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Abstract: We introduce a fluid computational model for the numerical simulation of atmospheric
pressure dielectric barrier discharge plasmas. Ion and neutral species are treated with an explicit drift
diffusion approach. The Boltzmann relation is used to compute the spatial distribution of electrons
as a function of the electrostatic potential and the ionic charge density. This technique, widely
used to speed up particle and fluid models for low-pressure conditions, poses several numerical
challenges for high-pressure conditions and large electric field values typical of applications involving
atmospheric-pressure plasmas. We develop a robust algorithm to solve the non-linear electrostatic
Poisson problem arising from the Boltzmann electron approach under AC electric fields based on a
charge-conserving iterative computation of the reference electric potential and electron density. We
simulate a volumetric reactor in dry air, comparing the results yielded by the proposed method with
those obtained when the drift diffusion approach is used for all charged species, including electrons.
We show that the proposed methodology retains most of the physical information provided by the
reference modeling approach while granting a substantial advantage in terms of computation time.

Keywords: numerical simulation; drift diffusion reaction; Boltzmann relation; Poisson–Boltzmann;
dielectric barrier discharge (DBD); atmospheric pressure air; plasma kinetics

1. Introduction

Dielectric barrier discharges (DBDs) are well known as being one of the most effi-
cient ways to generate a non-thermal plasma in atmospheric pressure air [1]. Originally
developed for the generation of ozone [2]. DBD-based apparatuses are now used in a wide
spectrum of scientific, industrial, and biomedical applications. The DBD shares many char-
acteristics with the corona discharge, although the latter term is preferred for discharges
between bare metal electrodes without solid dielectrics [3]. Due to the presence of one or
more dielectric barriers between the electrodes and the gap, the design of DBD reactors can
be optimized to achieve the discharge uniformity properties required for industrial surface
treatments [4]. Surface DBD configurations have also been extensively studied and applied
in the aerospace field, mainly for flow control related applications [5–7]. In the life sciences
field, DBDs are currently studied for the abatement of volatile organic compounds [8] and
the inactivation of airborne [9] and foodborne [10] viruses. Other applications in this field
include wastewater treatment [11,12] as well as disinfection/sterilization of food [13] and
surfaces and medical devices [14] contaminated by microorganisms.

The above list of applications, far from exhaustive, provides an idea of how broad
applications of DBDs are. Bound to this versatility is the need to understand and ultimately
control the operation of these devices, as well as the mechanisms behind the generation
and quenching of the many chemical species produced in different gases and physical
conditions [15]. In this sense, computational models of these devices represent an important
source of knowledge, more so due to the complexity and cost of spectroscopic measure-
ments that are typically needed to perform investigations on discharge properties [16]. In
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addition, computational models for assessing large electric fields in the presence of mobile
charge carriers may also be useful in other fields, such as the design of accelerating fields
in laser-plasma acceleration applications [17].

Historically, the vast majority of computational models for high-pressure non-equilibrium
discharges are based on a fluid description, where each considered species is described by
means of a number density and a momentum transfer conservation equation, integrated over
time [18,19]. Differently from the case of other non-equilibrium discharge types, e.g., the
ones in plasma thrusters, quasi-neutrality conditions cannot be assumed for DBDs. Hence,
the space-charge electric field must be calculated self-consistently with the charged particle
transport and generation rate [20]. This is commonly performed by coupling the fluid
conservation equations to Poisson’s equation for electrostatics.

Recently, Shaygani and Adamiak proposed a simplified algorithm to study a plasma
flow control actuator [7,21]. They implemented a three-species fluid model in COMSOL
Multiphysics and limited discharge pulses by adding a dumping term to the electron
charge transport equation in order to decrease the simulation time. They conducted the
simulations in COMSOL using the implicit backward differentiation formula for integrating
over time. Sato et al. also presented a method to speed up simulations of surface DBDs [22].
Under the assumption of small space-charge modification, they calculated the time–electric
field variations instead of directly solving the Poisson equation at every time step. They
evaluated the fluxes with the Scharfetter–Gummel scheme and performed the time inte-
gration using the first-order Euler implicit method. Nakai et al. investigated the influence
of chemical reactions on the EHD force generated by a DBD plasma actuator [23] using a
three-species finite-volume approach. Regarding the drift term, an upwind scheme with
MUSCL interpolation was used, and time integration was performed with a second-order
explicit Runge–Kutta method. Hua and Fukagata examined the evolution of nanosecond-
pulsed DBD with different electrode polarities [24]. They used the Sharfetter-Gummel
scheme for the spatial discretization and performed an explicit integration over time. The
same spatial scheme was used in conjunction with an implicit Euler time integration for
the ionic wind model proposed by Sato et al. [25]. Emmons and Weeks proposed a 0-D
steady-state model using a limited set of species and reactions [26]. Their simplified model
showed close agreement with previous time-dependent simulations. Finally, recent works
by Zhong et al. [27] and Zhang et al. [28] have shown promising results in using deep
neural networks to speed up simulations of atmospheric pressure discharges of this kind.

As one can see from the above list of modeling works, improving the computation
time is still one of the main driving forces for scientific development in this field. As
anticipated, the de facto standard for atmospheric pressure non-thermal plasma models
is to describe both electron and ion dynamics with a drift diffusion approach [29,30].
This allows one to easily compute the volume charge density ρ at the given time instant,
and to self-consistently formulate the electrostatic problem as a linear Poisson problem.
Unfortunately, the large mass ratio mi/me between ions and electrons causes the dynamics
of the two species to be very different from each other. Hence, considering an explicit
integration, the employed time step ∆t must be small enough to follow the dynamics of the
fastest species, i.e., electrons. To achieve numerical stability, this quantity is restricted by
the well-known Courant–Friedrichs–Lewy (CFL) condition:

∆t <
1

|µsE/∆ + |2Ds/∆2| , (1)

where ∆ represents the grid spacing; µs and Ds are the mobility and diffusion coefficients
of the given species, respectively. For large values of E, it is not uncommon for the time
steps to be well below the picosecond range.

Historically, this strong limitation (in addition to the additional constraint imposed
by the dielectric relaxation time [31]) has led to the development of several techniques
to increase the allowed time step lengths. During the 1990s, Ventzek et al. [32,33] and
Punset et al. [34] introduced semi-implicit approaches, which have also been adapted to



Plasma 2023, 6 395

parallel architectures in later works, such as the one by Lin et al. [35]. Recently, Teu-
nissen [36] proposed an explicit approach based on limiting numerical fluxes based on
dielectric relaxation time. Subsequently, this technique has been used by [37] in a surface
DBD model using a curvilinear mesh.

In this work, we propose a numerical technique that allows substantial efficiency
improvements in fluid codes based on the drift-diffusion approximation. The main idea
that will be described in Section 2 is to use a nonlinear electrostatic formulation, where the
Boltzmann relation is used to relate the local electron number density and electric potential.
This allows to omit electrons from the drift diffusion equations, and to adopt grid spacing
larger than the Debye length, with substantial beneficial effects in terms of computational ef-
ficiency [38,39]. Although this approach is well-established for hybrid fluid/particle-in-cell
models used for low-pressure applications [40], e.g., for plasma thruster modeling [41,42],
the authors of this work are not aware of applications of this technique to atmospheric
pressure problems involving high voltages that change over time. Using the Boltzmann
relation is not trivial under such conditions, both from the purely numerical point of view
(the exponential term can become problematic for large positive arguments) and from
the perspective of charge conservation. We develop a robust numerical technique to deal
with such numerical challenges arising from applied voltages varying in time in the kV
range. Subsequently, in Section 3, we simulate a closed volumetric DBD reactor operating
with dry air using both the proposed methodology (that will be referred to as Boltzmann
drift diffusion) and a classic approach where all species are treated with the drift diffusion
technique. The performed comparison shows that the proposed Boltzmann drift diffusion
approach allows one to retain the main physical characteristics of the discharge while
granting a substantial improvement in the code execution time.

2. Model Description

We describe here the main features of the proposed fluid model. We treat ions and
neutrals differently from electrons. The former heavy species are described by means of
a drift diffusion approach, commonly employed in atmospheric pressure plasma models.
Therefore, we provide a concise description of the heavy species treatment and focus
more on the numerical strategy used to describe the electron transport. We also refer
the reader to [15,30] for a description of the explicit methodology used for the time dis-
cretization of the equations and to [43] for the semi-implicit technique employed for the
source terms’ integration.

2.1. Ions and Neutrals—Drift Diffusion Approach

The number density conservation equation for the generic species s number density
is [44]: ∂ns

∂t
+∇ · Γs = Ωs, (2)

where Γs = nsus represents the flux due to the mean velocity us of the species s. On
the right-hand side (RHS) of (2), Ωs is the source term for s and describes the rate at
which particles are created or destroyed due to kinetic processes. The drift diffusion
approximation consists of assuming that advection is only due to electric fields, neglecting
the contributions of bulk flow. In this way, the flux Γs is expressed by means of two
contributions, one due to the electric field (drift) and the other due to diffusion:

Γs = ±nsµsE− Ds∇ns. (3)

The quantities µs and Ds in (3) are the given species’ electrical mobility and diffusion
coefficients, bound by Einstein’s relation:

D
µ

=
kBT

e
, (4)

where e is the elementary charge, k the Boltzmann constant, and T the temperature in K.
The method used to obtain the electric field in (3) is described in Section 2.3.
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2.2. Finite Volume Discretization

The integration of (2) over a generic control volume (CV) V, bounded by a closed
surface ∂V with an outward pointing normal n̂, yields:

dNs

dt
=
∫

∂V
Γs · n̂ dS + Ps, (5)

where Ns =
∫

V ns dV; the quantity Ps =
∫

V Ωs dV is the number of particles produced (or
eliminated) within in the volume V by the kinetic processes, per unit of time.

A cell-centered finite volume (FV) discrete formulation of the drift diffusion equation
can be obtained by applying the integral form of (5) to the generic control volume Vi.
Assuming a uniform number density over Vi, one has Ns,i =

∫
Vi

ns dV ≈ ns,iVi. Then,
extending the reasoning to the source term, we have Ps,i =

∫
Vi

Ωs dV ≈ Ωs,iVi. The FV
discretized expression reads as:

dns,i

dt
= − 1

Vi
∑

Ap∈∂Vi

ΦAp(Γs) + Ωs,i, (6)

where ΦAp(Γs) is the integral flux of Γs over the generic face Ap of the CV.
There is vast literature on different numerical strategies for the approximate evaluation

of the transport term ΦAp(Γs) in (5); see, e.g., [45,46]. Considering a 1-D case for the sake
of simplicity, a second-order accurate approximation of diffusive fluxes is usually obtained
through the finite centered difference scheme:

−
∫

Ap
Ds

∂ns

∂n
dS ≈ D̄s

ns,i − ns,j

∆i,j
Ap, (7)

where ∆i,j is the length associated to the given interface and D̄s the average between Di
and Dj, the diffusion coefficients evaluated at the generic adjacent nodes i and j. The most
popular existing techniques for the drift term ±nsµsE can be (non-exhaustively) grouped
into two broad categories. These are schemes yielded by Taylor series approximations of
the nodal number density values or obtained via exponential fittings of exact solutions. The
first-order upwind scheme (UDS) is the simplest methodology in the first group. Its popu-
larity is mainly due to its robustness and absence of oscillation. This is the methodology
used in this work: ∫

Ap
nsµsEndS ≈

(
ns,ivs,+ + ns,jvs,−

)
Ap, (8)

where vs,+ = max(0, µs,iEn) and vs,− = min(0, µs,jEn). En is the electric field component
perpendicular to the interface surface Ap, while µs,i and µs,j are the electrical mobilities
evaluated at nodes i and j. Higher-order methods, introduced to mitigate the well-known
artificial diffusivity of the UDS scheme [46], are also commonly employed in computational
fluid dynamic codes. The increased accuracy of higher-order schemes comes at the cost of
losing the numerical stability of the UDS. For a flow characterized by a large Peclet number,
i.e., a strongly advection-dominated problem, numerical stability can be (at least partially)
recovered using a flux limiter [45].

Regarding the exponential fitting techniques, the Scharfetter–Gummel (SG) scheme [47]
allows the drift and diffusion fluxes to be integrated in a single step. The SG scheme, ubiq-
uitous in semiconductor modeling, has also been extensively used by the plasma modeling
community both in its original form [29,33] and in improved higher-order implementa-
tions [48–50]. The reader is referred to the comprehensive work of Nguyen and colleagues
for details on the SG scheme [50].

2.3. Electrons—Poisson–Boltzmann Problem

The electric field E appearing in (3) depends on several factors. These are the externally
applied voltages, volumetric charge densities resulting from the spatial distribution of the
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charged species, and surface charge densities accumulated on interfaces. Assuming that
the field is conservative, the electric potential ϕ is given by Poisson’s equation:

∇ · (εr∇ϕ) = − ρ

ε0
, (9)

in which ε0 is the vacuum electric permittivity and εr the relative electric permittivity of
the considered media. The volumetric charge density ρ at a given time instant is given by
the charged species number densities distribution, as in:

ρ = ∑
s

qsns, (10)

where qs is the elementary charge (with sign) associated with the species s. In the standard
approach in which the drift diffusion equation (2) is written for all species, the charge
density in (10) is evaluated at each time step and used to compute the RHS of (9). Therefore,
the Poisson problem is linear with respect to ϕ.

Alternatively, one may assume that the dynamics of electrons are much faster than
those of ions. As a result of this, the electron number density instantly adapts to the local
value of the electric potential. This is expressed by the Boltzmann relation:

ne = ne,0 exp
(

ϕ− ϕ0

Te

)
, (11)

where Te is the electron temperature in Volt; ne,0 and ϕ0 are reference values for the electron
number density and the electric potential. The reader can find a derivation of (11) from the
momentum conservation equation in many plasma physics textbooks, such as [51] or [44].

Substituting Equation (11) into Equation (9), a non-linear Poisson problem is obtained:

∇ · (εr∇ϕ) = − 1
ε0

[
∑
s∈i

qsns − ene,0 exp
(

ϕ− ϕ0

Te

)]
. (12)

The first term in the RHS of Equation (12) represents the charge density due to the ion
species. The other term is the charge density due to electrons.

The numerical solution of (12) can be obtained using the well-known Newton–Raphson
algorithm. As an example, Figure 1 shows the electric potential distribution and electron
number density obtained on a 2.5 mm domain, with a uniform number density of ions
(ni = 1× 1016 m−3) when Dirichlet boundary conditions (ϕL = 5 V, ϕR = −5 V) are en-
forced at the two ends of the domain. The term ne,0 is computed as ne,0 = Q0/(qeV), where
Q0 is the net ion charge and V the discharge volume.
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Figure 1. Solution of the non-linear Poisson problem (12) over a 5 mm domain, with a uniform ions
number density ϕ0 = 0 V and boundary conditions ϕL = 5 V and ϕR = −5 V.

2.4. Charge Conservation

The described non-linear Poisson formulation (12) is not charge-conserving. In other
words, there is no guarantee that its solution yields a net negative charge due to the
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electrons balancing the one due (positive and negative) ions. This is a limitation to be
addressed since, in comparison, global charge neutrality is automatically satisfied when a
full drift diffusion approach is used, meaning that the drift diffusion approach is also used
for electrons (and a linear Poisson problem is solved at each iteration).

We therefore add charge conservation as a constraint for the non-linear problem (12).
A given value reference electric potential ϕ0 (12) yields a spatial distribution of electrons
that can be added to the net charge due to the combination of free ions and surface charge
(also influenced by electron fluxes).

Qt = Qi −Qe, (13)

Qi is the total (volume and surface) charge due to ions and is evaluated as:

Qi =
nnodes

∑
k=1

ρi,k∆Vk︸ ︷︷ ︸
volume

+
ndiel

∑
j=1

ρΣi,jSj︸ ︷︷ ︸
surface

, (14)

where ρi,k = ∑s∈i qsns is the volume charge density due to ions and ∆Vk is the k-th nodal
volume; ρΣi,j is the ion surface charge density on the j-th solid dielectric layer, whose area
is Sj. Similarly, Qe is the total charge due to electrons:

Qe =
nnodes

∑
k=1

ρe,k∆Vk +
ndiel

∑
j=1

ρΣe,jSj (15)

We propose to look at the reference potential ϕ0 as a free parameter that can be used
to enforce the electric neutrality Qt = 0. However, finding the particular value of ϕ∗0 that
satisfies the electric neutrality is also a nonlinear problem. The obvious way to approach
this (second) nonlinearity is to include the condition Qt = 0 within the Newton–Raphson
algorithm. However, the way in which Qt depends on ϕ0 makes the Newton–Raphson
scheme rather unsuitable for solving this problem, particularly when large voltages are
considered. Figure 2 shows the total electric charge (Qt) as a function of ϕ0 when 800 V
are applied between the two ends of the considered domain, for the same test problem
considered in Figure 1. The Newton–Raphson method is notoriously unsuited to solve
problems where the unknown function exhibits near-zero or very steep slopes, and the
problem in Figure 2 features both these two critical situations, above and below the zero of
the unknown function Qt.
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Figure 2. Total electric charge dependence from the employed reference electric potential; the target
value of Qt meeting the required charge neutrality condition, highlighted.

For this reason, instead of directly enforcing Qt = 0 in the Newton–Raphson frame-
work, an iterative procedure based on the bisection method has been developed to solve
the described problem in a robust way. The convergence of the bisection method is only
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linear, but, as opposed to the Newton–Raphson method, unconditionally stable, provided
that appropriate initial conditions are provided. In particular, two initial values ϕ0,+ and
ϕ0,− must be provided, yielding a positive and negative value for Qt, respectively, when
substituted in (12).

The pseudocode procedure for solving the non-linear Poisson problem based on the
bisection method is provided in Algorithm 1. Starting from ϕ0,+ and ϕ0,−, a tentative
reference potential ϕ∗0 is obtained as the midpoint of the interval [ϕ0,−; ϕ0,+]. Then, the
resulting nonlinear Poisson problem is solved using the Newton–Raphson algorithm. The
obtained electron distribution yields a total electric charge Qt,ϕ∗0

. If Qt,ϕ∗0
> 0, ϕ∗0 becomes

ϕ0,+ for the next iteration. Otherwise, ϕ∗0 becomes ϕ0,−. The cycle continues until
∣∣∣Qt,ϕ∗0

∣∣∣ is
lower than the requested tolerance.

Algorithm 1: Non-linear Poisson solver with global charge conservation

ϕ0,+ such that Qt,ϕ0,+ > 0 ;
ϕ0,− such that Qt,ϕ0,− < 0 ;
while |Qt,φ0 | > Qtol do

ϕ∗0 ←
ϕ0,++ϕ0,−

2 ;
Solve non-linear Poisson using ϕ0 = ϕ∗0 (NR algorithm) ;
Evaluate Qt,ϕ∗0

;
if Qt,φ∗0

> 0 then
ϕ0,+ ← ϕ0 ;

else
ϕ0,− ← ϕ0 ;

end
end

At this point, one is left with the problem of finding the two starting values for the
bisection method. Obtaining these values robustly can become somewhat problematic
when large voltages that change over time are considered, since the quantity ϕ− ϕ0 is the
argument of an exponential function in (11).

Algorithm 2 shows the procedure adopted to obtain ϕ0,+ and ϕ0,−. The starting electric
potential distribution (ϕ∗) for the Newton–Raphson solver is obtained via a linear Poisson
problem under the assumption of uniform distribution of the electron number density in
the domain. The nonlinear Poisson problem is solved once by setting ϕ0 as the maximum
value of the previously obtained ϕ∗. In this way, the argument of the exponential is ≤0 at
the center of each CV. The value of the total electric charge Qt,ϕ0 is compared to zero. If
Qt,ϕ0 > 0, it means that ϕ0 can be used as ϕ0,+ for the subsequent bisection cycle, and a
value of ϕ0 that yields Qt < 0 must be found iteratively. This is performed by progressively
lowering ϕ0, in steps corresponding to Te/5, where Te is the electron temperature in Volt.
The cycle continues until Qt < 0 is obtained, meaning that the employed ϕ0 can be used as
ϕ0,− in the bisection cycle. In contrast, if the starting value of Qt is negative, the value of
ϕ0 yielding a positive Qt, i.e., ϕ0,+, is iteratively found by increasing ϕ0 in steps of Te/5.
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Algorithm 2: Iterative search of reference electric potential

Solve linear Poisson [K]{ϕ∗} = (ρion − qene,0)/ε0 to get ϕ∗ ;
ϕ0 = ϕ0,− = ϕ0,+ = max(ϕ∗) ; ∆ϕ = Te/5 ;
Solve NL Poisson ;
if Qt,ϕ0 > 0 then

while Qt,ϕ0 > 0 do
ϕ0,− ← ϕ0,− − ∆ϕ ;
Solve NL Poisson ;

end
else

while Qt,ϕ0 < 0 do
ϕ0,+ ← ϕ0,+ + ∆ϕ ;
Solve NL Poisson ;

end
end

3. Simulation Results

In this section, we use the computational model described in Section 2 to simulate
the physical behavior of a volumetric DBD reactor when powered by a sinusoidal voltage
waveform. We chose this specific reactor topology over, e.g., a surface reactor for two
main reasons: first, it can be described in one spatial dimension, allowing for faster simu-
lations. Second, in a surface reactor, one has to deal with an open domain, which makes
considerations on charge conservation more complex. The computer program for this
work is coded in Fortran 90. We chose this language over more user-friendly interpreted
languages such as MATLAB to benefit from the substantial performance speedup resulting
from optimizations performed during code compilation, such as vectorization, loop un-
rolling, or function inlining [52]. Furthermore, Fortran 90 supports both shared-memory
and distributed-memory parallel communication protocols, such as OpenMP and MPI.
Although explicit multicore processing is supported in MATLAB through the Parallel
Computing Toolbox [53], the above tools offer more flexibility and smaller overheads.

3.1. Simulation Settings

The modeled device consists of a closed volumetric DBD reactor consisting of two
parallel metal electrodes separated by two dielectric layers with relative permittivity
εr = 3.4, corresponding to Kapton. The thickness of the air gap between the two elec-
trodes is 4× 10−4 m. Each of the two dielectric layers has a thickness of 2× 10−4 m and a
1.6× 10−3 m2 surface. The configuration is powered by a 15 kHz sinusoidal voltage with
amplitude 4.8 kV.

The simulations are carried out using a simplified plasma chemistry model for dry
air, with a small amount of species. This model, which consists of 21 reactions, has been
developed in [43] by expanding the model proposed by Parent et al. in [54]. The mech-
anism includes electron impact ionization, two- and three-body recombination, electron
attachment, detachments, dissociation, and a simple O3 formation chain; see Table A1. The
considered heavy species are N2

+, O2
+, O2

– , O, O– , and O3. As introduced in Section 2,
electrons may or may not be accounted for in the drift diffusion model, depending on the
electron model chosen by the user. A numerical validation of the implemented semi-implicit
approach for the source term time integration is provided in Appendix A.

Regardless of the absolute abundance of the species at the beginning of the simulation,
the initial ratio between N2

+ and O2
+ is set to 3:1. The O2

– is set to a 1:8 ratio with
respect to N2

+ and the electron density is selected to ensure overall electric neutrality. The
macroscopic transport parameters for the considered species have been taken from [54].
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3.2. Electron Models Comparison

The aim of this section is to compare the results obtained using the proposed
methodology—where electrons are modeled using the Boltzmann relation—to those yielded
by a classic strategy where electrons are included in the drift diffusion approach. The two
methodologies will be referred to as Boltzmann drift diffusion (BDD) and full drift diffusion
(FDD) from now on for the sake of brevity.

Figure 3 shows the gap voltage (∆ϕgap) during the first two cycles of the voltage
waveform (Vext) applied between the two electrodes. The applied external voltage has been
normalized to highlight the differences yielded by the two approaches. The gap voltage is
defined by ∆ϕgap = ϕL − ϕR, where ϕL and ϕR are the electric potential values at the left
and right ends of the 1-D domain, respectively.
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Figure 3. Simulation of the volumetric dielectric barrier discharge reactor with two different numerical
methodologies; comparison between the gap voltage obtained with the full drift diffusion (FDD) and
Boltzmann drift diffusion (BDD) approaches.

In other words, ∆ϕgap is the voltage to which the air gap is effectively subjected. This
is in general different from Vext due to the voltage drop across the layers (which depends
on the thickness and the relative permittivity (εr,d) of the layer) and the combination of the
field produced by the volumetric and surface charge density distributions.

The combination of these mechanisms causes ∆ϕgap to reach a maximum value of
475 V during the first quarter of the (first) cycle, after 2.5 µs from the beginning of the
simulation. Then, while Vext continues to increase, ∆ϕgap starts to decrease, reaching zero
in the second quarter.

During the first half of the cycle, negative charges (negative ions and free electrons)
drift towards the anode. Similarly, positive ions are pushed towards the opposite electrode,
acting as the cathode. Hence, the two dielectric layers (L) and (R) are subjected to a flux of
negative and positive charges, respectively.

The two curves marked as ∆ϕgap, FDD and ∆ϕgap, BDD in Figure 3 correspond to the gap
voltages provided by the two methodologies. The results are reasonably close and show
the same trend over time. Moreover, the peak values of ∆ϕgap become almost coincident
after the first half-cycle of the applied voltage. However, from the second quarter of
the first cycle, the peaks of ∆ϕgap obtained with the FDD method show a time delay of
approximately 1 µs with respect to the results yielded by the BDD method. This is due to
the assumption that the electrons instantaneously adapt their spatial distribution according
to the Boltzmann relation as a reaction to the external electric field and changes in the ions’
number density. In addition to the small temporal change between the two trends in the gap
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voltage, the main difference between the two approaches appears to be constituted by the
lower ∆ϕgap obtained when the BDD methodology is used. This means that the mechanism
by which the charged species spontaneously screen out the externally applied electric field
is not exactly equal in the two considered cases. The surface charge deposition onto the
dielectric layers covering the electrodes is the most important mechanism that contributes
to the differences between the applied voltage and the gap voltage. Figure 4 shows the
surface charge accumulated on the two layers over the same time period considered in
Figure 3. The results obtained by the two approaches are in good qualitative agreement.
Still, a difference can be noticed in the negative charging process, mainly due to electrons.
In fact, the positive and negative charging fronts yielded by the FDD methodology are
slightly asymmetric. In contrast, the positive and negative surface charge deposition
dynamics appear to be completely symmetric when the electrons are excluded from the
drift diffusion approach (BDD). As a result of this, a larger amount of negative charge is
stored in the dielectric layers in this way, exerting a stronger screening effect with respect
to the externally applied field, causing the lower values of ∆ϕgap shown in Figure 3.
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Figure 4. Surface charge density deposited onto dielectric layers I and II over two cycles of the exter-
nally applied voltage; comparison between the full drift diffusion (FDD, black line) and Boltzmann
Drift diffusion (BDD, red line) approaches.

Finally, the number density distribution over the gas gap yielded by the two method-
ologies after 57.7 µs from the beginning of the simulation is shown in Figure 5. The results
corresponding to the Boltzmann drift diffusion approach have been shifted 0.9 µs forward
in time to compensate for the time delay shown in Figure 3. As one can see, the obtained dis-
tribution of heavy ions is comparable over the whole gap. On the contrary, the two electron
number density distributions are significantly different. Although the FDD method predicts
an approximately uniform number density 1× 1015 m−3 in the bulk of the gap, the density
yielded by the BDD approach drops below 1× 105 m−3. Nevertheless, for both species,
the values obtained within the sheaths at the edges of the domain are well compatible.
In particular, the values of N2

+ number density at the right edge of the domain (cathodic
side) are N2

+
FDD = 2.43× 1018 m−3 and N2

+
BDD = 2.24× 1018 m−3. Similarly, the electron

number density values at the left edge (anodic side) of the gap are e−FDD = 1.44× 1017 m−3

and e−BDD = 1.41× 1017 m−3. This agreement is important because the number densities at
the two edges of the gap are several orders of magnitude larger than in the bulk for both
considered species. This means that, given the dependence of the reaction rates on the
number density of the reactants, the largest physical contributions from kinetic processes



Plasma 2023, 6 403

will likely be generated in these regions. In addition, the charged species fluxes directed
towards the walls, responsible for the surface charge accumulation process, are computed
using the number density in the CVs shared between the dielectric layers and the gap.
Therefore, the discussed agreement between the computed number densities at the edges
of the domain is consistent with the compatibility shown by the trends in surface charge
over time in Figure 4. In order to have similar incident wall fluxes, a similar electric field at
the gap edges must also be present. The right axis in Figure 5 shows the electric potential
obtained using the two methodologies. The value yielded by the BDD approach (which
depends on the reference electric potential φ0) has been shifted by a constant value of
410 V to allow comparison to ϕFDD. The two obtained electric potentials are very close
throughout the whole gap, meaning that the two electric fields will also be quite similar to
each other.
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Computational Performance

Using the BDD technique, the minimum length of the employed time steps is typi-
cally increased by 2–3 orders of magnitude. The effective speedup yielded by the BDD
approach over the FDD is considerably smaller because the BDD methodology requires
multiple solutions of the linear system arising for the computation of the electric potential
distribution. The effective speedup, which can vary depending on the number of iterations
required to meet the convergence criteria, is generally in the order of 30–50. Because of this,
multidimensional simulations of relatively long timescales (such as multiple periods of
applied voltages in the kHz range) can be carried out in reasonable times [43].

4. Conclusions

In this work, we presented a computational fluid model dedicated to the description
of the dynamics of neutral and charged species in nonthermal plasmas at atmospheric
pressure. We focused on the development of a technique allowing to significantly reduce
the computational load of these kinds of simulations. The proposed methodology is based
on avoiding direct time integration of electron fluxes by relating the electron number
density distribution and the local electric potential through the Boltzmann relation. While
this approach is well established for problems with low pressure and open boundaries,
e.g., space plasma propulsion, we discussed the treatment of the nonlinear electrostatic
formulation for closed domains with accumulation of surface charge density over time.
We proposed an algorithm for the dynamic adjustment of the reference electric potential
appearing in the Boltzmann relation to simultaneously ensure global charge conservation
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and convergence of the iterative procedure for the electric potential calculation. The
proposed Boltzmann drift diffusion methodology was applied to a volumetric DBD reactor
powered by a 4.8 kV sinusoidal voltage at 15 kHz. We used the developed methodology to
compute the effective voltage applied to the gap and the surface discharge over two cycles
of the applied waveform. We compared these results to those obtained when using a full
drift diffusion approach, i.e., when the electron number density is updated over time using
the drift and diffusion approach in the same way as the ions. The results obtained with the
two approaches are in good agreement, particularly concerning the fluxes at walls and the
electric field. Overall, considering the substantial advantage in terms of computation time
over a full drift diffusion approach, we conclude that the proposed methodology can be
successfully applied to the simulation of such discharges.
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Appendix A. Numerical Validation of the Semi-Implicit Source Term Integrator

The semi-implicit scheme employed for the integration of the source terms in the
RHS of the conservation equation has been tested against the well-established TR-BDF2
scheme. The TR-BDF2 method is an implicit scheme, employing a combination of a
trapezoidal rule and backwards differentiation [55]. The considered reactions are the
ones corresponding to Ref. [54] in Table A1. A constant electric field of 160 Td has been
applied over a timespan of 0.05 µs. The results of the comparison are summarized in
Figure A1. The species are followed over a time interval ∆t considerably larger than the
time steps typical of explicit simulations, which are usually in the pico-second range (or
even smaller). This choice was purposely made to test the accuracy of the semi-implicit
scheme under particularly restrictive conditions. The initial number densities at time
t0 = 0 s of the considered species are N2

+
∣∣
t0

= 0.75 · n0, O2
+
∣∣
t0

= 0.25 · n0, O2
−∣∣

t0
=

0.09 · n0, e−
∣∣
t0

= 0.91 · n0, where n0 = 1× 1016 m−3. For what concerns the neutral
species, their initial number densities have been set to N2

∣∣
t0
= 0.75 · 2.686× 1025 m−3 and

O2
∣∣
t0
= 0.25 · 2.686× 1025 m−3, respectively.

The results of the described comparison are shown in Figure A1. Continuous lines are
employed in the picture to indicate the results obtained with the semi-implicit methodology,
while markers of matching colors are used for the TR-BDF2 method. The results obtained
using the semi-implicit technique are in close agreement with the ones yielded by the
TR-BDF2 routine. The highest relative percent difference between the two approaches,
obtained for the O2

− number density, is 1.03 %.
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Table A1. List of considered kinetic processes, along with the relevant reference.

Process Reactants Product(s) Source

Ionization N2 + e– −−→ N2
+ + 2 e– [54]

O2 + e– −−→ O2
+ + 2 e– [54]

Recombination N2
+ + e– −−→ N2 [54]

O2
+ + e– −−→ O2 [54]

N2
+ + O2

– −−→ N2 + O2 [54]
O2

+ + O2
– −−→ 2 O2 [54]

N2 + N2
+ + O2

– −−→ 2 N2 + O2 [54]
N2 + O2

+ + O2
– −−→ N2 + 2 O2 [54]

O2 + N2
+ + O2

– −−→ N2 + O2 + O2 e [54]
O2 + O2

+ + O2
– −−→ O2 + O2 + O2 [54]

Attachment N2 + O2 + e– −−→ N2 + O2
– [54]

O2 + O2 + e– −−→ O2 + O2
– [54]

O2 + O + e– −−→ O2 + O– [56]
O3 + e– −−→ O2 + O– [56]
O3 + e– −−→ O2

– + O [56]

Detachment O2 + O2
– −−→ O2 + O2 + e– [54]

O2 + O– −−→ O3 + e– [56]

Dissociation O2 + e– −−→ O + O + e– [56]
O3 + e– −−→ O2 + O + e– [56]

O3 formation O + O2 + N2 −−→ O3 + N2 [56]
O + O2 + O2 −−→ O3 + O2 [56]
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Figure A1. Comparison between the described semi-implicit numerical scheme and the TR-BDF2 [55]
integration method. Time evolution of the charged species considered in [54], with |E| = 200 Td.

An important requirement that must be respected in the source terms integration
process is the conservation of the total electric charge. With reference to the test depicted
in Figure A1, the initial number densities have been selected to yield a null initial electric
charge density (ρ0 = 0). The latter can be obtained summing the product of each species
number density and charge, as in:

ρ =
Ns

∑
s

nsqs, (A1)

where Ns is the total number of considered species. The net charge density (normalized
to n0 and to the elementary charge qe) obtained at the end of the integration time with the
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semi-implicit methodology is ρ∗s−i = 2.6× 10−13. The same quantity obtained at the end
of the adopted timespan with the TR-BDF2 was ρ∗TR−BDF2 = −1.76× 10−5. Hence, the
proposed semi-implicit methodology appears to better preserve the global charge neutrality
of the species involved in the kinetic processes.
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