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Abstract—Software-defined networking decouples control and
data plane in softwarized networks. This allows for centralized
management of the network. However, complete centralization
of the controller’s functions raises the issue of the central point
of failure, latency, and scalability. Distributed controller deploy-
ment is adopted to optimize scalability and latency problems.
However, the existing controllers are monolithic, resulting in code
inefficiency for distributed deployment. Recently, microservices-
based SDN solutions have been started and deployed as virtual
network functions, enabling flexible deployment. Nonetheless, the
softwarization of network functionalities introduces network I/O
performance degradation both considering deployments based
on virtual machines and containers. This paper first intro-
duces a microservices-based SDN solution based on Ryu SDN
Framework. Then investigates whether running Ryu’s network
functionalities in a softwarized environment (e.g., virtual machine
and container) would have a significant network I/O performance
degradation. In particular, this work examines more in deep
the Docker Container technology and analyzes its network
setups. Multiple measurements were performed locally in a single
machine. Our results show a comparison between microservices-
based non-virtualized SDN Controller and the virtualized one,
and moreover, show a comparison between different Docker
Container network setups.

Index Terms—Software-Defined Networking, Microservices,
Docker Container, Virtual Machine, 5G

I. INTRODUCTION

Software-defined networking (SDN) architecture has three
layers [1]: application, control and forwarding layer. The
application layer contains software applications to provide
network services. Such layer performs ranges of functional-
ities such as security and routing. The control layer is the
central agent, which interfaces the application and forwarding
layer, to implement the applications’ network requirements. It
communicates through northbound interface to the applications
and via southbound interface to the forwarding devices. The
forwarding plane, is responsible for handling and forwarding
packets. It contains a group of data plane resources that can
forward and manipulate packets. Forwarding devices have
physical/logical interfaces to receive the incoming packets

and forward them to outgoing interface(s). The controller
communicates with forwarding devices using OpenFlow [2]
or other protocols.

The existing controllers are implemented as a monolithic
entity, which creates multiple problems in terms of scalabil-
ity, fault isolation, and latency. The legacy definition of the
SDN architecture does not stipulate the internal composition,
implementation, and design of an SDN controller. Thus, the
SDN controller can be decomposed and implemented as a
set of software components, running in a distributed manner.
Specifically, it is possible to design the SDN controller as
a composition of logical sub-functions, sharing the network
service load and creating robust system against failures. These
sub-functions are loosely-coupled units that can be executed
in a different and distributed computing platforms [3].

The benefits provided by the decomposition of SDN Con-
troller into microservices are manifold including: i) scalability,
that allow microservices-based network functionalities to scale
either horizontally and vertically; ii) reliability, the fault of
a single microservices-based network functionality does not
impact on the entire system; iii) reusability, microservices-
based functionalities can be reused to avoid unnecessary
duplication of code and effort. In our previous work, we
presented an implementation based on Ryu SDN Framework
following the aforementioned principles [4]. In that paper,
we introduced MSN (Microservices-based SDN Controller)
framework to design and evaluate a microservices-based SDN
Controller. In particular, we provided an extensive evaluation
of MSN in terms of latency, reliability, and scalability. More-
over, a first release is available to the community at the link:
https://gitlab.com/dscotece/ryu sdn decomposition/.

Accordingly, in this paper, we consider two different soft-
warization technologies for implementing the microservices
network functionalities proposed in the MSN. In particular,
we examine virtual machines and container technologies with
a more focus on the Docker Container technology. In this
context, due to the widespread deployment nature of edge



Fig. 1. MSN Decomposition Architecture

computing units, microservices and Docker container-based
virtualization become an indispensable approach [5]–[7]. Mi-
croservices are a means of creating loosely-coupled sub-
functions or sub-services, replacing a large software system.
In addition, container-based virtualization is one of the key
enabler to the success of 5G edge-enabled networks, which
is supported by network infrastructure suppliers that are keen
to bring containerization into edge computing [8]. However,
networking performance is important to the user experience
in containerized applications, it is important to investigate
containers networking. Generally, container networks can be
divided into two categories: single-host networks and multi-
host networks. Since communications within the same host
are done in a shared memory fashion, a single-host network
is mainly to provide a networking interface for container-
ized applications. Multi-host network centers on providing
IP addressing services, such as network address translation
(NAT), overlay network, or routing, to interconnect containers
on different hosts. The paper investigates whether running
MSN in a softwarized environment would have a significant
network I/O performance degradation. Specifically, we consid-
ered three different deployment scenarios of MSN including
no virtualization, virtual machines deployment, and containers
deployment.

In a nutshell, the flow of the paper is as follows. First,
we provide some background materials for MSN implemen-
tation and related works (Section II). Then, we present our
softwarized-based implementation of MSN functionalities both
inside virtual machines and Docker containers (Section III).
Furthermore, we benchmark the different softwarization imple-
mentations of MSN in terms of network latency (Section IV).
Finally, we draw conclusions (Section V).

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce our MSN framework
and we provide some details of the SDN Controller decompo-
sition architecture. Finally, we briefly introduce the research
directions of the literature in the areas of decomposing the
SDN Controller into microservices.

A. Background

The main principle we adopted in the MSN decomposition
implementation is that the network information and state

should be synchronized and self-consistent providing a global
view of the network. This allows an independent implementa-
tion and components reuse. MSN considers a decomposition
of SDN Controller, as depicted in Figure 1. The figure shows
a decomposed three-layer SDN architecture reflected in an
NFV architecture [9]. The control layer is decomposed into
subfunctions which are implemented as softwarized network
functions. The subfunctions could be orchestrated by standard
orchestrators, such as ETSI MANO or Kubernetes, creating
a service function chain to equivalently perform the legacy
SDN controller’s functions. In the figure, the upper layer
is a pool of independently implemented SDN components.
Each component performs a specific function such as topology
management and routing. These functions could be categorized
as basic SDN controller functions and additional functions or
applications. Basic SDN controller’s functions are mandatory
functions, which are required to emulate the minimum possible
function of SDN controller. Additional functions could be con-
sidered as applications such as firewall, and QoS monitoring.
The basic functions include:

• Event handling function: this function receives events and
distributes them to the appropriate function for further
processing. This could be a link-failure notification from
the forwarding layer, which needs to be communicated to
both Network State-Management Function and Topology
Management Function for updates. Moreover, the event
handler should communicate with the management and
orchestration unit for function orchestration.

• Network Resource Management Function: this function is
an inventory system for the available network resources
such as links, ports, switches, and routers.

• Topology-Management Function: this function is a set of
valid associations between network resources and objects
such as ports, devices, and links.

• Data-Plan Control Functions: these could be multiple
functions implemented in multiple containers depending
on the size of the network. The data plan control functions
include: forwarding of packets, flow rule installation to
the forwarding device, and resource reservation.

• Network State-Management Function: this database man-
ages the global network information such as link and
device status. A centralized database system with a
backup per-controller domain is required to have global
information.

In addition to the above basic functions, applications could
be incorporated to extend the controller’s basic functionality.
Depending on the network to be controlled, various types of
applications could be implemented in the application layer
such as firewall, deep packet inspection, and traffic predictions.

B. Related Work

The first work showing an externalization of packet pro-
cessing in SDN is presented in [10]. As an extension of this
work the author in [11] provided steps that are required to mi-
grate from a monolithic to a microservice-based architecture.
The functional components are externalized and a gRPC is
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used to communicate between the core modules and external
components or applications.

µONOS or (micro Open Network Operating System) is
the latest solution proposed towards standard architecture for
distributed and split control plane [12]. The µONOS project
aims at creating new generation of SDN architecture based
on ONOS, splitting it into a set of microservices. These
splitted functionalities are deployed as Docker containers and
managed by Kubernetes orchestrator. Moreover, the µONOS
project is relatively young (it started in October 2019). In
particular, it is based on a new generation control protocol
such as P4/P4runtime [13] that guarantees more flexibility
compared to OpenFlow protocol, can aso be used to emulate
the behavior of OpenFlow. Furthermore, the communication
between functionalities is via gRPC-based protocols, including
gNMI for network management interface configuration and
gNOI for network command operations.

However, even if the µONOS work is leading the research
on decomposition of SDN controller, there is still no available
implementation to test its performance. Moreover, the com-
munication is based on gRPC, and not REST API, which has
resulted in the following major limitations:

• the µONOS implementation has limited isolation mech-
anism; which means the core functions and applications
share the same resources or process;

• the µONOS cannot have on-platform tenant-specific ap-
plications but only tenant-aware ones: tenant-specific
apps must be off-platform and it should use REST APIs;

• the on-platform applications are limited to Java based
languages: applications developed using other languages
have to be off-platform and need to use REST APIs;

• horizontal service scaling is difficult;
• it has limited integration with and support for NFV that

do not adhere to either an openflow abstraction of that of
a legacy network element.

In general, to the best of the authors’ knowledge, there are
very few works, implementing a complete SDN controller’s
decomposition as VNFs, in a containerised environment.

III. SOFTWARIZED MSN IMPLEMENTATION

The following section provides the proposed microservices-
based implementation of the SDN Controller. We used the
Ryu controller framework [14] as the baseline SDN Controller
implementation due to its component-based architecture that
blends well with the microservices-based SDN controller
perspective. Then, we describe our proposed implementation
model and we show two distinct deployment models specif-
ically based on Virtual Machine and on Docker Container
technologies.

A. Decomposing Ryu SDN Controller

To start splitting an SDN Controller into microservices
is important to identify the core part that allows network
communications between microservices both for control and
data plane functionalities. This also grants complete access to
microservices from external processes to provide new func-
tionalities. The MSN prototype is built around the objective
to demonstrate the use of a middleware that allows interaction
between external processes with the underlying infrastructure.
Figure 2 shows the basic implementation architecture of the
MSN prototype. The blue block in the center represents the
middleware that is composed of two different microservices
such as ofp emitter and ofctl rest. The green block is the inter-
nal Ryu application named ofp handler that acts as the event
handler for the OpenFlow requests. External Ryu applications
(yellow block) can communicate with the Ryu framework via
REST APIs through the middleware. In particular, when the
ofp handler microservices propagates an OpenFlow request
to the middleware (through the ofp emitter microservice),
the same request goes to external applications via REST
APIs (thanks to the ofctl rest microservice). In this way,
we transform SDN functionalities into microservices releasing
them from the whole SDN Framework.

B. Docker-based MSN implementation

In order to implement MSN in a Dockerized environment,
we produced two different Dockerfile one for the middleware
and the other for the external Ryu applications. We chose
to put the ofp handler inside the same container of the
middleware always as a separated service. This is because the
Ryu framework uses OpenFlow protocol to communicate with
the ofp emitter module. Instead, external Ryu applications are
in separated containers and communicate with the middleware
via REST APIs.

On the one hand, the middleware Dockerfile starts form
python:3 base images [15]. In particular, it contains the two
internal applications such as ofp emitter and ofctl rest. More-
over, the ofp handler is installed by the pip install command
and allows the middleware to catch OpenFlow events. Finally,
the command ryu-manager starts the Ryu environment with
the two applications as arguments. See the example of the
Dockerfile in the following code.



MSN middleware Dockerfile
1 FROM python:3
2 WORKDIR /usr/src/app
3

4 COPY ofp_emitter.py .
5 COPY ofctl_rest.py .
6

7 RUN pip install ryu
8

9 EXPOSE 8080
10 EXPOSE 6633
11

12 CMD ["ryu-manager", "ofp_emitter.py", "ofctl_rest.py"]

On the other hand, the external Ryu application (in our case
the simple switch application) uses the same python:3 base
image. This application is in charge of analyzing incoming
packets and creating the flow rules for the underlying switches.
Moreover, it creates a Flask web server [16] in order to
communicate with REST APIs. In the following the example
of the Dockerfile.

MSN simple_switch Dockerfile
1 FROM python:3
2 WORKDIR /usr/src/app
3

4 COPY requirements.txt ./
5 RUN pip install --no-cache-dir -r requirements.txt
6

7 COPY lib ./lib
8 COPY simple_switch_rest.py .
9

10 EXPOSE 8090
11

12 CMD ["python", "./simple_switch_rest.py"]

C. Vagrant-based MSN implementation

Vagrant [17] is open-source software that allows the creation
of virtual machines independently from specific hypervisors.
For this reason, Vagrant provides Vagrantfile which is the
same concept as Dockerfile. Moreover, we followed the same
implementation guidelines that we explained in the previous
subsection.

Different from Docker, the Vagrantfile of the MSN mid-
dleware starts from ubuntu/bionic64 base image [18]. The
middleware VM provides the two internal services of Ryu
and installs the Ryu environment with pip install command.
See an example of Vagrantfile for the MSN middleware in the
following code.

MSN middleware Vagrantfile
1 Vagrant.configure("2") do |config|
2 config.vm.box = "ubuntu/bionic64"
3 config.vm.network :forwarded_port, guest: 8080, host:

8080↪→
4 config.vm.network :forwarded_port, guest: 6633, host:

6633↪→
5

6 config.vm.provision "shell", inline: <<-SHELL
7 apt-get update
8 apt-get install -y python3-pip
9 pip3 install ryu

10 SHELL
11

12 ryu-manager /vagrant/ofp_emitter.py
/vagrant/ofctl_rest.py↪→

13 end

Similarly, we implement our simple switch application in
a Vagrant box. Also here, we provided a Flask server to use

REST for the communication purpose. In the following code,
we reported an example of MSN simple switch Vagrantfile.

MSN simple_switch Vagrantfile
1 Vagrant.configure("2") do |config|
2 config.vm.box = "ubuntu/bionic64"
3 config.vm.network :forwarded_port, guest: 8090, host:

8090↪→
4

5 config.vm.provision "shell", inline: <<-SHELL
6 apt-get update
7 apt-get install -y python3-pip
8 pip3 install --no-cache-dir -r

/vagrant/requirements.txt↪→
9 SHELL

10

11 python3 /vagrant/simple_switch_rest.py
12 end

IV. TESTBED AND PERFORMANCE EVALUATION

This section provides performance evaluation of the pro-
posed MSN solution in softwarized environment discussed in
Section III. We first discuss the experimental setup and next
we discuss the set of comprehensive results.

A. Experimental Environment

Our testbed consists of a Linux workstation (Ubuntu 20.04)
equipped with an AMD Opteron(tm) Processor 6376 processor
and 32 GB 1600MHz DDR3 memory. The machine hosts the
docker community edition version 20.10.12, Vagrant version
2.2.19, Ryu SDN Framework, Python version 3, and Mininet
(for creating virtual networks). We evaluated the feasibility
and performance of the MSN solution for three different
deployment scenarios. Figure 3 shows the three different
deployment scenarios that we have tested in the experimental
evaluation. This evaluation aims at measuring the network
latency introduced by the softwarization in the MSN solution.

In order to create a test network topology, we leveraged
Mininet software and its python extensions. The topology we
chose to test MSN is composed of 5 switches (Si) and 10
hosts (Hn) as described in Fig. 3. Moreover, to easily test our
MSN solution we leveraged the ping tool that sends periodic
ICMP request and replies with ICMP reply. This allows us
to recognize the total end-to-end time. Furthermore, we are
only interested in the first packet, because subsequent packets
do not pass through the SDN Controller. Finally, all results
obtained in the testbed are an average of 30 runs that exhibited
a limited variance of under 5%.

B. Experimental results

With the experiments, we analyze the network impact of
the softwarization on our MSN solution. Specifically, we
measured the latency time for the first packet, normal flow, and
updates in three different deployment scenarios as described
in Fig. 3. Furthermore, we repeated tests for different hosts in
the network topology specifically for H1-H3 and H1-H10.

Figure 4 shows the overall results obtained in the three
different deployment scenarios for three different categories
of packets including the first packet, normal flow, and update
packet. The MSN deployment scenario (Fig. 3a) is used as
the baseline for comparison in this experimental evaluation.
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The first round of experiments is about the delay introduced
by the first packet (Fig. 4a) both in the case of H1-H3 and
H1-H10 communications. Note that the first packet goes to the
SDN Controller before reaching the involved nodes. The MSN
Docker deployment introduces a bit of delay compared to the
standard MSN deployment about close to 20 ms for H1-H3
communications and 30 ms for H1-H10 communications. On
the contrary, the MSN virtual machine deployment increases
the delay by around twice compared to the standard MSN
deployment for both H1-H3 and H1-H10 communications.

Then the second round of experiments is about the normal
flow. Note that, once the flow rule is installed on the switches
incoming packets do not go through the SDN Controller
anymore. This is not completely true, because flow rules
may have an expiry time, which is the focus of the next
experiments. As shown in Fig. 4b, the delay observed in the
normal flow is the same for all MSN deployment scenarios.
This because, incoming packets do not require SDN Controller
interactions. Furthermore, this is true independently from the
network topology (both for H1-H3 and for H1-H10).

Last, we benchmark the delay introduced by the flow rule
updates. As mentioned before, flow rules may have an expiry
time. After that time, the SDN Controller needs to update
the validity of flow rules. This process takes time similar to
the first packet delay. Figure 4c shows the trend of the delay
for the update packet for all MSN deployment scenarios. The
behavior is almost the same that we observed in the first packet
analysis.

C. Docker networking test
Since the focus of this part of experiments is to examine

the impact of dockerized version of MSN on network I/O
performance, it is crucial to take a look at the network setup
of containers in Docker [19]. Let us introducing two basic
networking mode for Docker containers in a single host. For
the purpose of this research, we taking into account only host
and bridge networking mode. This is justified, as bridge is the
default mode of Docker and host is the simple way that Docker
uses to share the network interfaces with the host machine.

• Bridge: this is the default networking setup when a
Docker container is created in a single host. In this
way, Docker creates a virtual bridge named docker0
in the host when the dockerd is started. Once a new
container is started, a pair of vethernet interfaces are
created in order to connect the container to the docker0
interface. All containers connecting to the docker0 bridge
can connect each other using a private IP addresses.
By default, bridge mode does not connect containers to
external network, therefore, allows containers to create
an isolated network namespace and IP addresses and all
inter-container communications need to go through the
docker0 bridge.

• Host: this networking allows all containers on the same
host to share the network namespace of the host. In this
way, all containers are visible to each other and inter-
container communications are based on inter-process
communication (IPC). The host mode provides the lowest



level of security among the described networking modes
as all users share the same IP address as well as the
namespace of the host machine.

In these experiments, we run our MSN solution in the
scenario shown in Fig 3b by varying the network configuration
of Docker containers from bridge to host. Note that we used
the same network topology as the previous experiments and
ping tool as well. Results from Docker bridge network configu-
ration are shown in Table I (middle column). Successively, we
repeat the same experiments by switching the Docker network
configuration from bridge to host. Table I (right column) shows
the results obtained for Docker host network configuration.

TABLE I
MSN DOCKER DEPLOYMENT RESULTS

H1 ping H3
Docker Bridge Docker Host

First packet 162 ms 157 ms
Normal Flow 0.0765 ms 0.0722 ms
Update packet 87 ms 85 ms

H1 ping H5
First packet 226 ms 215 ms
Normal Flow 0.083 ms 0.0841 ms
Update packet 136 ms 129 ms

H1 ping H7
First packet 265 ms 244 ms
Normal Flow 0.107 ms 0.0923 ms
Update packet 174 ms 174 ms

H1 ping H9
First packet 300 ms 292 ms
Normal Flow 0.116 ms 0.106 ms
Update packet 214 ms 214 ms

Obtained results show that latency times are a bit lower
in the case of Docker host network configuration. This is
because, as mentioned before, in the case of Docker bridge
network configuration there is a virtual bridge named docker0
between containers and the host that introduces latency. This
difference is constant and remain unchanged in the case of
different network topology as demonstrated in the results.
Finally, Docker network latency affects both the first packet
and the update packet; normal flow is not affected by the
Docker network configuration.

V. CONCLUSION

The paper investigated the network impact of softwarization
in our microservices-based SDN controller (MSN) solution.
First, we reviewed our MSN solution and we motivated
our guidelines for the SDN decomposition. In particular,
we proposed two different softwarized implementations of
the MSN including a virtual machine-based implementation
and a container-based implementation. The results show that
the container-based implementation can reduce the network
latency by around 50% compared to the virtual machine-based
implementation. Furthermore, the evaluation also shows that
the Docker host network configuration outperforms a bit the
Docker bridge mode in terms of latency.

Future research directions include new mathematical models
to manage efficiently the network impact of the softwarization.

On the other hand, the evaluation of our MSN solution in
wide-scale scenarios by carrying out experiments in a real 5G
campus networks is also important.
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