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Abstract
Given α ∈ (0, 1] and p ∈ [1,+∞], we define the space DMα,p(Rn) of L p vector fields
whose α-divergence is a finite Radon measure, extending the theory of divergence-measure
vector fields to the distributional fractional setting. Our main results concern the absolute
continuity properties of the α-divergence-measure with respect to the Hausdorff measure and
fractional analogues of the Leibniz rule and the Gauss–Green formula. The sharpness of our
results is discussed via some explicit examples.
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1 Introduction

1.1 The classical framework

The theory of divergence-measure fields in the Euclidean space naturally emerged as the
appropriate setting for the study ofminimal regularity conditions allowing for integration-by-
parts and Gauss–Green formulas. Since Anzellotti’s seminal paper [3], several fundamental
results have been established in the last 20 years, such asLeibniz rules for divergence-measure
fields and suitably weakly differentiable scalar functions, well-posedness of generalized
normal traces on rectifiable sets, and integration-by-parts formulas under minimal regular-
ity assumptions, see [1, 7–9, 14, 15, 23–26, 33, 50–52]. Since its beginning, the theory
of divergence-measure fields have found numerous applications in several areas, including
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Continuum Mechanics [30, 48, 49], hyperbolic systems of conservation laws [1, 8, 11, 29],
gas dynamic [10] and Dirichlet problems for the 1-Laplacian operator and prescribed mean
curvature-type equations [12, 27, 28, 37–40, 43, 46, 47], just to name a few. For recent
extensions to non-Euclidean frameworks, we refer to [5, 6, 16].

The basic definition goes as follows (see Sect. 2.1 for the notation). Given p ∈ [1,+∞],
we say that a vector field F ∈ L p(Rn;Rn) has divergence-measure, and we write F ∈
DM1,p(Rn), if there exists a finite Radon measure divF ∈ M (Rn) such that∫

Rn
F · ∇ξ dx = −

∫
Rn

ξ ddivF (1.1)

for all ξ ∈ C∞
c (Rn). The integration-by-parts formula (1.1) clearly generalizes the usual

Divergence Theorem. In fact, if the vector field F is sufficiently regular, say F ∈
Liploc(R

n;Rn), then divF = divF L n in (1.1), where L n is the n-dimensional measure.
As for the analogous case of functions with bounded variation, the two principal questions

regardingDM1,p vector fields concern the absolute continuity properties of the divergence-
measure with respect to the Hausdorff measure H s , for s ∈ [0, n], and the well-posedness
of a Leibniz rule with suitable scalar functions.

The absolute continuity properties of the divergence-measure of a DM1,p vector field
with respect to the Hausdorff measure hold as follows, see [49, Th. 3.2 and Exam. 3.3].

Theorem 1.1 (Absolute continuity properties of the divergence-measure) Assume that F ∈
DM1,p(Rn) with p ∈ [1,+∞]. We have the following cases:

(i) if p ∈
[
1, n

n−1

)
, then div F does not enjoy any absolute continuity property;

(ii) if p ∈
[

n
n−1 ,+∞

)
, then |divF |(B) = 0 on Borel sets B of σ -finite H n− p

p−1 measure;

(iii) if p = +∞, then |divF | � H n−1.

The Leibniz rule involving DM1,p vector fields and Sobolev functions is stated in The-
orem 1.2 below, for which we refer to [7, Prop. 3.1], [8, Th. 3.1], [13, Th. 3.2.3] and [34,
Th. 2.1]. Here and in the following, for x ∈ R

n , we let

g�(x) =
⎧⎨
⎩

lim
r→0+

1

|Br (x)|
∫
Br (x)

if the limit exists,

0 otherwise,
(1.2)

be the precise representative of g ∈ L1
loc(R

n). For the notion of (Anzellotti’s) pairingmeasure
briefly recalled in the statement, we refer the reader to [3, Def. 1.4], [8, Th. 3.2], or to [23,
Sec. 2.5] for a more general formulation.

Theorem 1.2 (Leibniz rule forDM1,p vector fields and weakly differentiable functions) Let
p, q ∈ [1,+∞] be such that 1

p + 1
q = 1. If F ∈ DM1,p(Rn) and

g ∈
{
L∞(Rn) ∩ W 1,q(Rn) for p ∈ [1,+∞),

L∞(Rn) ∩ BV (Rn) for p = +∞,

then gF ∈ DM1,r (Rn) for all r ∈ [1, p], with
div(gF) = g� divF + (F, Dg)q in M (Rn). (1.3)

Here

(F, Dg)q =
{
F · ∇gL n if q > 1, or q = 1 and g ∈ L∞(Rn) ∩ W 1,1(Rn),

(F, Dg) if q = 1 and g ∈ L∞(Rn) ∩ (BV (Rn)\W 1,1(Rn)),
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is the pairing measure between F and Dg, where (F, Dg) is the unique weak limit

F · ∇(�ε ∗ g)L n⇀(F, Dg) in M (Rn) as ε → 0+,

being �ε = ε−n�
( ·

ε

)
for ε > 0, with � ∈ C∞

c (Rn) any non-negative radially symmetric
function such that supp � ⊂ B1 and

∫
B1

� dx = 1.

Remark 1.3 (Choice of g� in (1.3) for p < +∞) For p < +∞, the function g� appearing

in (1.3) can be defined in a more specific way. For p ∈
[
1, n

n−1

)
, g� can be taken as the

continuous representative of g. Instead, for p ∈
[

n
n−1 ,+∞

)
, g� can be taken as the q-

quasicontinuous representative of g. See [13, Sec. 3.2] for a more detailed discussion.

1.2 Fractional divergence-measure fields

The aim of the present note is to introduce a fractional analogue of the theory of divergence-
measure fields, following the distributional approach to fractional spaces recently introduced
and studied by the authors and collaborators in the series of papers [4, 17–22]. For results
close to the main topic of this paper, we also refer to [42, 53, 54], even though our point of
view is different.

In the fractional setting, for α ∈ (0, 1), one has the integration-by-parts formula
∫
Rn

F · ∇αξ dx = −
∫
Rn

ξ divαF dx (1.4)

for all functions ξ ∈ Lipc(R
n) and vector fields F ∈ Lipc(R

n;Rn), where

∇αξ(x) = μn,α

∫
Rn

(ξ(y) − ξ(x))(y − x)

|y − x |n+α+1 dy, x ∈ R
n, (1.5)

is the fractional α-gradient,

divαF(x) = μn,α

∫
Rn

(F(y) − F(x)) · (y − x)

|y − x |n+α+1 dy, x ∈ R
n, (1.6)

is the fractional α-divergence, and

μn,α = 2α π− n
2



( n+α+1

2

)



( 1−α
2

)

is a renormalization constant, see [18, Sec. 2.2] for a detailed exposition. According to the
main results of [4, 19], with a slight (but justified) abuse of notation, we may identify (1.5)
with the usual gradient ∇ for α = 1, and with the vector-valued Riesz transform ∇0 = R for
α = 0 (see Sect. 2.1 for the definition).

As already done by the authors in the case of scalar functions, the basic idea is now to use
formula (1.4) to define a fractional analogue of the divergence-measure (1.1).

Definition 1.4 (DMα,p vector fields) Let α ∈ (0, 1] and p ∈ [1,+∞]. A vector field
F ∈ L p(Rn;Rn) has fractional α-divergence-measure, and we write F ∈ DMα,p(Rn), if

sup

{∫
Rn

F · ∇αξ dx : ξ ∈ C∞
c (Rn), ‖ξ‖L∞(Rn) ≤ 1

}
< +∞.
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The case α = 1 in Definition 1.4 corresponds to classical divergence-measure fields.
Without loss of generality, we always assume n ≥ 2, since for n = 1 one clearly identifies
DMα,p(R) = BV α,p(R), the space of L p functions with finite totale fractional α-variation,
see the aforementioned [17, 20, 21] for an extensive presentation of BV α,p functions on Rn .
We also observe that BV α,p(Rn;Rn) ⊂ DMα,p(Rn) for n ≥ 2, with strict inclusion at least

in the case p ∈
[
1, n

n−α

)
, due to the fact that the vector fields in Example 3.1 below cannot

belong to BV α,p(Rn;Rn), in the light of [17, Th. 1].
Similarly to the case of BV α,p functions (see [18, Th. 3.2] and [4, Th. 5]), we can state

the following structural result for DMα,p vector fields. The proof is very similar to the one
of [18, Th. 3.2] and is therefore omitted.

Theorem 1.5 (Structure Theorem forDMα,p vector fields) Let α ∈ (0, 1] and p ∈ [1,+∞].
A vector field F ∈ L p(Rn;Rn) belongs to DMα,p(Rn) if and only if there exists a finite
Radon measure divαF ∈ M (Rn) such that∫

Rn
F · ∇αξ dx = −

∫
Rn

ξ ddivαF (1.7)

for all ξ ∈ C∞
c (Rn). In addition, for any open set U ⊂ R

n, it holds

|divαF |(U ) = sup

{∫
Rn

F · ∇αξ dx : ξ ∈ C∞
c (U ), ‖ξ‖L∞(U ) ≤ 1

}
. (1.8)

If the vector field is sufficiently regular, say F ∈ Lipc(R
n;Rn) for instance, then the

fractional divergence-measure given by Theorem 1.5 is divαF = divαF L n , where divαF
is as in (1.6). Moreover, thanks to Theorem 1.5, the linear space

DMα,p(Rn) = {
F ∈ L p(Rn;Rn) : |divαF |(Rn) < +∞}

endowed with the norm

‖F‖DMα,p(Rn) = ‖F‖L p(Rn;Rn) + |divαF |(Rn), F ∈ DMα,p(Rn),

is a Banach space, and the fractional divergence-measure in (1.8) is lower semicontinuous
with respect to the L p convergence.

Remark 1.6 (On the space DM0,p) Although not strictly necessary for the purposes of the
present paper, let us briefly comment on the case α = 0 in Definition 1.4. By exploiting [4,
Lem. 26], if F ∈ DM0,p(Rn) for some p ∈ (1,+∞), then

div0F = div0FL n = (R · F)L n

with R · F ∈ L p(Rn), where R = ∇0 the vector-value Riesz transform (see Sect. 2.1 for the
definition). Therefore, for p ∈ (1,+∞), we can write

DM0,p(Rn) = {
F ∈ L p(Rn;Rn) : div0F ∈ L1(Rn)

}
.

Hence, if F ∈ DM0,p(Rn) for some p ∈ (1,+∞), then |div0F | � L n . The limiting cases
p ∈ {1,+∞} seem more intricate and we leave them for future investigations.

1.3 Main results

Our first main result deals with the absolute continuity properties of DMα,p vector fields
with respect to the Hausdorff measure, extending Theorem 1.1.
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Theorem 1.7 (Absolute continuity properties of the fractional divergence-measure) Let α ∈
(0, 1), p ∈ [1,+∞] and assume that F ∈ DMα,p(Rn). We have the following cases:

(i) if p ∈
[
1, n

n−α

)
, then divαF does not enjoy any absolute continuity property;

(ii) if p ∈
[

n
n−α

, n
1−α

)
, then |divαF |(B) = 0 on Borel sets B ⊂ R

n with σ -finite

H
n− p

p−1+(1−α)
p
n measure;

(iii) if p ∈
[

n
1−α

,+∞
]
, then |divαF | � H

n−α− n
p .

In particular, Theorem 1.7 tells that, if F ∈ DMα,∞(Rn), then |divαF | � H n−α ,
exactly as in Theorem 1.1 for p = +∞. For p < +∞, instead, the properties of the
fractional divergence-measure are different from the corresponding ones in the classical
setting. Indeed, as for the fractional variation of BV α,p functions (see [17, Th. 1] for the
corresponding result), the threshold p = n

1−α
imposes an interesting change of dimension

of the Hausdorff measure. This is quite customary in the distributional fractional framework,
and is essentially due to the mapping properties of Riesz potential I1−α , see [18, Sec. 2.3].

Our second main result concerns Leibniz rules for DMα,p-fields and Besov functions,
see [20, Th 1.1] for the corresponding result for BV α,p functions. We refer to Sect. 2.1 for
the definitions of fractional Sobolev and Besov spaces.

Theorem 1.8 (Leibniz rule for DMα,p vector fields with Besov functions) Let α ∈ (0, 1)
and let p, q ∈ [1,+∞] be such that 1

p + 1
q = 1. If F ∈ DMα,p(Rn) and

g ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bα
q,1(R

n) for p ∈
[
1, n

n−α

)
,

L∞(Rn) ∩ Bγ
q,1(R

n) with γ ∈ (
γn,q,α, 1

)
for p ∈

[
n

n−α
, n
1−α

)
,

L∞(Rn) ∩ Bβ
q,1(R

n) with β ∈ (
βn,q,α, 1

)
for p ∈

[
n

1−α
,+∞

)
,

L∞(Rn) ∩ Wα,1(Rn) for p = +∞,

(1.9)

where

βn,q,α = 1

q

(
α + n − n

q

)
and γn,q,α = n

n + (1 − α)q
,

then gF ∈ DMα,r (Rn) for all r ∈ [1, p], with
divα(gF) = g� divαF + F · ∇αgL n + divα

NL(g, F)L n in M (Rn),

where

divα
NL(g, F) = μn,α

∫
Rn

(g(y) − g(x))(F(y) − F(x)) · (y − x)

|y − x |n+α+1 dy, x ∈ R
n,

is the non-local fractional divergence of the couple (g, F), and satisfies

‖divα
NL(g, F)‖L1 ≤ μn,α [g]Bα

q,1(R
n) ‖F‖L p(Rn;Rn).

In addition,

divα(gF)(Rn) =
∫
Rn

divα
NL(g, F) dx = 0, (1.10)

and ∫
Rn

F · ∇αg dx = −
∫
Rn

g� ddivαF . (1.11)
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Theorem 1.8, besides providing an extention of Theorem 1.2, provides a Gauss–Green
formula for DMα,∞ vector fields on Wα,1 sets. For the definitions of the fractional reduced
boundary FαE and of the inner fractional normal να

E : FαE → S
n−1 of a set E ⊂ R

n , we
refer the reader to [18, Def. 4.7].

Corollary 1.9 (Generalized fractional Gauss–Green formula) Let α ∈ (0, 1). If F ∈
DMα,∞(Rn) and χE ∈ Wα,1(Rn), then

∫
E1

ddivαF = −
∫
F αE

F · να
E |∇αχE | dx,

where

E1 =
{
x ∈ R

n : ∃ lim
r→0+

|E ∩ Br (x)|
|Br (x)| = 1

}
.

Corollary 1.9 immediately follows from (1.11) with g = χE , since χ�
E = χE1 H n−α-a.e.

by [45, Prop. 3.1], and therefore |divαF |-a.e. thanks to point (iii) of Theorem 1.7.
Corollary 1.9 provides the most general version known so far of the fractional Gauss–

Green formula proved in [18, Th. 4.2]. Unfortunately, we do not know if the assumption
χE ∈ Wα,1(Rn) can be replaced with the weaker one χE ∈ BV α,1(Rn) in Corollary 1.9.
In fact, as observed in [17], we do not know whether the precise representative g� defined
in (1.2) of g ∈ BV α,∞(Rn) is well defined up to H n−α-negligible sets. We plan to tackle
this and other strictly-connected challenging open questions in future works.

1.4 Organization of the paper

In Sect. 2, we collect all the needed intermediate results to prove our main theorems. In
particular, Sects. 2.4 and 2.5 contain the proofs of points (ii) and (iii) of Theorem 1.7, respec-
tively. The proof of Theorem 1.8, instead, can be found in Sect. 2.6. Section3 collects several
examples. In Sect. 3.1 we show point (i) of Theorem 1.7, while in Sect. 3.2 we discuss the
sharpness of the other two points (ii) and (iii) of Theorem 1.7.

2 Proofs of themain results

In this section, we provide the proofs of our main results Theorem 1.7 and Theorem 1.8. The
proof of Theorem 1.7 is split across Sects. 3.1, 2.4 and 2.5, while the proof of Theorem 1.8
is given in Sect. 2.6.

2.1 General notation

We start with a brief description of the main notation used in this paper. In order to keep the
exposition the most reader-friendly as possible, we retain the same notation adopted in our
works [4, 17–22].

Lebesgue and Hausdorff measures We let L n and H α be the n-dimensional Lebesgue
measure and the α-dimensional Hausdorff measure on Rn , respectively, with α ∈ [0, n]. We
denote by Br (x) the standard open Euclidean ball with center x ∈ R

n and radius r > 0. We
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let Br = Br (0). Recall that ωn = |B1| = π
n
2 /


( n+2
2

)
and H n−1(∂B1) = nωn , where 
 is

Euler’s Gamma function.

Regular maps Let � ⊂ R
n be an open (non-empty) set. For k ∈ N0 ∪ {+∞} and m ∈ N,

we let Ck
c (�;Rm) and Lipc(�;Rm) be the spaces ofCk-regular and, respectively, Lipschitz-

regular, m-vector-valued functions defined on Rn with compact support in the open set � ⊂
R
n . Analogously, we let Ck

b (�;Rm) and Lipb(�;Rm) be the spaces of Ck-regular and,
respectively, Lipschitz-regular, m-vector-valued bounded functions defined on the open set
� ⊂ R

n . In the case k = 0, we drop the superscript and simply write Cc(�;Rm) and
Cb(�;Rm).

Radon measures For m ∈ N, the total variation on � of the m-vector-valued Radon measure
μ is defined as

|μ|(�) = sup

{∫
�

ϕ · dμ : ϕ ∈ C∞
c (�;Rm), ‖ϕ‖L∞(�;Rm ) ≤ 1

}
.

We thus let M (�;Rm) be the space of m-vector-valued Radon measure with finite total
variation on �. We say that (μk)k∈N ⊂ M (�;Rm) weakly converges to μ ∈ M (�;Rm),
and we write μk⇀μ in M (�;Rm) as k → +∞, if

lim
k→+∞

∫
�

ϕ · dμk =
∫

�

ϕ · dμ (2.1)

for all ϕ ∈ Cc(�;Rm). Note that we make a little abuse of terminology, since the limit
in (2.1) actually defines the weak*-convergence in M (�;Rm).
Lebesgue, Sobolev and BV spaces For any exponent p ∈ [1,+∞], we let L p(�;Rm) be
the space of m-vector-valued Lebesgue p-integrable functions on �. We let

W 1,p(�;Rm) = {
u ∈ L p(�;Rm) : [u]W 1,p(�;Rm ) = ‖∇u‖L p(�;Rnm ) < +∞}

be the space of m-vector-valued Sobolev functions on �, see [41, Ch. 11], and

BV (�;Rm) = {
u ∈ L1(�;Rm) : [u]BV (�;Rm ) = |Du|(�) < +∞}

be the space of m-vector-valued functions of bounded variation on �, see [2, Ch. 3].
Fractional Sobolev spaces For α ∈ (0, 1) and p ∈ [1,+∞), we let

Wα,p(�;Rm) =
{
u ∈ L p(�;Rm) : [u]Wα,p(�;Rm )

=
(∫

�

∫
�

|u(x) − u(y)|p
|x − y|n+pα

dx dy

) 1
p

< +∞
}

be the space of m-vector-valued fractional Sobolev functions on �, see [31]. For α ∈ (0, 1)
and p = +∞, we simply let

Wα,∞(�;Rm) =
{
u ∈ L∞(�;Rm) : sup

x,y∈�, x �=y

|u(x) − u(y)|
|x − y|α < +∞

}
,

so that Wα,∞(�;Rm) = C0,α
b (�;Rm), the space of m-vector-valued bounded α-Hölder

continuous functions on �.
Besov spaces For α ∈ (0, 1) and p, q ∈ [1,+∞], we let

Bα
p,q(R

n;Rm) =
{
u ∈ L p(Rn;Rm) : [u]Bα

p,q (Rn;Rm ) < +∞
}
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be the space of m-vector-valued Besov functions on Rn , see [41, Ch. 17], where

[u]Bα
p,q (Rn;Rm ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∫
Rn

‖u(· + h) − u‖qL p(Rn;Rm )

|h|n+qα
dh

) 1
q

if q ∈ [1,+∞),

sup
h∈Rn\{0}

‖u(· + h) − u‖L p(Rn;Rm )

|h|α if q = ∞.

Shorthand for scalar function spaces In order to avoid heavy notation, if the elements of a
function space F(�;Rm) are real-valued (i.e., m = 1), then we will drop the target space
and simply write F(�).
Riesz potential Given α ∈ (0, n), we let

Iα f (x) = 2−απ− n
2



( n−α
2

)



(
α
2

)
∫
Rn

f (y)

|x − y|n−α
dy, x ∈ R

n, (2.2)

be the Riesz potential of order α of f ∈ C∞
c (Rn;Rm). We recall that, if α, β ∈ (0, n) satisfy

α + β < n, then we have the following semigroup property

Iα(Iβ f ) = Iα+β f (2.3)

for all f ∈ C∞
c (Rn;Rm). In addition, if 1 < p < q < +∞ satisfy 1

q = 1
p − α

n , then there
exists a constant Cn,α,p > 0 such that the operator in (2.2) satisfies

‖Iα f ‖Lq (Rn;Rm ) ≤ Cn,α,p‖ f ‖L p(Rn;Rm ) (2.4)

for all f ∈ C∞
c (Rn; Rm). As a consequence, the operator in (2.2) extends to a linear con-

tinuous operator from L p(Rn;Rm) to Lq(Rn;Rm), for which we retain the same notation.
For a proof of (2.3) and (2.4), see [55, Ch. V, Sec. 1] or [36, Sec. 1.2.1].
Riesz transform We let

R f (x) = π− n+1
2 


( n+1
2

)
lim

ε→0+

∫
{|y|>ε}

y f (x + y)

|y|n+1 dy, x ∈ R
n, (2.5)

be the (vector-valued) Riesz transform of a (sufficiently regular) function f . We refer the
reader to [36, Sec. 2.1 and 2.4.4], [55, Ch. III, Sec. 1] and [56,Ch. III] for amore detailed expo-
sition. We warn the reader that the definition in (2.5) agrees with the one in [56] and differs
from theone in [36, 55] for aminus sign.TheRiesz transform (2.5) is a singular integral of con-
volution type, thus in particular it defines a continuous operator R : L p(Rn) → L p(Rn;Rn)

for any given p ∈ (1,+∞), see [35, Cor. 5.2.8]. We also recall that its components Ri satisfy

n∑
i=1

R2
i = −Id on L2(Rn),

see [35, Prop. 5.1.16].

2.2 Approximation by smooth vector fields

Here and in the rest of the paper, we let (�ε) ⊂ C∞
c (Rn) be a family of standard mollifiers as

in [18, Sec. 3.3]. The following approximation result is the natural generalization toDMα,p

vector fields of [17, Th. 4]. We leave its proof to the reader.
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Theorem 2.1 (Approximation by C∞ ∩DMα,p fields) Let α ∈ (0, 1] and p ∈ [1,+∞]. Let
F ∈ DMα,p(Rn) and define Fε = F ∗ �ε for all ε > 0. Then (Fε)ε>0 ⊂ DMα,p(Rn) ∩
C∞(Rn;Rn) with divαFε = (�ε ∗ divαF)L n for all ε > 0. Moreover, we have:

(i) if p < +∞, then Fε → F in L p(Rn;Rn) as ε → 0+; if p = +∞, then Fε → F in
Lq
loc(R

n;Rn) as ε → 0+ for all q ∈ [1,+∞);
(ii) divαFε⇀divαF in M (Rn) and |divαFε|(Rn) → |divαF |(Rn) as ε → 0+.

2.3 Integration-by-parts with Sobolev tests

For future convenience, we note that the integration-by-parts formula (1.7) actually holds for
a wider class of test functions. To this aim, let us recall the notion of non-local fractional
gradient

∇α
NL( f , g)(x) = μn,α

∫
Rn

( f (y) − f (x))(g(y) − g(x))(y − x)

|y − x |n+α+1 dy, x ∈ R
n,

of a couple of functions f , g ∈ Lipc(R
n). The operator ∇α

NL can be continuously extended
to Lebesgue and Besov spaces, see [20, Cor. 2.7] for the precise statement.

Proposition 2.2 (W 1,q ∩Cb-regular test) Let α ∈ (0, 1) and let p, q ∈ [1,+∞] be such that
1
p + 1

q = 1. If F ∈ DMα,p(Rn), then

∫
Rn

F · ∇αξ dx = −
∫
Rn

ξ ddivαF (2.6)

for all ξ ∈ W 1,q(Rn) ∩ Cb(R
n), and for all ξ ∈ BV (Rn) ∩ Cb(R

n) if q = 1.

Proof The proof is analogous to the one of [17, Prop. 3], so we only sketch it for the reader’s
convenience. By a routine regularization-by-convolution argument, it is not restrictive to
assume that ξ ∈ W 1,q(Rn) ∩Lipb(R

n) ∩C∞(Rn). Letting (ηR)R>0 ⊂ C∞
c (Rn) be a family

of cut-off functions as in [18, Sec. 3.3], by [19, Lems. 2.3 and 2.4] we can write
∫
Rn

ηR F ·∇αξ dx =
∫
Rn

F ·∇α(ηRξ) dx−
∫
Rn

ξ F ·∇αηR dx−
∫
Rn

F ·∇α
NL(ηR, ξ) dx (2.7)

for all R > 0. Moreover, since ξηR ∈ C∞
c (Rn), we have

∫
Rn

F · ∇α(ηRξ) dx = −
∫
Rn

ηRξ ddivαF

for all R > 0. Since

lim
R→+∞

∫
Rn

ξ F · ∇αηR dx = lim
R→+∞

∫
Rn

F · ∇α
NL(ηR, ξ) dx = 0,

the conclusion follows by passing to the limit as R → +∞ in (2.7). ��

2.4 Relation betweenDM˛,p andDM1,p

We now deal with point (ii) of Theorem 1.7. To this aim, we study the relationship between
DM1,p and DMα,p vector fields.
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As one may expect, DM1,p vector fields can be regarded as DMα,p vector fields, but
only locally with respect to the divergence-measure. For α ∈ (0, 1) and p ∈ [1,+∞], we
write F ∈ DMα,p

loc (Rn) if F ∈ L p(Rn;Rn) and, for any U ⊂ R
n bounded open set,

sup

{∫
Rn

F · ∇αξ dx : ξ ∈ C∞
c (Rn), ‖ξ‖L∞(Rn) ≤ 1, supp ξ ⊂ U

}
< +∞.

Consequently, the Radon measure divαF ∈ Mloc(R
n) given by (1.7) may be such that

|divαF |(Rn) = +∞. This issue is quite normal, and essentially due to the properties of
Riesz potential, in view of the representation ∇α = ∇ I1−α , see [18, Sec. 2.3].

Lemma 2.3 (Inclusion) If α ∈ (0, 1) and p ∈ [1,+∞], then DM1,p(Rn) ⊂ DMα,p
loc (Rn).

Proof Let F ∈ DM1,p(Rn). Given ξ ∈ C∞
c (Rn), since I1−αξ ∈ C∞

b (Rn) with ∇αξ =
∇ I1−αξ ∈ L p′

(Rn), we can write
∫
Rn

F · ∇αξ dx =
∫
Rn

F · ∇ I1−αξ dx = −
∫
Rn

I1−αξ ddivF .

Hence, for any bounded open set U ⊃ supp ξ , by [18, Lem. 2.4] we can find a constant
Cn,α,U > 0, depending only on n, α and diam(U ), such that

∣∣∣∣
∫
Rn

F · ∇αξ dx

∣∣∣∣ ≤ Cn,α,U |divF |(Rn)‖ξ‖L∞(Rn).

This implies that F ∈ DMα,p
loc (Rn), as desired. ��

The inclusion given by Lemma 2.3 can be somewhat reversed, as done in Lemma 2.4
below. Note that this result, besides providing analogues of [18, Lem. 3.28], [19, Lem. 3.7]
and [17, Prop. 4], proves point (ii) of Theorem 1.7

Lemma 2.4 (Relation between DMα,p and DM1,p) Let α ∈ (0, 1), p ∈
(
1, n

1−α

)
and

q = np
n−(1−α)p . If F ∈ DMα,p(Rn), then G = I1−αF ∈ DM1,q(Rn), with

‖G‖Lq (Rn;Rn) ≤ cn,α,p ‖F‖L p(Rn;Rn) and div G = divαF in M (Rn).

As a consequence, the operator I1−α : DMα,p(Rn) → DM1,q(Rn) is continuous.Moreover,

for p ∈
[

n
n−α

, n
1−α

)
, if F ∈ DMα,p(Rn) then |divαF |(B) = 0 on Borel sets B ⊂ R

n of

σ -finite H n− q
q−1 measure.

Proof Let p′ = p
p−1 , q

′ = q
q−1 and note that r = np′

n+(1−α)p′ ∈
(
1, n

1−α

)
. By the

Hardy–Littlewood–Sobolev inequality, we immediately get that G = I1−αF ∈ Lq(Rn;Rn).
Moreover, given ξ ∈ C∞

c (Rn), we clearly have I1−α|∇ξ | ∈ Lq ′
(Rn), because |∇ξ | ∈

Lr (Rn). Hence, by Fubini Theorem, we can write
∫
Rn

F · ∇αϕ dx =
∫
Rn

F · I1−α∇ϕ dx =
∫
Rn

G · ∇ϕ dx (2.8)

for all ξ ∈ C∞
c (Rn), proving that divαF = div G in M (Rn). The remaining part of the

statement easily follows from Theorem 1.1 (also see [49, Th. 3.2]). ��
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2.5 Decay estimates

We now deal with point (iii) of Theorem 1.7. To this aim, we prove some decay estimates of
the fractional divergence-measure on balls.

Let us begin with the following result, which may be considered as a toy case for the more
general result in Theorem 2.8 below.

Lemma 2.5 (Decay estimate for divαF ≥ 0) Let α ∈ (0, 1] and p ∈ [1,+∞]. If F ∈
DMα,p(Rn) satisfies divαF ≥ 0 on some open set A ⊂ R

n, then

divαF(Br (x)) ≤ Cn,α,p ‖F‖L p(Rn;Rn) r
n−α− n

p . (2.9)

for all x ∈ A and r > 0 such that B2r (x) ⊂ A.

Proof Let ξ ∈ C∞
c (B2) be such that ξ ≥ 0 and ξ ≡ 1 on B1. Then, for x ∈ A and r > 0

such that B2r (x) ⊂ A, we can estimate

divαF(Br (x)) ≤
∫
Rn

ξ

(
y − x

r

)
ddivαF(y) = −

∫
Rn

F(y) · (∇αξ)

(
y − x

r

)
r−α dy.

Thus we easily get

divαF(Br (x)) ≤ ‖F‖L p(Rn;Rn) r
−α

(∫
Rn

|∇αξ(y)|p′
rn dy

) 1
p′

= ‖F‖L p(Rn;Rn) ‖∇αξ‖L p′ (Rn;Rn)
rn−α− n

p ,

from which the conclusion immediately follows. ��
Lemma 2.5, despite its simplicity, allows to recover the following rigidity result, which

may be seen as the natural fractional analogue of [44, Th. 3.1].

Proposition 2.6 (Rigidity) Let α ∈ (0, 1] and p ∈
[
1, n

n−α

]
. If F ∈ DMα,p(Rn) satisfies

divαF ≥ 0, then divαF = 0.

Proof If p < n
n−α

, so that n − α − n
p < 0, then

0 ≤ divαF(Br ) ≤ Cn,α,p‖F‖L p(Rn;Rn)r
n−α− n

p

for all r > 0 by Lemma 2.5 in the case x = 0. Hence the conclusion follows by taking the
limit as r → +∞. If instead p = n

n−α
, then IαdivαF = div0F in L

n
n−α (Rn), since

∫
Rn

Iαξ ddivαF = −
∫
Rn

F · ∇α Iαξ dx = −
∫
Rn

F · ∇0ξ dx =
∫
Rn

ξdiv0F dx

for all ξ ∈ C∞
c (Rn) by Proposition 2.2, Remark 1.6 and [4, Prop. 7 and Lem. 26]. However,

for all R > 0 and x ∈ R
n we also have

Iαdiv
αF(x) ≥ cn,α

∫
BR

1

|x − y|n−α
ddivαF(y) ≥ c̃n,α

divαF(BR)

(|x | + R)n−α
,

and thus IαdivαF /∈ L
n

n−α unless divαF = 0. The proof is complete. ��
To remove the non-negativity assumption divαF ≥ 0 from the conclusion (2.9) in

Lemma 2.5 we need to deal with integration-by-parts forDMα,p fields on balls. The follow-
ing result is the analogue of [17, Th. 9].
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Theorem 2.7 (Integration by parts on balls) Let α ∈ (0, 1) and p ∈
(

1
1−α

,+∞
]
. If F ∈

DMα,p(Rn), ξ ∈ Lipc(R
n) and x ∈ R

n, then∫
Br (x)

F ·∇αξ dy+
∫
Rn

ξF ·∇αχBr (x) dy+
∫
Rn

F ·∇α
NL(χBr (x), ξ) dy = −

∫
Br (x)

ξ ddivαF

(2.10)
for L 1-a.e. r > 0.

Proof The proof is very similar to that of [17, Th. 9], so we only sketch it for the reader’s
convenience. Fix x ∈ R

n and ξ ∈ Lipc(R
n) be fixed.

In the case p = +∞, we consider hε,r ,x ∈ Lipc(R
n) for ε > 0 and r > 0 defined as

hε,r ,x (y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 ≤ |y − x | ≤ r ,
r + ε − |y − x |

ε
if r < |y − x | < r + ε,

0 if |y − x | ≥ r + ε,

for all y ∈ R
n . By [18, Lem. 5.1], ∇αhε,r ,x ∈ L1(Rn;Rn) with

∇αhε,r ,x (y) = μn,α

ε(n + α − 1)

∫
Br+ε(x)\Br (x)

x − z

|x − z| |z − y|1−n−α dz (2.11)

for L n-a.e. y ∈ R
n . Since hε,r ,x (y) → χBr (x)

(y) as ε → 0+ for all y ∈ R
n and

|divαF |(∂Br (x)) = 0 for L 1-a.e. r > 0, we can use hε,r ,x to approximate χBr (x) in (2.10).
On the one hand, since hε,r ,x ϕ ∈ Lipc(R

n;Rn), by Proposition 2.2 we have∫
Rn

F · ∇α(hε,r ,x ϕ) dy = −
∫
Rn

hε,r ,x ϕ ddivαF . (2.12)

On the other hand, by [18, Lem. 2.6], we can compute

∇α(hε,r ,x ϕ) = hε,r ,x ∇αϕ + ϕ ∇αhε,r ,x + ∇α
NL(hε,r ,x , ϕ). (2.13)

One then has to deal with each term of the right-hand side of (2.13) separately. The most
difficult term is the second one, for which one has to observe that, by (2.11),∫

Rn
ξ(y) F(y) · ∇αhε,r ,x (y) dy

= μn,α

ε(n + α − 1)

∫
Rn

ξ(y) F(y) ·
∫
Br+ε(x)\Br (x)

x − z

|x − z| |z − y|1−n−α dz dy

=
∫
Br+ε(x)\Br (x)

x − z

|x − z| ·
∫
Rn

F(y) ξ(y) |z − y|1−n−α dy dz

=
∫ r+ε

r

∫
∂B�(x)

x − z

|x − z| ·
∫
Rn

F(y) ξ(y) |z − y|1−n−α dy dH n−1(z) d�.

Hence, by Lebesgue’s Differentiation Theorem,

lim
ε→0

1

ε

∫
Rn

ξ(y) F(y) ·
∫
Br+ε(x)\Br (x)

x − z

|x − z| |z − y|1−n−α dz dy

=
∫

∂Br (x)

x − z

|x − z| ·
∫
Rn

F(y) ξ(y) |z − y|1−n−α dy dH n−1(z)

=
∫
Rn

ξ(y) F(y) ·
∫
Rn

|z − y|1−n−α dDχBr (x)(z) dy
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for L 1-a.e. r > 0. Thus, by [18, Th. 3.18, Eq. (3.26)], we get that

lim
ε→0

∫
Rn

ξ F · ∇αhε,r ,x dy

= μn,α

n + α − 1

∫
Rn

ξ(y) F(y) ·
∫
Rn

|z − y|1−n−α dDχBr (x)(z) dy

=
∫
Rn

ξ F · ∇αχBr (x) dy (2.14)

for L 1-a.e. r > 0. The other terms are easier and hence left to the reader.
In the case p ∈

(
1

1−α
,+∞

)
, instead, one regularizes F ∈ DMα,p(Rn) to (Fε)ε>0 ⊂

DMα,p(Rn) ∩ L∞(Rn;Rn) ∩ C∞(Rn;Rn) via convolution to reduce to the previous case
p = +∞. The conclusion then follows by exploiting the convergence properties given by
Theorem 2.1 and recalling that, thanks to [17, Cor. 1], ∇αχBr (x) ∈ Lq(Rn;Rn) for any

p ∈
(

1
1−α

,∞
)
, where q = p

p−1 , and that ∇α
NL(χBr (x), ξ) ∈ Lq(Rn;Rn) as well, thanks to

[20, Cor. 2.7]. We leave the details to the reader. ��

We are now ready to generalize Lemma 2.5 beyond the non-negativity assumption, as
done in [17, Th. 10] for BV α,p functions.

Theorem 2.8 (Decay estimates for DMα,p functions for p > 1
1−α

) Let α ∈ (0, 1) and

p ∈
(

1
1−α

,+∞
]
. There exist two constants An,α,p, Bn,α,p > 0, depending on n, α and p

only, with the following property. If F ∈ DMα,p(Rn) then, for |divαF |-a.e. x ∈ R
n, there

exists rx > 0 such that

|divαF |(Br (x)) ≤ An,α,p‖F‖L p(Rn;Rn) r
n
q −α (2.15)

and
|divα(χBr (x)F)|(Rn) ≤ Bn,α,p‖F‖L p(Rn;Rn) r

n
q −α (2.16)

for all r ∈ (0, rx ), where q ∈ [1,+∞) is such that 1
p + 1

q = 1.

Proof The proof follows the same line of that of [17, Th. 10], so we only sketch it for the
reader’s ease. Since F ∈ DMα,p(Rn), by the Polar Decomposition Theorem for Radon
measures there exists a Borel function σα

F : Rn → R such that

divαF = σα
F |divαF | with |σα

F (x)| = 1 for |divαF |-a.e. x ∈ R
n . (2.17)

For x ∈ R
n such that |σα

F (x)| = 1, given r > 0 we define ξx,r : Rn → R as

ξx,r (y) =

⎧⎪⎪⎨
⎪⎪⎩

σα
F (x) if y ∈ Br (x),

σα
F (x)

(
2 − |y−x |

r

)
if y ∈ B2r (x)\Br (x),

0 if y /∈ B2r (x),

(2.18)

for all y ∈ R
n . Since ξx,r ∈ Lipc(R

n) with ‖ϕ‖L∞(Rn) ≤ 1, we can find rx ∈ (0, 1) such that
∫
Br (x)

ξx,r (y) ddiv
αF(y) =

∫
Br (x)

σ α
F (x) σα

F (y) d|divαF |(y) ≥ 1

2
|divαF |(Br (x))

(2.19)

123



G. E. Comi, G. Stefani

for all r ∈ (0, rx ). Also, by (2.10), we can estimate

∫
Br (x)

ξx,r ddiv
αF ≤

∣∣∣∣
∫
Br (x)

F · ∇αξx,r dy

∣∣∣∣ +
∣∣∣∣
∫
Rn

ξx,r F · ∇αχBr (x) dx

∣∣∣∣
+

∣∣∣∣
∫
Rn

F · ∇α
NL(χBr (x), ξx,r ) dy

∣∣∣∣ (2.20)

forL 1-a.e. r ∈ (0, rx ). Hence the inequality in (2.15) follows by estimating the three terms
in the right-hand side of (2.20), recalling the scaling property of ∇α , [17, Cor. 1] and [20,
Cor. 2.7]. For the inequality in (2.16), instead, one notes that, given any ξ ∈ Lipc(R

n) with
‖ξ‖L∞(Rn) ≤ 1, from (2.10) it holds

∣∣∣∣
∫
Br (x)

F · ∇αξ dy

∣∣∣∣ ≤ |divαF |(Br (x)) + ‖F‖L p(Rn;Rn) ‖∇αχBr (x)‖Lq (Rn;Rn)

+ ‖F‖L p(Rn;Rn)‖∇α
NL(χBr (x), ξ)‖Lq (Rn;Rn)

for L 1-a.e. r ∈ (0, rx ). The conclusion thus follows from (2.15) and again [17, Cor. 1] and
[20, Cor. 2.7]. We leave the details to the reader. ��

As a consequence of Theorem 2.8, we get the following result, in particular proving the
validity of point (iii) in Theorem 1.7. Note that Corollary 2.9 below is actually relevant only
in the case of point (iii) of Theorem 1.7, since n − p

p−1+(1−α)
p
n

≤ n − α − n
p if and only if

p ≥ n
1−α

and p ≤ n
n−α

, but in this second case both exponents are negative.

Corollary 2.9 (|divαF | � H
n−α− n

p for p > 1
1−α

) Let α ∈ (0, 1) and p ∈
(

1
1−α

,+∞
]
. If

F ∈ DMα,p(Rn), then there exists a |divαF |-negligible set Zα,p
F ⊂ R

n such that

|divαF | ≤ 2
n
q −α An,α,p

ω n
q −α

‖F‖L p(Rn;Rn) H
n
q −α

R
n\Zα,p

F , (2.21)

where An,α,p is as in (2.15) and q ∈ [1,+∞) is such that 1
p + 1

q = 1.

Proof By Theorem 2.8, there exists a set Zα,p
F ⊂ R

n , which we can assume to be Borel
without loss of generality, such that |divαF |(Zα,p

F ) = 0 and (2.15) holds for any x /∈ Zα,p
F .

Hence, for all x ∈ R
n\Zα,p

F , we have

�∗
n
q −α

(|divαF |, x) = lim sup
r→0+

|divαF |(Br (x))
ω n

q −αr
n
q −α

≤ An,α,p

ω n
q −α

‖F‖L p(Rn;Rn).

Inequality (2.21) thus follows from [2, Th. 2.56]. ��

Remark 2.10 Corollary 2.9 holds true also in the limit case as α → 1−. Indeed, if F ∈
DM1,∞(Rn), then [52, Prop. 1] implies that

|divF | ≤ cn‖F‖L∞(Rn;Rn)H
n−1 (Rn\Z1,∞

F ),

for some constant cn > 0 and any |divF |-negligible set Z1,∞
F ⊂ R

n .
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2.6 Proof of Theorem 1.8

We begin with the following technical result.

Lemma 2.11 (Zero total divergence-measure) Let α ∈ (0, 1] and p ∈
[
1, n

n−α

)
. If F ∈

DMα,p(Rn), then divαF(Rn) = 0.

Proof Let η ∈ C∞
c (B2) be such that η ≡ 1 on B1 and set ηk(x) = η

( x
k

)
for k ∈ N and

x ∈ R
n . By (1.7) and the α-homogeneity of the fractional gradient, we have∣∣∣∣

∫
Rn

ηk ddiv
αF

∣∣∣∣ =
∣∣∣∣
∫
Rn

F · ∇αηk dx

∣∣∣∣
≤ k

n
q −α ‖F‖L p(Rn;Rn) ‖∇αη‖Lq (Rn;Rn) → 0 as k → +∞

for q > n
α
, which means p < n

n−α
. Hence, by the Dominated Convergence Theorem with

respect to the measure |divαF |, we get that
divαF(Rn) =

∫
Rn

ddivαF = lim
k→+∞

∫
Rn

ηk ddiv
αF = 0

concluding the proof. ��
We can now deal with the Leibniz rule for DMα,p vector fields and bounded continuous

Besov functions, in analogy with [20, Th. 3.1]. To this purpose, we need to recall the notion
of non-local fractional divergence

divα
NL(g, F)(x) = μn,α

∫
Rn

(g(y) − g(x))(F(y) − F(x)) · (y − x)

|y − x |n+α+1 dy, x ∈ R
n,

of a couple (g, F), where g ∈ Lipc(R
n) and F ∈ Lipc(R

n;Rn). The operator divα
NL can be

continuously extended to Lebesgue and Besov spaces, see [20, Cor. 2.7].

Theorem 2.12 (Leibniz rule forDMα,p withCb∩Bα
q,1 for

1
p + 1

q = 1) Let α ∈ (0, 1) and let

p, q ∈ [1,+∞] be such that 1
p + 1

q = 1. If F ∈ DMα,p(Rn) and g ∈ Cb(R
n) ∩ Bα

q,1(R
n),

then gF ∈ DMα,r (Rn) for all r ∈ [1, p], with divα
NL(g, F) ∈ L1(Rn) and

divα(gF) = g divαF + F · ∇αgL n + divα
NL(g, F)L n in M (Rn). (2.22)

In addition,

divα(gF)(Rn) = 0,
∫
Rn

divα
NL(g, F) dx = 0, (2.23)

and ∫
Rn

F · ∇αg dx = −
∫
Rn

g ddivαF . (2.24)

Proof We mimic the proof of [20, Th. 3.1]. Since g ∈ Lq(Rn) ∩ L∞(Rn), we have
gF ∈ L1(Rn) ∩ L p(Rn) by Hölder’s inequality. In addition, [20, Cor. 2.7] implies that
divα

NL(g, F) ∈ L1(Rn). We now divide the proof in two steps.
Step 1: proof of (2.22). Let ξ ∈ Lipc(R

n) be given. By [20, Lem. 3.2(i)], we have

∇α(gξ) = g∇αξ + ξ∇αg + ∇α
NL(g, ξ) in Lq(Rn),

so that∫
Rn

gF · ∇αξ dx =
∫
Rn

F · ∇α(gξ) dx −
∫
Rn

ξF · ∇αg dx −
∫
Rn

F · ∇α
NL(g, ξ) dx .
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By [20, Lem. 2.9], we have that∫
Rn

F · ∇α
NL(g, ξ) dx =

∫
Rn

ξ divα
NL(g, F) dx .

Now let (Fε)ε>0 ⊂ DMα,p(Rn) ∩ C∞(Rn;Rn) be given by Fε = �ε ∗ F for all ε > 0.
In particular, we have Fε ∈ W 1,p(Rn;Rn) for each ε > 0. Note that W 1,p(Rn;Rn) ⊂
Bα
p,q(R

n;Rn) for all α ∈ (0, 1) and p, q ∈ [1,+∞], see [41, Th. 17.33]. As a consequence,
Fε ∈ Bα

p,1(R
n;Rn) for each ε > 0. Since gξ ∈ Bα

q,1(R
n), by [20, Lem. 2.6] we can write

∫
Rn

Fε · ∇α(gξ) dx = −
∫
Rn

gξ divαFε dx

for all ε > 0. On the one side, we have

lim
ε→0+

∫
Rn

Fε · ∇α(gξ) dx =
∫
Rn

F · ∇α(gξ) dx

by Hölder’s inequality in the case p < +∞ and by the Dominated Convergence Theorem in
the case p = +∞. On the other side, since gξ ∈ Cc(R

n), we also have

lim
ε→0+

∫
Rn

gξ divαFε dx =
∫
Rn

gξ ddivαF,

thanks to Theorem 2.1. We thus conclude that∫
Rn

F · ∇α(gξ) dx = −
∫
Rn

gξ ddivαF,

so that, for all ξ ∈ Lipc(R
n),∫

Rn
gF · ∇αξ dx = −

∫
Rn

gξ ddivαF −
∫
Rn

ξ F · ∇αg dx −
∫
Rn

ξ divα
NL(g, F) dx .

By a standard approximation argument for the test function, we get (2.22).
Step 2: proof of (2.23) and (2.24). Since gF ∈ DMα,1(Rn) by Step 1, the first equation

in (2.23) readily follows from Lemma 2.11. Moreover, since obviously ∇α
NL(g, v) = 0 for

all v ∈ R, by [20, Lem. 2.9] we get

v

∫
Rn

divα
NL(g, F) dx =

∫
Rn

v divα
NL(g, F) dx =

∫
Rn

F · ∇α
NL(g, v) dx = 0

for all v ∈ R and also the second equation in (2.23) immediately follows.By combining (2.22)
with (2.23), we get (2.24) and the proof is complete. ��

We are now in position to prove our second main result Theorem 1.8.

Proof of Theorem 1.8 The proofs of the cases p ∈
[
1, n

n−α

)
, p ∈

[
n

1−α
,+∞

)
and p = +∞

are analogous to those of [20, Cors. 3.3, 3.6 and 3.7], respectively, and are hence omitted. We

thus deal with the case p ∈
[

n
n−α

, n
1−α

)
. We start by noticing that γn,p,α ≥ α if and only if

p ≥ n
n−α

, so that Bγ
q,1(R

n) ⊂ Bα
q,1(R

n), thanks to [41, Th. 17.82]. Hence g ∈ Bα
q,1(R

n) and
so ∇αg ∈ Lq(Rn;Rn) by [20, Cor. 23 and Lem. 2.6]. Let (�ε)ε>0 be as in Theorem 2.1 and
set gε = �ε ∗ g for all ε > 0. Arguing as in the proof of [20, Cor. 3.5], we can exploit [17,
Sec. 5.1 and Th. 11] to conclude that

lim
ε→0+ gε(x) = g�(x) for all x ∈ R

n\Dg, (2.25)
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for some set Dg ⊂ R
n such that H n−γ q+δ(Dg) = 0 for any δ > 0 sufficiently small. Since

n − nq

n + (1 − α)q
> n − γ q ⇐⇒ γ >

n

n + (1 − α)q
,

we conclude that |divαF |(Dg) = 0, by Theorem 1.7. Since gε ∈ Cb(R
n) ∩ Bα

q,1(R
n) for all

ε > 0 thanks to [41, Prop. 17.12], by Theorem 2.12 we get that gεF ∈ DMα,p(Rn), with

divα(gεF) = gε div
αF + F · ∇αgε L

n + divα
NL(gε, F)L n in M (Rn).

Now ∇αgε = �ε ∗ ∇αg in Lq(Rn;Rn) (for example see [18, Lem. 3.5] and its proof), while
[20, Cor. 2.7] implies that

‖divα
NL(gε, F) − divα

NL(g, F)‖L1(Rn) = ‖divα
NL(gε − g, F)‖L1(Rn)

≤ 2μn,α ‖F‖L p(Rn;Rn) [g − gε]Bα
q,1(R

n)

for all ε > 0. Therefore, since�ε∗∇αg → ∇αg in Lq(Rn;Rn) and, by [41, Prop. 17.12], [g−
gε]Bα

q,1(R
n) → 0, the conclusion follows by exploiting (2.25) and theDominatedConvergence

Theorem with respect to the measure |divαF |. Finally, equations (1.10) and (1.11) can be
proved as (2.23) and (2.24) in Theorem 2.12. ��

3 Examples

In this section, we illustrate some examples concerning Theorem 1.7.

3.1 Example for point (i) of Theorem 1.7

Example 3.1 below shows that, if p ∈
[
1, n

n−α

)
, the fractional divergence-measure ofDMα,p

vector fields is not absolutely continuouswith respect toH ε for any ε > 0, in general, proving
point (i) of Theorem 1.7.

Example 3.1 Let α ∈ (0, 1), y, z ∈ R
n , and define

Fy,z,α(x) = μn,−α

(
(x − y)

|x − y|n+1−α
− (x − z)

|x − z|n+1−α

)
, x ∈ R

n\ {y, z} . (3.1)

A plain computation yields Fy,z,α ∈ L p(Rn;Rn) for all p ∈
[
1, n

n−α

)
(for example, see the

proof of [18, Prop. 3.14]). Moreover, by [18, Prop. 3.13], we know that

divαFy,z,α = δy − δz .

Consequently, Fy,z,α ∈ DMα,p(Rn) for all p ∈
[
1, n

n−α

)
.

Interestingly, the vector field (3.1) of Example 3.1 works also in the limit case α = 1,
proving point (i) of Theorem 1.1, see [49, Prop. 6.1].

Example 3.2 Let y, z ∈ R
n and define

Fy,z,1(x) = μn,−1

(
(x − y)

|x − y|n − (x − z)

|x − z|n
)

, x ∈ R
n\ {y, z} .
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Computations as in Example 3.1 show that Fy,z,1 ∈ L p(Rn;Rn) for all p ∈
(
1, n

n−1

)
, with

divFy,z,1 = δy − δz .

Hence Fy,z,1 ∈ DM1,p(Rn) for all p ∈
(
1, n

n−1

)
. Actually, we have Fy,z,1 ∈ DM1,1

loc (R
n).

3.2 Partial sharpness of Theorem 1.7

Arguing as in [49, Exam. 3.3 and Prop. 6.1], we can exploit the properties of the vector
field (3.1) in Example 3.1 to construct additional examples proving a partial sharpness of
Theorem 1.7.

The following result is the analogue of [17, Prop. 5].

Proposition 3.3 (The vector field Gα = Fα ∗ ν) Let α ∈ (0, 1) and Fα = F0,e1,α be as in
Example 3.1, and let ν ∈ M (Rn). Then we have

Gα = Fα ∗ ν ∈ DMα,p(Rn) for all p ∈
[
1,

n

n − α

)
,

with
divα Gα = ν − (τe1)#ν, (3.2)

where τx (y) = y + x for all x, y ∈ R
n. In addition, if there exist C, ε > 0 such that

|ν|(Br (x)) ≤ Crε for all x ∈ R
n and r > 0, (3.3)

then

Gα ∈ DMα,p(Rn) for all p ∈

⎧⎪⎪⎨
⎪⎪⎩

[
1, n−ε

n−α−ε

)
if ε ∈ (0, n − α),

[1,+∞) if ε = n − α,

[1,+∞] if ε ∈ (n − α, n].
(3.4)

Proof We divide the proof into two steps.

Step 1. Let ν ∈ M (Rn). We claim that Gα ∈ DMα,p(Rn) for all p ∈
[
1, n

n−α

)
and that

Gα satisfies (3.2). Indeed, by Young’s inequality (for Radon measures), we can estimate

‖Gα‖L1(Rn;Rn) ≤ ‖Fα‖L1(Rn;Rn)|ν|(Rn).

Moreover, thanks to the translation invariance of ∇α and exploiting the explicit expression
of Fα given in Example 3.1, we can write

∫
Rn

Gα(x) · ∇αξ(x) dx =
∫
Rn

∫
Rn

Fα(x − y) · ∇αξ(x) dν(y) dx

=
∫
Rn

∫
Rn

Fα(x − y) · ∇αξ(x) dx dν(y)

= −
∫
Rn

∫
Rn

ξ(x + y) d
(
δ0(x) − δe1(x)

)
dν(y)

= −
∫
Rn

(ξ(y) − ξ(y + e1)) dν(y)
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for all ξ ∈ C∞
c (Rn). This proves Gα ∈ DMα,1(Rn) and (3.2). In addition, by Jensen’s

inequality and Tonelli’s Theorem, we can estimate∫
Rn

|Gα(x)|p dx ≤
∫
Rn

|ν|(Rn)p−1
∫
Rn

|Fα(x − y)|p d|ν|(y) dx
= |ν|(Rn)p ‖Fα‖p

L p(Rn;Rn)
< +∞

for all p ∈
[
1, n

n−α

)
, thanks to the integrability properties of Fα given in Example 3.1.

Step 2. We prove that (3.3) implies (3.4). To this aim, let q = p
p−1 and 0 < δ ≤ q . Since

|Fα| = |Fα| δ
q |Fα|1− δ

q , by Hölder’s inequality we get

|Gα(x)|p ≤
(∫

Rn
|Fα(x − y)| δ

q |Fα(x − y)|1− δ
q d|ν|(y)

)p

≤
(∫

Rn
|Fα(x − y)|δ d|ν|(y)

) p
q

(∫
Rn

|Fα(x − y)|p
(
1− δ

q

)
d|ν|(y)

)

for a.e. x ∈ R
n . We now recall the explicit expression of Fα in Example 3.1 and write∫

Rn
|Fα(x − y)|δ d|ν|(y) =

∫
Rn\

(
B 1
2
(x)∪B 1

2
(x−e1)

) |Fα(x − y)|δ d|ν|(y)

+
∞∑
j=1

∫
C j

(
x, 12

)
∪C j

(
x−e1,

1
2

) |Fα(x − y)|δ d|ν|(y), (3.5)

where we have set
C j (x, r) = Br j (x)\Br j+1(x)

for all x ∈ R
n , r ∈ (0, 1) and j ∈ N, j ≥ 1, for brevity. Now, on the one hand, if

y ∈ R
n\

(
B 1

2
(x) ∪ B 1

2
(x − e1)

)
, then x − y ∈ R

n\
(
B 1

2
∪ B 1

2
(e1)

)
, so that

|Fα(x − y)| ≤ μn,−α

(
2n−α + 2n−α

) = μn,−α 2
n+1−α

for all y ∈ R
n\

(
B 1

2
(x) ∪ B 1

2
(x − e1)

)
. Therefore, we can estimate

∫
Rn\

(
B 1
2
(x)∪B 1

2
(x−e1)

) |Fα(x − y)|δ d|ν|(y) ≤ (
μn,−α 2

n+1−α
)δ |ν|(Rn) (3.6)

for all x ∈ R
n . On the other hand, for all x ∈ R

n and j ≥ 1, we have∫
C j

(
x, 12

) |Fα(x − y)|δ d|ν|(y) ≤ μδ
n,−α

∫
C j

(
x, 12

)
(|x − y|α−n + |x − y − e1|α−n)δ

d|ν|(y)

≤ μδ
n,−α

(
2( j+1)(n−α) +

(
1 − 2− j

)α−n
)δ

|ν|(B2− j (x))

≤ μδ
n,−α

(
2( j+1)(n−α) + 2n−α

)δ

C 2− jε. (3.7)

Reasoning analogously, we obtain∫
C j

(
x−e1,

1
2

) |Fα(x − y)|δ d|ν|(y) ≤ Cμδ
n,−α

(
2( j+1)(n−α) + 2n−α

)δ

2− jε (3.8)
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for all x ∈ R
n and j ≥ 1. Therefore, inserting (3.6), (3.7) and (3.8) in (3.5), we get that∫

Rn
|Fα(x − y)|δ d|ν|(y) ≤ Cα,ε,δ (3.9)

for all x ∈ R
n , whereCα,ε,δ > 0 is constant depending on α, ε, and δ which is finite provided

that we choose δ < ε
n−α

, as we are assuming from now on. We thus have
∫
Rn

|Gα(x)|p dx ≤ C p−1
α,ε,δ

∫
Rn

∫
Rn

|Fα(x − y)|p
(
1− δ

q

)
d|ν|(y) dx

= C p−1
α,ε,δ |ν|(Rn)

∫
Rn

|Fα(x)|p
(
1− δ

q

)
dx .

Now, recalling Example 3.1, we immediately see that∫
Rn

|Fα(x)|p
(
1− δ

q

)
dx < +∞ ⇐⇒ p <

n

(n − α)(1 − δ)
− δ

1 − δ
= n − δn + αδ

(n − α)(1 − δ)
.

Hence, since the function δ �→ n−δn+αδ
(n−α)(1−δ)

is monotone increasing, we easily see that

ε ∈ (0, n − α) �⇒ δ <
ε

n − α
< 1 �⇒ p ∈

[
1,

n − ε

n − α − ε

)

and, similarly,

ε ∈ [n − α, n] �⇒ δ(n − α) < ε for all δ ∈ (0, 1) �⇒ p ∈ [1,+∞).

Finally, in the case ε ∈ (n − α, n], we exploit (3.9) for δ = 1 in order to conclude that

|Gα(x)| ≤
∫
Rn

|Fα(x − y)| d|ν|(y) = Cα,ε < +∞

for all x ∈ R
n , which implies that Gα ∈ L∞(Rn). The conclusion thus follows. ��

Thanks to Proposition 3.3, we can now give the following example.

Example 3.4 Let α ∈ (0, 1) and let ν and Gα be as in Proposition 3.3. By [32, Cor. 4.12],
there exists a compact set K ⊂ R such that ν = H ε K , so that |divαGα| �� H s for all
s > ε. Now we observe that, by (3.4), we have the following situations:

• in order to have Gα ∈ DMα,p(Rn) for some p ∈
[

n
n−α

,+∞
)
, we need ε > n − αq ,

since, if ε ∈ [n−α, n], then p ∈ [1,+∞), while, for ε ∈ (0, n−α), we have p < n−ε
n−α−ε

,
which implies ε > n − αq;

• in order to have Gα ∈ DMα,∞(Rn), we need ε > n − α, since, if ε ∈ (n − α, n], then
p ∈ [1,+∞].

Therefore, these lower bounds on ε imply that, for p ∈
[

n
n−α

,+∞
]
, we have

|divαGα| �� H s for all s > n − αq.

Notice that

n − αq ≥ max

{
n − nq

nq + (1 − α)q
,
n

q
− α

}

for all q ∈ [
1, n

α

]
, which means p ∈

[
n

n−α
,+∞

]
, with equality only for q = n

α
and q = 1.

Consequently, Example 3.4 shows that points (ii) and (iii) in Theorem 1.7 cannot be improved
beyond |divαF | � H n−αq , which is actually sharp for p = +∞.
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Remark 3.5 (Correction to [17, Exam. 2]) For n = 1, Example 3.4 together with the above
considerations corrects the conclusions of [17, Exam. 2].
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