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Abstract: In this paper, a stochastic approach is combined with field theory and circuit methods to
study how the geometrical and electrical properties of holidays (defects or pores in the insulating
coating) in a metallic pipeline influence the probability of exceeding the current density limit for
corrosion. Three-dimensional FEM simulations are conducted to assess the influence of the shape
and electrical resistivity of the pore on the computed spread resistance value. The obtained results
are then used to evaluate the probability of exceeding a given current density value for different
sizes of pore and soil resistivities. Finally, a case of 50 Hz interference along a pipeline-transmission
line routing is examined. The probabilistic approach presented in this paper allows the pipeline
sections more subjected to the induced AC corrosion risk to be identified to be used as an auxiliary
tool for adopting preventive protection countermeasures. Lastly, unlike most papers devoted to
assessing electromagnetic interference on pipelines, the present work uses a probabilistic rather than
a deterministic approach, representing its main novelty aspect.

Keywords: 50–60 Hz electromagnetic interference; AC corrosion; FEM; probabilistic methods;
pipelines integrity

1. Introduction

Long metallic structures installed nearby high-voltage alternate current (HVAC) power
lines or electrified AC railway lines are often subjected to electrical stresses due to the
time-varying current flowing through the line conductors [1]. A typical example is steel
pipelines for transporting liquids or gases, which—for economic reasons—often share
the same corridors with electrical transmission lines [2] or AC railways [3,4]. Unless
effective protective measures are put in place, buried steel pipelines may be subjected
to electrochemical corrosion over time because of the current density flowing from the
pipeline metal to earth through imperfections of the pipeline coating [5] (holidays). The
corrosion phenomenon may eventually lead to perforations under long-term exposure,
thus endangering the transportation and operation safety of the pipeline [6]. While this
work focuses on interferences at typical power frequencies (50 or 60 Hz), it is worth adding
that pipelines may also be influenced by lightning strikes hitting nearby power lines or
failures of nearby electrical apparatuses. In these cases, pipes may be subjected to transients
characterized by larger magnitudes and a wider frequency spectrum [7].

Interference on pipelines is usually classified using three distinct mechanisms, namely
inductive, conductive, and capacitive coupling. Capacitive coupling is essential only when
the victim is located above ground, and conductive coupling occurs only when the earth
is actively used as a return path by the interference source, such as in the case of phase-
to-ground fault conditions of a three-phase line. Out of these, inductive interference is
the only mechanism to which pipelines are exposed under all operational conditions of
nearby transmission lines and substations [8]. In general, the three coupling mechanisms of
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interference may also occur simultaneously [9]. Many efforts have been devoted over the
last decades to the development of computational techniques for predicting interference
levels. Typical physical quantities of interest include the pipe-to-soil voltage and the
pipeline longitudinal and radial current densities. The radial current component (normal
to the pipeline geometrical axis) eventually reaches the soil through the pipe insulation
layer. It is considered responsible for corrosion when the magnitude exceeds 30 A/m2 [10].

Computational approaches for calculating these quantities are generally grouped into
two main groups, i.e., methods based either on circuit theory/transmission-line theory or
field theory. Techniques belonging to the first category require a discretization of the system
into an ensemble of smaller sections that share some kind of electromagnetic coupling. Each
section is described by means of lumped parameters for circuit approaches and distributed
parameters for transmission line methods [11]. The numerical values of the parameters
are usually found utilizing exact or approximated analytical formulas. A classic example
is constituted by several approximate expressions developed over time to evaluate the
well-known Carson’s series for calculating self- and mutual impedances of earth-return
conductors [12].

Instead, field theory methods are based on obtaining an approximated solution of
Maxwell’s partial differential equations in space (and time for unsteady problems). These
can be further subdivided into integral and differential methods. Integral methods are
generally very efficient for open-boundary problems and thus have also been employed in
this field. An example is the shifting complex images method by Andolfato et al. [13] which
combines the moments and the images method. In contrast to integral methods, where only
the surfaces of the field sources are discretized, the whole physical domain is discretized
when a differential approach is adopted, such as the finite-difference time-domain (FDTD)
or the finite element method (FEM) [14]. Since AC interference modelling problems are
essentially three-dimensional and given the considerable size of corridors, field-theory-
based models have mostly been used with circuital approaches. Hence, FEM is used to
infer physical information on selected cross sections of the corridors, subsequently used to
build an equivalent circuit representation of the whole geometry. The models in [15–21] are
examples of efforts in this direction. These have been applied to study complex non-parallel
configurations in conjunction with complex soil models and the presence of multiple con-
ductors. Some work, such as [22] and later on [23], has also shown the advantages of
combining FEM (used only for the pipeline region) with the boundary element method
(BEM). Notably, several commercial programs feature comprehensive modelling capabili-
ties regarding electrical interference on pipelines (and grounding systems), often allowing
one to perform studies using circuit and electromagnetic field theory models. Examples of
such computer programs include CDEGS [24], which originated from the seminal mod-
elling works of Dawalibi and colleagues [25], Elsyca [26,27] and XGSLAB [28,29]. Table 1
summarizes the calculation methodologies employed in the above-discussed works. For
each work, the evaluated physical quantities are also reported. A feature shared by most of
the listed approaches and corresponding computer codes is that deterministic approaches
are applied to estimate the physical quantities of interest. In contrast, this work uses field
theory and circuit methods combined with a stochastic approach to study how holidays’
geometrical and electrical properties influence the probability of exceeding the current
density limit for corrosion. A similar approach has been used in [30] without considering
the presence of coating defects, which are the main focus of the present manuscript.

In this work, three-dimensional FEM simulations are performed to study the electrical
properties of a holiday (pore) in the insulation layer of a metallic pipeline. The focus is set
on the influence of the shape and electrical resistivity of the pore on the obtained value of
spread resistance. Once the physical characteristics of a typical holiday have been defined,
an evaluation of the leakage current density is performed using a probabilistic method. The
computed quantity is the probability of exceeding a given current density value. In this
way, the influence of both pore and external soil resistivity on exceeding the current density
limit is assessed. Finally, the developed probabilistic approach is applied to a more complex
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case by computing the probability of exceeding the limit along a pipeline transmission
line routing.

Table 1. Summary of calculation methodologies and evaluated quantities.

Paper Applied Methodology Physical Quantities Evaluated Type of Calculation

Taflove and Dabkowski, 1979 [1]
Dawalibi and Southey, 1989 [25]

Djogo and Salama, 1997 [31]

Equivalent Transmission
Line Circuit a Induced voltage Deterministic

Christoforidis et al., 2005 [16,17] 2D FEM + Circuit theory Induced voltage
Induced current Deterministic

Micu et al., 2013 [15] 2D FEM + Circuit theory Induced voltage Deterministic

Wu et al., 2017 [7] Equivalent Transmission Line
Circuit (time domain)

Induced voltage
Induced current Deterministic

Cristofolini et al., 2018 [18]
Popoli et al., 2019 [19] 2D FEM Induced voltage

Induced current Deterministic

Lucca, 2019 [30] Equivalent Transmission
Line Circuit Current density Probabilistic

Popoli et al., 2019 [20]
Popoli et al., 2020 [21]

2D FEM + Circuit theory
(Quasi-3D method)

Induced voltage
Induced current Deterministic

Muresan et al., 2021 [8]
Equivalent Transmission Line

Circuit (EMTP-RV),
PEEC b (XGSLab)

Induced voltage Deterministic

Moraes et al., 2023 [9] Equivalent Transmission Line
Circuit (EMTP)

Induced voltage
Induced current Deterministic

This work Equivalent Transmission
Line Circuit Current density Probabilistic

a See [32,33]. b Partial element equivalent circuit method, see [34].

The parametric FEM simulations on the holiday spread resistance are described in
Section 2. The probabilistic evaluation of the current density is discussed in Section 3.

2. Finite Element Analysis of the Spread Resistance of a Coating Defect

Corrosion effects in pipelines due to induced AC voltages are related to the spread
resistance of a coating fault, which results from three contributions, the resistance of the
medium located in the coating fault (pore or holiday resistance, Rp), the leakage resistance
in the soil Rl and the polarisation resistance of the bare metal at the bottom of the coating
fault [35]:

Rs = Rp + Rl + Rpol (1)

Usually, only the first two contributions are considered in the literature as the polar-
ization resistance Rpol It is much smaller than the other two terms [35] and can thus be
neglected [36]. In this paper, to evaluate the spread resistance of a coating fault with an angle
between the coating and the coating fault gutter, a finite element analysis is carried out.

Specifically, the DC Conduction solver available in Ansys Maxwell 3D is used [37]. It
solves the equation:

∇ · (σ∇Φ) = 0 (2)

where Φ is the electric scalar potential and σ the medium electrical conductivity. The symbol
∇ denotes the divergence operator. The solved quantity is the electric scalar potential Φ,
from which the current density J and electric field E are derived.

In Figure 1a the vertical cross-section of the finite element model for a defect with
finite coating thickness d is shown. The quantities ra and rb represent the radii of the top
and bottom bases of the pore, respectively. A constant 1 A current is applied to the top base
of the pore, which has an area of 1 cm2; the thickness of the pore is d = 3 mm, and the pore
resistivity is ρp = ρ = 100 Ωm; the bottom base of the pore is set to 0 V potential and the
lateral surface of the pore is set to be insulating. The 3D dimetric view of the pore model
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is shown in Figure 1b, with an indication of the boundary and excitation conditions for
each face of the object. Some calculations performed when the medium inside the pore has a
constant resistivity equal to that of the soil show that the current density is not uniform along
the pore depth (i.e., the thickness of the coating). This can be seen in Figures 2 and 3, where the
current density is plotted in a vertical and a horizontal cross-section of the pore, respectively.
This result accounts for calculating the pore resistance with finite element analysis, as the
analytical calculation assumes a uniform current density along the pore thickness:

Rp = ρp
d

π ra rb
= ρp

d
π ra[d cot(α) + ra]

. (3)
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Figure 1. (a) Vertical cross-section of the finite element model for a defect with finite coating thickness d
(only the defect is depicted) and angle α between the coating and the coating fault gutter. The upper
base of the fault is in contact with the metal, and the lower base is with the soil. (b) 3D dimetric view
of the pore model with excitation and boundary conditions.
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Figure 3. Current density in a cross-section orthogonal to the axis of the pore depicted in Figure 1.
The cross-section is distant 0.8 mm from the top base of the pore.
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The comparison between the pore resistance Rp calculated with the finite element
method (FEM) and with (3) is shown in Figure 4, where Rp is plotted versus the angle
between the coating and the coating fault gutter; the angle α = 90◦ represents a cylindrical
pore. The figure shows that the difference between the FEM calculation and (3) increases
for a decreasing α, with the percent error reaching about 80% for α = 5◦.
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The FEM model is then modified by including a block of resistivity ρ representing the
soil; the top face of this block is in contact with the bottom face of the pore, thus allowing
the spread resistance to be calculated by applying a constant 1 A current on the top face
of the pore and setting a 0 V potential to the faces of the soil block. The FEM model is
depicted in Figure 5. The spread resistance is obtained by dividing the potential of the top
face of the pore by the 1 A current applied. Analytically, the leakage resistance in (1) can be
evaluated as the grounding resistance of a circular plate of radius ra as Rl =

ρ
2ra

, whereas
the pore resistance is estimated with (3). The comparison of the spread resistance versus α
obtained with the FEM model and analytically with (1) is plotted in Figure 6. This figure
shows that the spread resistance decreases as α decreases and that, apart from α = 90◦

(which represents a cylindrical pore), the spread resistance calculated analytically with
(1) is larger than that calculated with finite element analysis. Considering a cylindrical pore
of radius ra and a resistivity ρp = ρ

10 = 10 Ω.m (value supported by field measurements,
see [38]), the spread resistance evaluated with (1) is 4731 Ω, very close to the value obtained
in the case of a pore with α = 5◦ and ρp = 100 Ω.m, which is 4627 Ω and represents the
minimum value of spread resistance obtained for a pore with an angle. Therefore, in the
following analysis for simplicity a cylindrical pore with an averaged resistivity value of
ρp = ρ

10 is considered. This configuration is conservative as the spread resistance equals
the minimum value of the spread resistance obtained for a pore with an angle between the
coating and the coating fault gutter.
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Figure 5. Vertical cross-section of the finite element model for evaluating the spread resistance of a
coating fault in the presence of the soil (the holiday is in dark brown and the soil in light brown). The
mesh is shown in blue.
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3. Probabilistic Evaluation of the Leakage Current Density through a Holiday in
the Coating

Almost always, power frequency electromagnetic interference problems among
power/railway lines and pipelines/telecommunication cables are based on a purely de-
terministic approach that assumes that all the parameters characterizing the calculation
model are known and expressed by specific values. Nevertheless, this is not always
the case; in certain situations, some of the model parameters have a random behavior
that suggests a different approach to the problem that necessarily involves concepts of
probabilistic-statistical nature.

Just the issue which is the object of this paper has this kind of characteristic because the
area size of the holidays present in the insulating coating of the pipeline can be considered,
without any doubt, a random parameter.

Therefore, under the assumption that area A of the holiday is represented by a random
variable, this section proposes a probabilistic method to assess the value of the current
density leaking from a holiday, present in the pipe insulating coating, to the soil. More
explicitly, one may pose the problem as follows by starting from these two assumptions:
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1. If V is the value of the induced voltage in a specific point along the pipeline due to the
electromagnetic influence produced by nearby High Voltage power lines or electrified
railway lines.

2. If, at the same point, a holiday in the pipeline insulating coating is present.

Then, evaluate the probability that the induced AC current density, due to the elec-
tromagnetic interference from nearby power/railway lines, exceeds the limit value Jlim
established by the standards. See, for example, [10] or [35].

One can summarize the basic steps of the whole calculation procedure in the flow
chart in Figure 7.
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Before presenting the formulas to assess the above-mentioned probability, it is neces-
sary to summarize some basic relationships, given in [39], that are here reported
for convenience.

3.1. Relationships among Induced Voltage, Current Density and Holiday Area

In the previous paragraph devoted to the FEM simulations, it has been shown that the
simple model of the holiday inside the pipeline insulating coating given by a cylindrical
pore having area A, height d (equal to the thickness of the coating) and constant resistivity
ρp is a fair approximation. (See Figure 8 for a schematic drawing).

According to it, one has that the formula for the spread resistance Rs presented in
many papers and textbooks, see for example [5,10], is given by:

Rs =
ρ

4

√
π

A
+

ρpd
A

(4)

the first addendum represents the earth (or leakage) contribution, while the second rep-
resents the pore contribution. If V is the AC-induced pipe potential in the point where
the holiday coating is located, one has that V/Rs represents the AC leakage current to
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soil; therefore, it is possible to define an average current density J through the holiday
(see Appendix A) by means of:

J =
V

ρpd + ρ
4

√
πA

(5)
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This quantity has to be compared with the limit value Jlim suggested by the standards
to assess the AC corrosion risk for the pipeline, i.e., it has to be J < Jlim. Thus, from
Formula (5), one must have:

√
πA ≤ 4

ρ

(
V

Jlim
− ρpd

)
(6)

that yields:

A ≤ Amax(V) =
16

πρ2

(
V

Jlim
− ρpd

)
(7)

Amax represents, for a given value of the induced potential V, the maximum value of
the holiday area such that one can have a current density exceeding Jlim.

At the same time, being the left-hand-side of Formula (6) a positive quantity, it must
be V ≥ Jlim ρpd. Thus, one obtains a threshold value Vmin for the induced potential; such
a quantity represents the minimum value for the induced potential V able to generate a
current density greater than Jlim leaking to the soil through the holiday. Therefore, one has:

V ≥ Vmin = Jlimρpd (8)

Notice that Vmin does not depend on soil resistivity but only on the resistivity of the
material inside the pore.

Finally, it is useful to emphasize that the above formulas involve only the area size of
the holiday and are not based on a particular shape. See Appendix A for further details.

3.2. Probability Distribution of the Holidays Area

Based on the experimental data and their processing presented in [39], one has that
the empirical probability density distribution w(A) of the holidays area is sufficiently well
fitted by a log-normal distribution given by:

w(A) =
1

Aσ
√

2π
e−

1
2
(ln A−µ)2

σ (9)

In (9), the parameters µ and σ characterizing the distribution have the following values:
µ = −8.207 and σ = 1.419.
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3.3. Probability of Exceeding the Limit Value Jlim

By considering Formulas (7)–(9), it is possible to write the following relationship
expressing the probability that a leakage current J, flowing through a holiday located in a
point at potential V, exceeds the limit value Jlim. One has:

P(J(V) ≥ Jlim) = P(A ≤ Amax(V)) =


Amax(V)∫

0

1
Aσ
√

2π
e−

1
2
(ln A−µ)2

σ dA i f V > Vmin

0 otherwise
(10)

Therefore, if the induced voltage profile is known along all the pipeline routes, the
above formula calculates the probability that the leakage current J exceeds Jlim at any point
of the pipeline provided that a holiday is present at the same point. In such a way, it
is possible to identify along the pipeline route the sections that are more exposed to the
induced AC corrosion risk.

3.4. Influence of the Main Parameters

In this paragraph, some plots are presented that describe the probability of exceeding
the value Jlim = 30 A/m2 (suggested by [10,35]) versus the induced AC potential V by
varying the main parameters involved in the model that is: the soil resistivity ρ, the
resistivity of the material inside the pore ρp and the insulating coating thickness d. As far
as the parameter ρp is concerned, two cases are considered:

(1) The resistivity of the material inside the pore is equal to the soil resistivity, i.e.,: ρp = ρ;
(2) The resistivity ρp is one order of magnitude smaller than ρ i.e., ρp = ρ/10. This

hypothesis is suggested by some results based on field measurements and described
in [38].

In Figure 9, the probability, of the induced AC current density exceeding the value of
30 A/m2 versus the induced potential is shown; in particular, the curves have been plotted in
correspondence with different values of soil resistivity by considering both cases (1) and (2).
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of soil resistivity; d = 3 mm.

Figure 9 clearly confirms what is also known from experience, i.e., the probability
of exceeding the limit value of 30 A/m2 is much higher for low and medium-low soil
resistivities than for high and medium-high resistivities. Moreover, as one could expect, the
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case with ρp = ρ/10 is associated with higher probabilities because the spread resistance Rs
is smaller than the cases with ρp = ρ.

Figure 10 has been plotted by considering different values for soil resistivity and
very different values of the coating thickness i.e., d = 1 mm and d = 10 mm, representing
the extreme values inside the typical range for d. Moreover, it has been assumed that
ρp = ρ/10.
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Figure 10. Per cent probability of exceeding 30 A/m2 versus induced potential and for different
values of soil resistivity and coating thickness; ρp = ρ/10.

By looking at Figure 10, since ρp = ρ/10, one has that the second addendum in
(4) contributes only in a minor way to the spread resistance Rs; for such a reason, the
probability curves corresponding to the same value ρ differ between them only slightly.
Therefore, one can conclude that if the resistivity inside the pore is much smaller than the
soil resistivity, the coating thickness has a scarce influence on the probability of exceeding
the 30 A/m2 limits.

3.5. Example of Application to a Real Case of 50 Hz Interference

In this paragraph, one considers a 50 Hz interference case between a 380 kV power
line carrying, under normal operating conditions, a balanced current of 630 A and a nearby
pipeline 28.5 km long having a coating thickness of 3 mm; the soil resistivity is 100 Ωm; the
layouts of the two plants are shown in Figure 11 where one can notice a close approaching
between them for almost the whole pipeline route.
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By means of a two-step calculation method based on treating both power line and
pipeline by means of equivalent transmission line models one can obtain the 50 Hz induced
voltage along the pipeline versus the pipeline abscissa s (see Figure 12).
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Figure 12. Induced voltage profile along the pipeline.

By applying (10), one can determine the probability that the limit of 30 A/m2 for the
induced current density is exceeded in a generic point of abscissa s along the pipeline
provided that a holiday exists in the insulating coating in the same point. As far as the pore
resistivity is concerned, the two hypotheses previously presented have been considered
i.e., ρp = ρ and ρp = ρ/10. The results are shown in Figure 13.
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As one can expect, the probability profiles of Figure 13 are like the induced voltage
profile of Figure 12 just because, according to Formula (4), the current density J is directly
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proportional to the voltage V. According to the expectations, the plot in Figure 13 cor-
responding to the case ρp = ρ is always lower than the one corresponding to the case
ρp = ρ/10 and in certain intervals, along the pipeline route it is zero.

4. Conclusions

This paper presents an approach consisting of field theory and circuit methods com-
bined with a stochastic approach for analysing the probability of exceeding the current
density limit for corrosion in metallic pipelines. The FEM analysis shows that the pore
shape influences the values of spread resistance; in particular, pores with an angle between
the coating and the coating fault gutter have a resistance that decreases when the angle
decreases. It is shown that conservative results from the point of view of the probability of
exceeding the current density limits for pipeline corrosion are found when the pore has a
cylindrical shape, with a resistivity for the medium inside the pore equal to one-tenth of the
soil resistivity. The method allows plots showing the induced voltage along the pipeline to
be found; based on these plots and knowledge of the probabilistic distribution of holidays
area, it is possible to individuate the sections along the pipeline route, more exposed to
potential AC corrosion risk. Therefore, the proposed calculation method can be considered
an auxiliary tool, especially at the design stage of new power lines or pipelines, to adopt
suitable protective measures against AC corrosion.
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Appendix A

The purpose of this Appendix is to show that the shape of the holiday inside the
pipeline insulating coating has a minimal influence on the probability of exceeding or not a
certain limit for the current density and, for such a reason, it is reasonable to consider, in
the calculation model, only the area A of the holiday itself.

Often, in literature, the holiday in the insulating coating of a pipeline is modelled by
supposing that the small portion of the pipeline, in correspondence with the coating defect,
which is in contact with the soil, (that is, the exposed area) can be represented by a metallic
circular plate placed at the air-soil interface.

The circular shape is, of course, an extreme idealization, so one could further proceed
by introducing a more realistic shape, that is the ellipse.

Starting point is the paper [40]; the authors consider an electrostatic problem involving
an elliptic metallic plate of area Se with semi-major axis a and semi-minor axis b having
potential V and unknown surface charge density η = η(x, y). In practice, they found the
solution of the following integral equation:

V =
1

4πε0

x

Se

η(x′, y′)√
(x− x′)2 + (y− y′)2

dx′dy′, (A1)
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which is given by:

η(x, y) =
2ε0V
bK(k)

1√
1−

( x
a
)2 −

( y
b
)2

, (A2)

where K(k) is the complete elliptic integral of the first kind that is:

K(k) =
∫ π

2

0

dθ√
1− k2 sin2(θ)

(A3)

k is the ellipse eccentricity (0 ≤ k < 1) expressed by:

k =

√
1−

(
b
a

)2
, (A4)

and ε0 is the absolute vacuum permittivity.
If the plate is in contact with a conductive medium having resistivity ρ (in the case of

the present paper the soil) and by remembering the relationship between current density
J(x, y) and surface charge density η(x, y) i.e.,:

J(x, y) =
η(x, y)
2ρε0

, (A5)

one finally has the expression of the current density on the elliptic plate, at potential V, and
placed at the surface of the soil:

J(x, y) =
V

ρbK(k)
1√

1−
( x

a
)2 −

( y
b
)2

. (A6)

By looking at (A6), one can notice that the current density is minimum at the center of
the plate and tends to infinity by approaching the borders; nevertheless, one is interested
in calculating an average (or equivalent) current density that is constant over all the area Se
of the plate so that its flux through it is equal to current leaked to soil Ie.

By integrating (A6) over Se one gets:

Ie =
x

Se

V
ρbK(k)

dxdy√
1−

( x
a
)2 −

( y
b
)2

=
4Va

K(k)ρ
π

2
. (A7)

Finally, by remembering that the area of the ellipse is given by Se = πab, one can
obtain the average current density Je by means of:

Je =
Ie

πab
=

2V
bρK(k)

. (A8)

In the particular case when the plate has a circular shape of radius r, one has a = b =
r, k = 0 and K(0) = π/2; thus, the average current density Jc is given by:

Jc =
4V
ρrπ

=
4V

ρ
√

Aπ
. (A9)

To assess the influence of the eccentricity on the current density leaked to the soil, it
is useful to study the ratio λ between Je and Jc for a given value of the plate area A in the
function of the eccentricity k; to do that, it also necessary to add that the semi-minor axis b
can be expressed as:

b =
(

1− k2
)1/4

√
A
π

. (A10)
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By considering (A8)–(A10) one finally has:

λ =
Je

Jc
=

π

2K(k)4√1− k2
(A11)

Notice that λ is a function of the only eccentricity.
In Figure A1 the function λ = λ(k) has been plotted.
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Figure A1. Plot of the function λ.

Figure A1 clearly shows that, for a given area A, the differences between the current
density flowing through an elliptical holiday and the one through a circular holiday can
be considered significative only for values of k greater than 0.95; this means considering
ellipses having an extremely eccentric shape that can be found only very seldom in practice.

It is reasonable to assume that such a result also holds for more irregular holiday
shapes, and that leads to considering the area of the holiday and not its shape as a basic
parameter for the model introduced in this paper.

To test such a conclusion, a Monte Carlo procedure has been applied to obtain the
probability of exceeding the limit of 30 A/m2 for holidays having elliptical and circular
shapes but for the same value of area A.

In the Monte Carlo procedure, the random variables are:

• The holiday area A with log-normal distribution given by (9);
• The ellipse eccentricity k with uniform distribution inside the interval [0, 1).

Hence, considering a large number N of trials (N = 10,000), it is possible to construct
two empirical probability distributions: the first one relevant to elliptical shapes and the
second to circular shapes. The results are shown in Figure A2, which shows the per cent
probability of exceeding the value of 30 A/m2 in correspondence with different values of
soil resistivity.

As one can notice, the curves relevant to elliptical holidays (in blue) are practically
superimposed on the ones relevant to circular holidays (in red) so, confirming that the
holiday shape has minimum influence on the results.
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