is not feasible for land cover classification.

Nevertheless, in this study the use of Entropy and Alpha values as supplementary bands 
in a radar data classification has improved the kappa index by 4.4% and the recognition of 
each land cover class (Table 4, Fig. 8). In fact, as expected (Carrasco et al., 2019; Stein-
hausen et  al., 2018), radar data classifications obtained lower results than optical data, 
since some of the classes present similar backscattering power and they cannot be easily 
differentiated (Banque et  al., 2015). It can be noticed that the radar bands obtained the 
worst classification results in Ascoli-Piceno and Fermo provinces, which are characterized 
by the predominant presence of Appennine mountains (Fig. 7); in fact, the radar signal is, 
despite the slope corrections, still strongly dependent on topography characteristics.

The main improvement of H, � , sum and ratio bands can be seen in urban, snow and 
water classes (Fig. 8). In the case of urban and water, VV, VH, H, � , sum and ratio bands 
exceed the accuracy of optical data, while for the soil class the accuracy is only 0.04 lower. 

Table 5  Percentage values of 
soil moisture in the various crop 
phenological stages

Crop soil moisture

Crop Phenological 
development

Mean soil 
moisture 
[%]

Max. soil 
moisture 
[%]

Min. soil 
moisture 
[%]

Corn Emergence 19.8346 31.2421 9.9531
Flowering 19.7112 31.8605 13.67841
Grain fill 9.2656 27.1660 11.2587

Wheat Sowing 8.9579 26.9852 14.2124
Sprouting 20.7204 33.0475 8.5763
Blooming 20.4763 31.5831 7.12483
Ripening 21.2518 32.3110 8.9323

Sorghum Vegetative 19.1258 32.2951 7.8974
Blooming 21.064 31.3488 9.2902
Grain fill 19.3285 28.7391 10.3676
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This result, visible in Fig. 9, was expected for the urban class, where optical data obtained 
the worst accuracy, confusing artificial structures with bare soil (Fig. 9c); on the other side, 
for VV and VH bands these two classes are characterized by two different scattering mech-
anisms, dihedral and surface, thus are easily recognizable.

But only VV and VH bands still obtain low accuracy (Figs. 8, 9d), probably due to the 
high heterogeneity of these areas, which makes it not easy to distinguish them based on 
high backscattered power, especially in a hilly terrain, where high backscatter values can 
be found also in areas characterized by abrupt morphological changes. In fact, VV and 
VH detect urban areas even in isolated habitations, but often fail to distinguish them from 
the top of the hills or the vegetation found along drainage ditches between two agricultural 
fields. Thus, for urban classification, the combined use of optical, radar and decomposition 
dataset is crucial to achieve a good accuracy.

Concerning the water class, optical data may identify water in shaded bare soil areas 
while, for radar data, it was expected a good recognition with VV and especially VH band. 
However, as the sea area has been masked, only tiny mountain lakes and rivers are con-
sidered water bodies. Moreover, low VV and VH values can be seen also in other types of 
surfaces, especially bare soil, which may be confused with water. Entropy and Alpha bands 
have lower values in bare soil rather than in water, so they can improve their differentiation.

Forest and vegetation classes, instead, present the most limited improvement using H, � , 
sum and ratio bands, since they present similar Entropy and � in the dual H∕� plane plot 
and maybe less discriminable.

Land cover classification is an important preliminary step for many other earth observa-
tion applications; regarding SSM retrieval, Sentinel-1 mission showed a strong potential at 
high/moderate spatial resolutions using multi-temporal acquisitions (Wagner et al., 2009), 
which are easily manageable in cloud computing platforms like Google Earth Engine 
(Gorelick et al., 2017; Volpini, 2021). Although the WCM proved to be effective on separa-
tion of soil and vegetation contributions using NDVI, it requires real calibration data in situ 
and sophisticated optimization methods to derive C and D parameters. Moreover, the WCM 
accuracy (RMSD = 12.3) is not adequate. Instead, Tu Wien accuracy (RMSD = 9.4) is still 
low, also compared to the Copernicus Global Land Service product. This retrieves SSM 
from Sentinel-1 using the same algorithm with an RMSD of 6% but with a spatial resolu-
tion of 1km . However, the result obtained is in accordance with that obtained by Bauer-
Marschallinger et al. (2019), who investigated the Tu Wien algorithm performance using 
Sentinel-1 data over Italy. They obtained results that show an overall agreement between 
S1 SSM and in situ measurements in Umbria of RMSD = 8.8%; due to the interference of 
vegetation dynamics in summer the retrieval show a lower correlation (RSMD = 9%). Also, 
the MUSLEM software accuracy ranges between 3 and 12% (Pulvirenti et al., 2018).

Considering that Volpini, 2021 obtained a higher accuracy (6.5%) by applying the same 
algorithm and validating it using ISMN in Cabrières-d’Avignon (France), where the station 
is in a flat area, the topography factor may have influenced the results in this study.

While the agreement with ground data acquired at Umbria in situ stations is on average 
low, the moisture values show adequate correlation to precipitation, with a Pearson correla-
tion index of 0.46 (Fig. 10). This finding can be considered another validation of Tu Wien 
model, as this value is coherent with the correlation found by Sehler et al., 2019 in Medi-
terranean region croplands.

The rainfall events always correspond to a peak in SSM values. It must be considered 
that, due to temporal intervals between the rainfall event and the soil moisture estimate 
(maximum of three days), the strength of the moisture peak may be reduced and, thus, the 
correlation between soil moisture and precipitation can be underestimated. SSM estimates 
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in different land cover classes show a different R2 index in different land cover types. A 
stronger correlation is visible in bare soil (R2 = 0.655) and cultivated lands (R2 = 0.58). 
The lower correlation is found in forested areas (R2 = 0.461), where the vegetation struc-
ture and dielectric constant may have a greater influence than surface backscattering.

Analyzing more specifically moisture values in different crops type (Tab. 5), corn 
requires considerable volumes of water during its development cycle: for the total grow-
ing season (from April to July) it is around 580mm (McKenzie & Wood, 2011). Therefore, 
it needs to be irrigated in the regions of central and southern Italy. During the matura-
tion, it is preferable that the amount of water remains above half of the retention capac-
ity of the soil (Pastrello, 2012). According to the classification made by the United States 
Department of Agriculture (USDA), the soil texture of the UNIVPM’s farm is clay loam 
(“Texture USDA class”, n.d.) and water retention capacity, in clay soils, corresponds to 
50% of moisture content. The average moisture in which corn is found in the different 
growth stages, especially during the ripening period, is well below 50% of the water reten-
tion capacity. Although this threshold, of course, varies in every single soil, depending on 
its composition, the moisture of the corn field was in fact not sufficient to meet the water 
requirements in the final stages of maturation. However, an analysis of the vertical profile 
of moisture content would still be 1m depth (Pastrello, 2012).

Concerning the durum wheat, in the emergence and tillering phase water stress is quite 
rare, while it is higher during the stem elongation and ripening phase. The total growing 
season water use varies between 400 and 480mm (McKenzie & Wood, 2011). During 
the lifting and ripening phases, it is also important that the temperature does not increase 
excessively, as it often happens in central and southern Italy. In addition to increasing 
evapotranspiration, the heat squeeze causes a rapid loss of moisture in the grain, caus-
ing a stunted harvest (Camerini, 2013). The year 2020 was characterized by high aver-
age monthly temperatures compared to the 1981–2010 average, especially in the month of 
February, where an anomaly of more than 3.7° was recorded (Tognetti & Leonesi, 2020). 
This aspect, together with the low rainfall winter season, explains the low value of average 
moisture in the germination-emergence phase. This situation is not unfavorable in wheat, 
which, on the contrary, fears winter frosts and water stagnation.

Finally, sorghum has been studied. This crop has a reduced water requirement, around 
300–350 mm, and it is sufficient that it rains between 120 and 150 mm in the summer months. 
However, this condition was not guaranteed during the summer of 2020. Therefore, sorghum 
was irrigated twice a month during the reproductive phase between June and July. Usually, a 
couple of irrigations are sufficient to maintain adequate levels of moisture. Sorghum, in fact, has 
excellent adaptability to water stress, thanks to a very fit and deep developing root system, and 
to its leaves, covered by wax. Sorghum can remain in vegetative stasis for a period of drought, 
until the water becomes available again and the plant resumes its growth. In fact, sorghum 
shows ideal soil moisture levels for the period analyzed. For these reasons, and because of the 
possibility of being used as biomass, sorghum is of particular interest in the region (EU, 2017).

Finally, the main limitations of the methods applied are discussed below. It can be noticed 
that the major limitation of these classifications is the uncertainty of the training data selec-
tion, due to the unavailability of updated ground truth data. This uncertainty also affects the 
final kappa indices, which may be over-estimated, since the data used for validation are a 
random subset of the polygons drawn for training. The training data have been selected in 
the most representative areas of each class, anyway, avoiding edges or areas of uncertainty. 
Precisely within these areas, classification errors can occur that could be over-looked in the 
validation phase. In urban areas, it is essential to select only pure pixels (without vegetation), 
which have been classified correctly, as the confusion matrices reported (see Online Resource 
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2). Urban area mixed pixels (vegetation and urban) are often classified as natural vegetation. 
Mainly for this reason urban areas are underestimated, even with the radar data addition.

Regarding SSM retrieval, the main sources of error may be due to the fact that a high 
spatial resolution can generate greater uncertainty with respect to any objects on the sur-
face, and the absence of pronounced wet conditions in the data record period, as at the end 
of summer mainly dry conditions can be expected. In this study, the short S1 data interval 
used can lead to underestimating or overestimating the severity of extreme events. Suppos-
ing the vegetation and roughness conditions are stable during the month, the other source 
of error may be the challenging topography and residuals error derived from the imperfect 
incidence angle normalization.

5  Conclusions

The integration of optical and radar images for land cover classification is of great value 
because of their complementary and the possibility to improve the temporal resolution of 
the classification. In this paper it has been shown that the combined use of radar and opti-
cal data can improve the classification results. The use of Entropy and Alpha band can be 
useful to improve radar classification, exceeding optical accuracy in urban and water areas, 
but still does not allow to reach the overall optical accuracy.

Land cover classification is also an essential precursor to many techniques for extracting geo-
physical and biophysical information from SAR data. In this study, the land cover results were 
used to create a mask and isolate the agricultural areas where soil moisture retrieval was carried 
out. While WCM accuracy was inadequate due to the lack of calibrations data, the extraction of 
surface soil moisture using Tu Wien change detection method in Google Earth Engine was found 
to be acceptable. As it showed a low RMDS of 9.4% with in situ measurement, but a correlation 
with precipitation (0.46) which is in line which the one obtained by Sehler (2019), a further in-
depth study is required, to finally develop an easy-accessible and high temporal and spatial reso-
lution method for soil moisture monitoring. In fact, SSM is a valuable information for developing 
context-specific climate-smart farm practices, such as drought monitoring, irrigation planning 
and assessment of soil erosion by water estimations, which is a critical Mediterranean region 
environmental issue. The use of SSM to replace the runoff term in the Modified Universal Soil 
Loss Equation model has been tested by Todisco et al. (2015) and could be further implemented 
using S-1 high resolution SSM estimate to calculate soil erosion at the field scale.
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