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A B S T R A C T   

In the seminal work on autopoiesis by Varela, Maturana, and Uribe, they start by addressing the confusion 
between processes that are history dependent and processes that are history independent in the biological world. 
The former is particularly linked to evolution and ontogenesis, while the latter pertains to the organizational 
features of biological individuals. Varela, Maturana, and Uribe reject this framework and propose their original 
theory of autopoietic organization, which emphasizes the strong complementarity of temporal and non-temporal 
phenomena. They argue that the dichotomy between structure and organization lies at the core of the unity of 
living systems. By opposing history-dependent and history-independent processes, methodological challenges 
arise in explaining phenomena related to living systems and cognition. Consequently, Maturana and Varela reject 
this approach in defining autopoietic organization. I argue, however, that this relationship presents an issue that 
can be found in recent developments of the science of artificial intelligence (AI) in different ways, giving rise to 
related concerns. While highly capable AI systems exist that can perform cognitive tasks, their internal workings 
and the specific contributions of their components to the overall system behavior, understood as a unified whole, 
remain largely uninterpretable. This article explores the connection between biological systems, cognition, and 
recent developments in AI systems that could potentially be linked to autopoiesis and related concepts such as 
autonomy and organization. The aim is to assess the advantages and disadvantages of employing autopoiesis in 
the synthetic (artificial) explanation for biological cognitive systems and to determine if and how the notion of 
autopoiesis can still be fruitful in this perspective.   

1. . Introduction 

In the seminal work on autopoiesis by Varela, Maturana, and Uribe, 
published almost fifty years ago (Varela et al., 1974), the authors 
emphasize in the introduction the distinction between 
history-dependent processes and history-independent processes in the 
biological world. The former is particularly associated with evolution 
and ontogenesis, while the latter is connected to the organizational 
characteristics of biological individuals. The framework in which the 
concept of autopoiesis is developed is based on an opposition that 
Varela, Maturana, and Uribe claim to reject. They make an even more 
significant statement, asserting that the organization of biological sys-
tems and their unity precede other aspects of their living nature, such as 
evolution and reproduction. This implies that something non-temporal 
takes precedence over a set of temporal phenomena. 

This opposition should not mislead us about the core concept of 
autopoiesis, which underlies the core of living systems. The core re-
volves around the dichotomy between structure and organization. As we 
delve further into this article, we will discover that the autopoietic 

organization, as defined by Maturana and Varela, is a network of func-
tional relationships involving the synthesis and destruction of compo-
nents, resulting in the creation of the very components that constitute it. 
In essence, they describe a dynamic network that produces and destroys 
its own components, akin to a metabolic network. They emphasize that 
this dynamic network, as the organizational aspect of living systems, 
remains constant and unchanged throughout their ontogenetic dy-
namics. It is the common denominator shared by all living systems and 
remains unaffected by temporal fluctuations. We can thus speak of 
complementarity when considering the temporal and non-temporal 
factors associated with the autopoietic organization and its relation-
ship to life. In living organisms, what remains temporally invariant and 
what changes over time are intertwined. The structure of living systems 
is in a constant state of variation, and this perpetual structural variation 
is what regenerates their organization - a network of relationships be-
tween components. Hence, the organization represents the unchanging 
aspect of life. Simultaneously, the organization, as a dynamic network of 
functional relations between components, perpetually triggers struc-
tural variations and regenerate the structure. Consequently, the 
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structure represents the variant aspect of life. 
This represents the most distinctive aspect of autopoiesis, which can 

be summarized by considering the organizational aspect as stable and 
the structural aspect as unstable. The nature of living systems, by defi-
nition, requires continuous change in their structural components to 
maintain stability over time. However, this organizational stability ap-
pears to hold greater significance compared to other biological phe-
nomena associated with temporal changes, such as reproduction and 
evolution. The dichotomy between history-dependent processes and 
history-independent processes, explicitly highlighted in this article and 
not revisited in other works by Maturana and Varela (e.g., Maturana and 
Varela, 1980), nonetheless carries significance for the framework in 
which the discourse on autopoiesis is presented (particularly consid-
ering the time period in which the article was published) and for the 
reflections it inspires regarding subsequent attempts in the field of 
artificial sciences to build synthetic artifacts encompassing life and 
cognition features. Indeed, the opposition between history-dependent 
and history-independent processes raises methodological challenges 
when explaining phenomena related to living systems and cognition. 
This is why Maturana and Varela reject this approach when defining 
autopoietic organization. I argue that the issues highlighet by Maturana, 
Varela, and Uribe in the 1974 article, such as the relationship between 
history-dependent and history-independent processes, can also be 
observed in recent developments in the field of artificial sciences, where 
similar issues arise within major or minor research trends. For instance, 
the use of cognitive computational architectures has been a 
long-standing methodology in artificial intelligence (AI) and cognitive 
science for modeling human cognition (Lieto, 2021). Computational 
architectures can be considered as an organizational approach that is 
highly useful in explaining cognition, despite not fully addressing the 
coupling between cognitive systems and the environment. On the other 
hand, the significant advancements in machine learning have brought 
about the problem of Explainable AI, which entails explaining the 
behavior and outcomes of neural networks and deep learning systems 
(Miller et al., 2022). In this case, these systems demonstrate exceptional 
performance due to their unified (mathematical and computational) 
behavior, but the contribution of individual components to the overall 
system behavior, seen as a unified entity, remains less clear. Here, we 
encounter another instance in which the system exhibits autonomy, akin 
to autopoiesis, and possesses an autonomous "life" as an organizational 
unity with emergent capabilities. But what about cognition? Further 
examples can be found in the domains of AI and artificial life approaches 
from the past two decades. 

In the well-known book by Maturana and Varela on autopoiesis 
(Maturana and Varela, 1980), they establish a close relationship be-
tween autopoiesis and cognition, and consequently between life and 
cognition. However, the two parts of the book, focusing on the biology of 
cognition and the organization of living systems, also reveal a symbolic 
gap between these two domains. This gap, present in the bipartite 
structure of the volume,1 continues to pose both a problem to explain 
and a research program. Nevertheless, the underlying assumption that 
studying life and cognition can benefit from their interconnectedness 
remains fruitful. It suggests that these domains are not as separate as 
they may initially appear, even though the study of life and cognition 
has historically emerged from different fields, each with its own per-
spectives and aims. 

In my article, I aim to explore the relationship between biological 
systems and cognition by considering recent developments in artificial 

systems and AI trends that can be connected to autopoiesis and related 
concepts, such as autonomy and organization. The objective is to assess 
the advantages and limitations of using autopoiesis to explain cognitive 
biological systems in a synthetic way and to determine whether the 
notion of autopoiesis remains fruitful in this context. I will attempt to 
demonstrate that, in most cases, the fundamental features of autopoiesis 
are not present in artificial systems. While these recent advancements in 
AI are moving towards more embodied approaches to cognition, they 
cannot be fully recognized as autopoietic approaches. This limitation 
hinders their ability to achieve their desired goal of functioning as 
cognitive systems with autonomous "life." In other words, the challenge 
of explaining life and cognition through an artificial, synthetic approach 
is still far from being realized, primarily because autopoietic charac-
teristics are either partially or completely neglected. Furthermore, I will 
endeavor to show that this limitation is not inherent in principle, and 
that autopoiesis could still serve as a valuable conceptual framework for 
the specific goals of the artificial sciences. 

A further observation needs to be made regarding Maturana and 
Varela’s conception of cognition, which differs significantly from that of 
AI systems, especially during the period when the autopoietic theory 
was formulated. While it is beyond the scope of this article to provide a 
detailed analysis of Maturana and Varela’s notion of cognition, it can be 
summarized as the idea that living itself is cognition (Maturana and 
Varela, 1980; Thompson, 2004). In other words, there is no separation 
between life and cognition—the aforementioned gap that the auto-
poietic theory seeks to bridge. Recent advancements in cognitive science 
have incorporated these conceptual aspects into certain embodied per-
spectives, particularly enactive approaches that emphasize cognition as 
the outcome of continuous interaction between a system and its envi-
ronment, characterized by mutual dynamic coupling. However, in the 
field of artificial sciences, these developments have not progressed at the 
same pace as cognitive science approaches. Thus, the aim of this article 
is to analyze recent developments in AI and identify those approaches 
that, from an autopoietic perspective, appear most promising in terms of 
producing synthetic models aligned with an autopoietic vision of 
cognition. Additionally, the article aims to highlight the limitations of 
these approaches from an autopoietic standpoint, while also empha-
sizing the potential contributions of autopoietic theory to future ad-
vancements in the realm of artificial sciences. 

The structure of the article is as follows. In Section 2, I examine the 
concept of organization in relation to cognitive systems and autopoiesis, 
providing an overview of the introduction of autopoiesis by Varela, 
Maturana, and Uribe. Section 3 explores contemporary approaches in AI 
to identify potential connections between recent AI methodologies and 
autopoietic systems. In Section 4, I discuss the "chemical" aspect of AI as 
the most promising avenue for bridging the gap between AI systems and 
autopoiesis. Finally, in Section 5, I present the conclusions drawn from 
this analysis and propose potential future directions for research in this 
field. 

2. Organization, cognition, and autopoiesis 

The relationship between organizations and cognitive systems has 
been a longstanding topic in cognitive science (Bemudez, 2020). From a 
functionalist perspective, the mind is typically organized into inter-
connected parts within a well-defined structure or architecture. This 
traditional view in cognitive science is associated with modularity, 
which suggests that cognition is the outcome of an organized system of 
modules that process information through structured interactions. 
Within this framework, a cognitive system is examined as being struc-
tured into different levels of organization that correspond to various 
cognitive abilities such as perception, learning, decision-making, prob-
lem-solving, language, and so on. However, organization can also be 

1 It is worth mentioning that the book by Maturana and Varela is composed of 
two distinct parts. The first part, titled "Biology of Cognition," can be considered 
a preliminary version of the autopoiesis concept and was written by Maturana 
in 1969. The second part of the book is the English translation of "Máquinas Y 
Seres Vivos" (originally written between 1971 and 1972, and published in 
1973). 
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observed in the study of the brain: neurons exhibit organized patterns, 
and the brain is comprised of distinct neuronal parts or regions. In this 
case as well, a modular structure exists that links function and matter.2 

Therefore, organization plays a central role in cognitive science and 
neuroscience modeling, serving as an integral part of the explanation for 
the functions and capabilities under investigation. 

On the other hand, computational cognitive models rely precisely on 
the use of organization as an explanatory framework. These models aim 
to capture the general aspects of AI (such as the ongoing efforts to 
achieve General Artificial Intelligence) or at least some generalizable 
features. For instance, they focus on the flexible utilization of a con-
ceptual knowledge base or frameworks that explain how information 
being processed can be cognitively integrated with each other, as seen in 
global workspace models.3 In this context, the concept of organization or 
an organized system becomes an integral part of the mechanistic 
standpoint, from which mechanistic explanations arise as a conse-
quence. For example, Bechtel and Abrahamsen (2005: 423) provide a 
broad definition of a mechanism as follows: “A mechanism is a structure 
performing a function in virtue of its component parts, component op-
erations, and their organization. The orchestrated functioning of the 
mechanism is responsible for one or more phenomena.” This definition 
clearly highlights the connection with the notion of organization, which 
involves the integrated action of the structure’s components. Overall, 
the use of organization in computational cognitive models aligns with 
the mechanistic perspective, where the organized functioning of the 
system’s components plays a crucial role in explaining various 
phenomena. 

A more refined concept of organization is employed to explain sys-
tems that exhibit self-organization. In this context, the crucial point lies 
in the specific structure, coupled with a set of actions, required to ach-
ieve such a phenomenon. Self-organizing systems have gained signifi-
cant prominence in the field of AI, particularly in recent decades. In 
various domains, the notions of emergence and self-organization are 
used to elucidate the functioning and origins of systems. For example, in 
the realm of evolutionary computing, techniques such as evolutionary 
programming, evolutionary algorithms, and genetic algorithms are 
employed (Eiben and Smith, 2015). Self-organizing systems are also 
commonly encountered in neural networks and robotics. In fact, the 
concept of self-organization was already proposed by Alan Turing in his 
early writings on AI (Turing, 1950) as a goal to be achieved to develop 
thinking machines. Self-organizing systems, as evidenced by their ap-
plications in AI-related fields, exhibit a strong connection to natural 
systems, where aspects of life and cognition are intertwined (Holland, 
1992). However, the primary focus of AI researchers studying these 
systems has not been to explain life itself but rather to understand 
certain aspects of cognition or cognition itself as a whole, while also 
exploring numerous practical applications (including solving optimiza-
tion problems). 

With the concept of self-organizing systems, AI, including its con-
nections with Artificial Life, approaches the notion of autopoiesis to a 
significant extent. Autopoiesis, however, possesses distinct characteris-
tics and, perhaps, a greater potential for capturing the relationship be-
tween the living and cognition through explanatory and synthetic 
modeling approaches. The term “autopoiesis” was introduced and 
thoroughly analyzed in the 1980 book by Humberto Maturana and 
Francisco Varela, Autopoiesis and Cognition: The Realization of the Living. 
The title itself highlights the authors’ intention to establish an intimate 
connection between cognition and the living. This development is 
notable in an era when AI, as an integrated discipline within cognitive 
science, was predominantly focused on logical-symbolic methodologies 
for constructing computational models of cognition. Its main applied 
outcomes revolved around knowledge representation and natural 

language processing. The living was not a central focus within AI during 
those years. However, in the subsequent decade, there was a significant 
shift, marked by the emergence of neural networks, artificial life, and 
the study of complex systems in computational terms. It was during this 
period that the living began to be increasingly integrated into AI’s 
purview. Furthermore, autopoiesis and self-organization exhibit only a 
few shared features and are not interchangeable concepts. Autopoiesis 
primarily focuses on the characteristics of a system that dynamically 
creates and maintains itself over time, possessing an autonomous self- 
maintenance mechanism. Autopoiesis, therefore, can be described as 
the ability of certain systems, such as cells foremostly, to sustain and 
reproduce themselves by continually generating and reproducing their 
own constituent parts. While cells exemplify this notion, it can be 
extended to other types of even more complex systems. 

Maturana and Varela establish a connection between the concept of 
autopoiesis and the notion of a machine, emphasizing how it is closely 
intertwined with the idea of organization. They describe an autopoietic 
machine as a machine that is organized and defined as a unity through a 
network of processes involved in the production, transformation, and 
destruction of its components. In their own words: “An autopoietic 
machine is a machine organized (defined as a unity) as a network of 
processes of production (transformation and destruction) of components 
which: (i) through their interactions and transformations continuously 
regenerate and realize the network of processes (relationships) that 
produced them; and (ii) constitute it (the machine) as a concrete unity in 
space in which they (the components) exist by specifying the topological 
domain of its realization as such a network” (Maturana and Varela, 1980: 
78–79 [emphasis added]). 

The autopoietic machine is not merely organized; it is organized 
according to a principle of unity in space that enables it to operate 
autonomously. Notably, the principle of autopoietic unity does not 
necessitate any pre-determined commitment to the material or sub-
stance from which the autopoietic machine is constructed. What matters 
are the relationships within the network that constitute the structure of 
the machine’s topological domain. Thus, an autopoietic machine can be 
constructed from various substrates, including artificial ones, as long as 
its operational and relational characteristics remain unchanged. This 
aligns with the essential nature of living systems, which continuously 
change the material they are composed of, while maintaining their unity 
over time. The definition of an autopoietic machine aims to capture this 
aspect, as well as the mechanical organizational constitution of a living 
entity (Damiano and Stano, 2020). 

In their 1974 article published in Biosystems, authors present the 
concept of autopoiesis and its strong relationship with organization by 
defining autopoietic organization as follows: 

“(i) a unity by a network of productions of components which par-
ticipates recursively in the same network of production of com-
ponents that produced these components, and  

(ii) realize the networks of productions as a unity in the space in which 
the components exist” (Varela et al., 1974: 188 [emphasis 
added]). 

The network of production processes within the autopoietic machine 
is actively involved in recursively producing its own components. This 
self-application of the machine on itself, guaranteeing unity, autonomy, 
and persistence over time, is achieved through the concept of recursion. 
Recursion is fundamental in computation theory as it relates to the 
definition of computable functions. Interestingly, during the same 
period when the article for Biosystems was written, the connection be-
tween recursion, computation, and AI was extensively investigated and 
emphasized (Hofstadter, 1979). In the case of autopoiesis, recursion 
serves to establish a principle of self-referentiality in an operational and 
empirical sense within the network of production processes leading to 
the production of components. This principle is crucial for maintaining 
the autopoietic machine’s integrity. Without recursion, the production 

2 On this topic and the related debate see for example Pessoa (2014).  
3 Related to the Global Workspace Theory by Baars (1988). 
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of external components that are not part of the machine itself would 
occur, as observed in biological reproduction, which extends beyond the 
intrinsic homeostatic nature of the machine (Maturana and Varela, 
1980: 78). Once again therefore, the connection between autopoiesis 
and AI has been deeply rooted since the early stages, fostering an almost 
underground parallelism between the two fields, particularly in bio-
logically inspired approaches to AI. 

The primary example of an autopoietic machine can be found in the 
biological cell, which can be understood as a network of chemical re-
actions producing molecules, some of which constitute its components. 
However, it is also possible to consider other entities as autopoietic 
machines based on a condition that appears necessary, although it is 
uncertain whether it can be considered sufficient: the close connection 
between network and organization. In other words, it seems inevitable 
for an autopoietic machine to rely on a network that can be described in 
organizational terms, where its parts possess well-defined functionalities. 
This aspect is particularly relevant in network cognition models, 
including neural networks, where not all organizational aspects are fully 
explainable. Consequently, this poses an increasing challenge in the field 
of explainable AI and interpretable machine learning (Murdoch et al., 
2019). 

Within the autopoiesis framework, Varela, Maturana, and Uribe view 
living systems as a subset of mechanistic systems. This perspective di-
verges from a line of research that gained significant importance in 
subsequent decades, particularly in cognitive neuroscience: the mech-
anistic explanation with a focus on decomposition and localization 
(Bechtel and Richardson, 1993; Craver, 2001), where the mechanisms 
are seen both in their contextualization within a system and from the 
point of view of their constituent parts. In this explanatory approach, the 
organization of the context in which a mechanism works and of its 
constituent parts plays a crucial role. The aim is to overcome the clas-
sical formulation of the multiple realizability thesis (Bechtel and Mun-
dale, 1999) and address the challenge of establishing the connection 
between cognitive states and neural states. 

While the decomposition and localization approach moves toward 
resolving the aforementioned problem, the autopoietic organization 
remains aligned with the notion of multiple realizability. This stems 
from the specific nature of autopoietic organization, where “the same 
organization may be realized in different systems with different kinds of 
components as long as these components possess the properties that 
realize the required relations. It is obvious that with respect to their or-
ganization such systems are members of the same class, even though with 
respect of the nature of their components they may be distinct” (Varela 
et al., 1974: 188 [emphasis added]). This is interesting for two reasons. 
Firstly, even from a mechanistic explanation perspective, the link be-
tween the cognitive and the living hinges on the organizational nature of 
the system. Secondly, the concept of autopoiesis preserves the essential 
dichotomy of “same organization/different systems”, which appears to 
be a fundamental requirement for creating artificial systems that can be 
deemed as having life and cognition. Autopoiesis, therefore, retains a 
quality that many subsequent attempts in cognitive science and cogni-
tive neuroscience seem to have to relinquish. 

The emphasis on organization is significant as it allows for the 
preservation of multiple realizability regardless of the material compo-
sition of a system. This requirement aligns with the standard approach in 
AI and cognitive science, particularly the symbolic manipulation 
perspective. However, the outcome differs substantially in the context of 
autopoiesis, which explicitly relies on organizational and (partially) self- 
organizational aspects, not typically present in the traditional AI 
approach. Another crucial point is made in the beginning of the 1974 
Biosystems article. The authors distinguish between history-dependent 
and history-independent processes, arguing that the overlap between 
these two types of processes has led to confuse phenomena which 
instead must be kept distinct. Specifically, reproductive and evolu-
tionary processes are not considered constitutive features of living or-
ganization which instead “can only be characterized unambiguously by 

specifying the networks of interactions of components which constitute 
a living system as a whole, that is, as a unity” (Varela et al. 1974: 187). In 
this framework, reproductive and evolutionary features, like other bio-
logical phenomena, are considered secondary to the adequate organi-
zation of living, which is deemed a necessary and sufficient condition for 
life itself. The complementary relationship between organizational and 
structural aspects of the living unity condenses invariant and variant 
features of a system within the autopoietic perspective, where tempo-
rality and change contribute to the possibility of a living system. Other 
historical phenomena of life take a subordinate role to the understand-
ing of temporality within the dynamics of structure and organization. 
For instance, the reproduction of a living system preserves the invari-
ance of its relational unity across generations, ensuring stability (Dam-
iano and Stano, 2023). Thanks to this dynamics, temporal processes do 
not affect the stability of the living. Consequently, temporal trans-
formations that living beings inevitably undergo do not impose an 
excessively rigid constraint on achieving an alleged “objective” stability, 
nor do they serve as a reason for system dissipation or destruction. 

This balance represents one of the most original contributions of the 
autopoietic theory, which remains unique even today in comparison to 
the directions taken by AI and cognitive AI in recent decades. In fact, it is 
precisely this aspect that sets autopoiesis apart, at least to some extent, 
from certain more recent bio-inspired approaches to AI. Only when 
considering autopoiesis in terms of organizational aspects, specifically 
autopoietic organization, can it be seen as a precursor to Artificial Life. A 
question that arises is whether this particular aspect can make Artificial 
Life or other AI fields more suitable for achieving the goal of creating 
artificial systems that can be considered alive and cognitive, or if it 
instead poses a hindrance. Undoubtedly, this characteristic of the 
autopoiesis concept brings AI systems, in which autopoiesis can be 
identified, closer to Synthetic Biology (SB), another discipline that can 
be fully classified as one of the sciences of the artificial (Bianchini, 
2021). Therefore, what are the AI systems, if any, in which autopoiesis 
can be discussed in terms of Varela, Maturana, and Uribe? 

3. Autopoiesis, organization, and AI 

The field of SB, as a discipline within the realm of the artificial, is 
intriguing within the emerging framework because it tackles the prob-
lem of artificiality from a living perspective. Its goal is to create some-
thing that can be defined as living, without relying heavily on 
evolutionary techniques. This characteristic brings SB closer to auto-
poiesis. For instance, one of SB’s aims has been to construct fundamental 
living organisms like cells (Buddingh’ and van Hest, 2017; Gaut and 
Adamala, 2021). While achieving this goal has proven to be quite 
challenging, SB’s focus appears to be more oriented towards the realm of 
the living compared to Artificial Life. It goes beyond simply creating 
artificial systems that fulfill a set of modeling requirements and con-
straints to be considered living. Instead, SB aims to start with living 
systems and progress towards artificial living systems, utilizing both 
materials and organizational structures characteristic of living organ-
isms (such as genetic and biochemical matter). Particularly in terms of 
the latter, SB aligns closely with the concept of autopoiesis in its con-
ventional sense. 

If it is possible to transition from living systems to artificial living 
systems, as pursued by SB, one might contemplate whether it is feasible 
to take a step further and move from living systems to cognitive systems 
using the same techniques. While SB still seems distant from providing 
an answer to this question, it could be valuable to consider the notion of 
autopoiesis and its conceptual foundations as useful elements for 
attaining artificial cognitive systems within the broader field of cogni-
tive AI. However, this line of research does not appear to be widely 
explored or fully pursued in relation to the most recent approaches to AI 
(Waser, 2014; Damiano and Stano, 2021). 

The development of AI over the decades has resulted in the emer-
gence of diverse approaches, leading to a multitude of methodological 
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and epistemological perspectives within the fields of AI and cognitive AI. 
These approaches encompass various methodologies, including the 
traditional logical-symbolic approach, dynamic systems, traditional 
machine learning, neural networks, complex systems, and biology- 
inspired methods. Each of these approaches exhibits its own internal 
variations and is influenced by several factors, such as the conceptual 
frameworks that define them. These approaches, characterized by their 
internal diversity, now coexist within the field of AI, contingent upon 
several factors, including the conceptualizations that shape their theo-
retical foundations. They are influenced, thus, by factors such as the 
notion of intelligence, available technologies, the concept of a system, 
the notion of autonomy, the aims of AI, different intelligent capabilities 
(such as language, reasoning, creativity, sensorimotor abilities, emo-
tions, morality, etc.), the role of the body, the role of the brain, and the 
notion of cognition. In exploring the potential role of autopoiesis in 
relation to cognitive AI, two contemporary approaches that appear 
relevant from this perspective will be considered. 

A potential initial statement to define the role of autopoiesis in 
relation to cognitive AI is as follows: if autopoiesis emphasizes organi-
zation rather than history-dependent processes such as evolution and 
reproduction, then organizational AI systems that are specifically related 
to cognition should incorporate autopoietic features or mechanisms. Is this 
claim valid? Does it offer promising prospects? To address these in-
quiries, we will examine the first of the two relevant approaches." 

The first approach is the cognitive architectures AI approach. 
Cognitive architectures are modular systems in which different parts are 
joined and organized to exhibit various behaviors, aiming to replicate 
the general aspects of intelligence incrementally by adding blocks/ 
modules. One of the most well-known examples is SOAR (State, Oper-
ator, And Result), which is based on Newell’s unified cognitive theory. 
This theory emphasizes the Problem Space Hypothesis (Newell, 1990), a 
cornerstone of classical AI that considers all intelligent behavior as 
goal-seeking within a state space. SOAR, as a cognitive architecture 
(Laird, 2012), consists of modules that process symbolic information and 
are designed to implement cognitive abilities such as memory, percep-
tion, learning, decision making, and motor activities. Another widely 
recognized cognitive architecture is ACT-R (Adaptive Control of 
Thought - Rational), which also processes symbolic information and 
features an organized modular structure (Anderson, 2007). Various 
versions of ACT-R have been developed for different modeled tasks, and 
there have also been proposals for connectionist extensions based on 
neural networks (Labière and Anderson, 1993). A key and significant 
aspect of this framework for constructing cognitive models is its direct 
inspiration from the modular organization of brain functions (such as 
memory, control, motor execution) and the corresponding brain areas. 
Like other cognitive architectures, this approach relies on a modular 
structure, with each module serving specific functions. The choice of 
whether to use a symbolic approach or neural networks in building the 
modules depends on the particular architecture.4 

A common feature shared by many cognitive architectures is the 
assumption of modularity, which is utilized in various ways. This 
approach involves implementing different functions within the archi-
tecture that are identified as cognitive or relevant to cognitive activities, 
corresponding to specific parts of the architecture. A direct consequence 
of this modular construction principle is that these parts are organized in 
a mutually interconnected manner. In other words, a cognitive archi-
tecture can be viewed as a structured system in which organization 
arises from the integration and exchange of information among its 
modules, i.e. a module network integration. The architecture is composed 
of modules that are recognized as cognitive or relevant to specific ac-
tivities, and they interact by exchanging symbolic information at their 
respective levels, with the purpose of forming a comprehensive cognitive 

model. This organizational characteristic seems to bear similarities to 
the properties of autopoietic entities, albeit with a fundamental differ-
ence. In the case of cognitive architectures, it follows an allopoietic 
rather than an autopoietic approach. This means that the system as a 
whole, functioning as a unified unit, is built by a programmer with 
explicit reference to cognitive parts. Even though these parts/modules 
may implement self-organization processes in information processing, 
the overall system’s construction and maintenance are mostly external 
to the system itself. These external processes may be rooted in human or 
evolutionary programming, or of another type altogether. Consequently, 
attempts to explain or model cognition within this framework differ 
somewhat from those applicable to autopoietic systems. In this case, 
cognition does not result from the autopoietic organizational nature of 
the system, and therefore, an explanation or construction of the cogni-
tive dimension in such terms is absent. 

A more promising approach that bears resemblance to autopoietic 
systems appears to be that of neural networks. In neural networks, the 
biological inspiration derived from certain elements of brain neurons 
brings cognitive performance closer to the biological system that pro-
duces it, at least in principle. In artificial neural networks, the organi-
zation, characterized by layers of nodes/neurons connected by weighted 
arcs, plays a crucial role. The connections can involve all the neurons 
between two layers or only a subset of them. The system’s topology is 
essential in achieving specific performances after the training phase. For 
instance, in contrast to traditional feedforward neural networks where 
information flows only in one direction, recurrent neural networks 
(Schmidhuber, 2015) allow the output of certain nodes to become input 
for the nodes themselves, creating cycles within the network. This dy-
namic behavior enables the network to exhibit understanding and 
recognition of temporally determined events. In cases like these, as well 
as in other types of neural networks (e.g., convolutional networks), and 
more broadly in the field of deep learning with organized systems across 
multiple layers of neurons, the system’s topology plays a critical role in 
achieving cognitive performances. These performances include tasks 
such as categorization, pattern recognition, sensorimotor action, and 
others, which directly arise from the network’s organization. Therefore, 
the organization of the network is crucial for cognitive performance. 

Even in the case of neural networks, or specific types of neural net-
works, a close resemblance to autopoietic systems from a cognitive 
standpoint is not present. Neural networks are not a form of autopoiesis 
because while the system does self-organize, cognitive performance 
emerges as a result of self-organization following a training phase within 
a pre-existing system built with specific features. This pre-existing sys-
tem is characterized by the organization of nodes and connections into 
layers and follows a predetermined topology. The autopoietic proposal 
extensively explores the relationship between cognition and biology (as 
seen in a significant portion of the book Autopoiesis and Cognition, for 
example). The nervous system is described as the foundation for major 
cognitive abilities such as learning and memory. It is based on the 
principles of unity, self-regulation, and continuous self-construction, 
which underlie the internal and external interactive nature of the ner-
vous system’s behavioral dynamics. This third feature, continuous self- 
construction, not only enables cognition at the system’s inception but 
at every moment throughout its lifespan. As stated by Maturana and 
Varela (1980:119), “for any autopoietic system, its cognitive domain is 
necessarily relative to the particular way in which autopoiesis is real-
ized”. The autopoietic nature is absent in neural networks, which, 
despite their good or excellent cognitive performance, face a challenge 
when it comes to explaining the processes and outcomes they produce. 
This challenge is known as the problem of explainable AI (Miller et al., 
2022), which is common in systems where understanding the individual 
components’ contributions is difficult. This problem has helped high-
light the gap between neural networks and explanations of cognitive 
phenomena. The autopoietic dimension, specifically the 
self-referentiality and self-observation features of autopoietic systems, 
could shed light on aspects of cognitive explanation and contribute to 

4 A detailed discussion of the main features of these and other cognitive ar-
chitectures is in Lieto (2021). 
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bridging the explainability gap. However, the exploration of neural 
networks evolving in this direction is still largely unexplored. 

4. A “chemical” AI? 

The analyzed cognitive approaches to AI, although fundamentally 
different in their principles and underlying assumptions, share two 
common features: 1) they are organizational, and 2) they are non- 
autopoietic. The fact that these two features work so well to build sys-
tems implementing – even in very different ways – performances which 
are recognizable as cognitive, divide living systems from cognitive ones 
from the standpoint of autopoiesis. Computational cognitive models 
perform well and can be integrated within the synthetic methodology 
framework (Datteri and Tamburrini, 2007; Webb, 2001) for modeling 
and simulating cognition or its various aspects. On the other hand, living 
systems are characterized by the realization of some form of autopoietic 
principles as their fundamental feature. In essence, autopoiesis is the 
foundation of life, while non-autopoiesis (in the form of allopoietic 
systems) serves as the basis for cognitive systems. The gap between 
living systems and cognitive systems can be observed in the different 
synthetic methodologies used to construct artificial systems. Even in 
cases where biological inspiration is strong, as in evolutionary compu-
tation, the living organisms that serve as inspiration do not adhere to the 
autopoietic principles that precede and underlie evolutionary processes, 
as explained in the seminal 1974 article on autopoiesis. Evolutionary 
processes (an example of history-dependent processes) can exist without 
autopoiesis. Consequently, the resulting systems cannot be considered, 
for all (autopoietic)intent and purposes, living systems in an autopoietic 
sense. As a result, if autopoiesis is at the core of the living, artificial 
systems built in such a manner are not properly living and do not belong 
to true artificial life. 

A possible solution to this gap could involve considering the chem-
ical or biochemical aspects of living organisms as inspiration for 
computational modeling, given their significance in autopoietic pro-
cesses. The relational and organizational nature of autopoietic systems 
heavily relies on the underlying biochemical processes, which enable 
the system and its components to exhibit self-creation and self- 
maintenance capabilities. Therefore, the question arises: should we 
take into account the “chemical” features of AI systems to bridge this 
gap? What are the chemical characteristics underlying living organisms 
and the cognition we aim to model? Recently, there has been a new line 
of research known as Chemical Artificial Intelligence that explores the 
construction of computational systems based on chemical and 
biochemical aspects. This approach aims to chemically implement bi-
nary or multi-valued logic, fuzzy logic, artificial neuron models, and 
chemical robots (Gentili, 2013, 2022). Chemical AI strives to develop 
intelligent chemical systems in wetware, emulating for example basic 
aspects of human intelligence related to logic. The use of hardware and 
software to reproduce the same phenomena is still little explored, but in 
principle there seems to be no hindrance to implement the relationships 
and organizational processes involved in this type of phenomena on 
standard computational substrates. This could potentially lead to the 
creation of artificial autopoietic systems capable of exhibiting intelligent 
or cognitive behavior.5 

The utilization of computational methods to investigate biochemical 
phenomena in living organisms dates back to the early stages of AI. In a 
1952 article, Turing discusses the concept of morphogenesis, proposing 
that “a system of chemical substances, called morphogens, reacting 
together and diffusing through a tissue, is adequate to account for the 
main phenomena of morphogenesis” (Turing, 2004: 519). These 
reaction-diffusion systems are studied in relation to an isolated ring of 
cells, aiming to explore a possible mechanism by which the genes of a 

zygote can establish the anatomical structure of the resulting organism. 
Turing emphasizes that this pattern formation arises from well-known 
physics laws and specifies that the development of an organism typi-
cally involves transitioning from one pattern to another, rather than 
from homogeneity to a pattern. While this general process can be 
mathematically explained, Turing acknowledges that there is no 
comprehensive theory encompassing all these processes, aside from 
stating the equations. Turing’s proposal is to employ computational 
methods (specifically “digital computers”) as “this method has the 
advantage that it is not so necessary to make simplifying assumptions as 
it is when doing a more theoretical type of analysis. It might even be 
possible to take the mechanical aspects of the problem into account as well 
as the chemical, when applying this type of method” (Turing, 2004, 561 
[emphasis added]). This highlights why computational methods are 
particularly valuable for addressing certain chemical aspects in process at 
the basis of living as an organic unity. In section K of the Turing Digital 
Archive, there are a couple of sheets where Turing has calculated the 
function of a morphogenesis system, revealing the spatial structure in 
which the pattern takes shape.6 This represents the “chemical” compu-
tation that simulates the inner structure of the system. 

Another well-known attempt to understand the fundamental aspects 
of life from a computational perspective during the early days of AI is the 
Von Neumann approach to self-replicative systems. In the 1948 Hixon 
Symposium, he introduced the concept of a logical theory of self- 
replication and explored the role of replication errors in the process of 
evolution (von Neumann, 1951). The purpose was to develop a logical 
theory of automata, later known as cellular automata, by uncovering the 
logical principles underlying evolutionary phenomena. Through the 
application of specific rules, individual entities are capable of 
self-reproduction, leading to the emergence of complex effects and 
structures. These repeating patterns are formed by the assembly of 
multiple individuals, following simple logical laws of self-replication. 
Cellular automata represent computational spaces where cells undergo 
changes based on predefined rules, mirroring similar phenomena 
observed in living organisms. Von Neumann focused on simulating 
self-reproduction through logical models that encompassed both single 
cells and organic clusters composed of multiple cells. His research 
explored two dimensions of self-replication for simulating 
self-reproduction:  

1) the self-replication of a single entity: a cell.  
2) the self-replication of systems consisting of cells replicating 

themselves. 

In the second case, the focus lies on the study of replication and self- 
replication of complex systems, which reproduce themselves at an 
emergent level, not necessarily the highest (von Neumann, 1966). 
Subsequent developments in this line of research yielded intriguing 
mathematical results that underpin the study of living systems and laid 
the foundations for the emergence of Artificial Life (Langton, 1986). 
Within the framework of a chemical AI implementation, what is 
particularly noteworthy is that the logical laws of self-replication 
simulate cellular biochemical processes at a certain level of abstrac-
tion. In this specific case, unlike Turing’s morphogenesis, chemical 
computation can be seen as a simulation of outer processes of living 
entities. Moreover, it is intriguing to note that if these processes are 
considered external to the cell, they cannot be solely classified as in-
ternal or external in the context of multicellular organisms, the actual 
cellular automata. The “chemical” dimension collapses the dichotomy of 
inside/outside, manifesting a series of processes that are constitutive of 
the system’s unity. This convergence closely aligns these systems with 
autopoietic systems, where the internal organizational nature plays a 

5 On this topic and the notion of a “chemical explorative AI” see also Dam-
iano and Stano (2023). 

6 The files are, in particular, two with the following references: AMT/K/3/11 
and AMT/K/3/12. 
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constitutive role in shaping the dynamic and organic processual struc-
ture of the system. 

Even the complex adaptive systems approach has some aspects in 
common with autopoietic systems. For example, AI genetic algorithms 
(Holland, 1992; Mitchell, 1998) utilize certain features of natural se-
lection as a metaheuristic to find solutions for search and optimization 
problems. Their primary focus is on performance efficiency rather than 
the synthetic modeling of natural processes. The same principle can be 
applied to complex adaptive systems in general, which consist of 
numerous components interacting with each other and capable of 
adapting to the context and learning from it (Holland, 2006). The field of 
complex adaptive systems is vast, but several common features can be 
identified. These systems are based on dynamic networks of in-
teractions, exhibit unpredictable behavior, and are self-organizing. They 
exist as far-from-equilibrium systems that continuously update them-
selves based on the context to which they need to adapt. While they 
share self-organizing characteristics and are built upon process networks 
of nonlinear dynamics, determining their boundaries or structural as-
pects of organization is often challenging, unlike autopoietic systems. 

One of the goals of complex adaptive systems is to study the emer-
gent macroscopic properties observed in complex systems, such as living 
systems. However, they can be considered as implementing a compu-
tation to simulate inner and outer processes of the system, with a focus 
on the desired outcome. The “biochemical” features of their component 
interactions are in the background. What matters is the system as a 
whole and its emergent behavior. In this sense, they do not constitute a 
strong attempt to simulate or explain the living and cognitive phe-
nomena to the same extent as autopoietic systems can be. Complex 
adaptive systems primarily aim to logically define and computationally 
leverage the laws of formation, replication, and evolution present in 
biological systems. These phenomena are history-dependent, as 
described by Maturana and Varela, and they do not exhibit autopoietic 
organizational properties. The explicit consideration of self- 
maintenance properties, related to the complementary relationship be-
tween structure and organization, is not addressed. 

A final opportunity to establish connections with autopoiesis in AI 
and Artificial Life systems, which simulate the chemical features of 
biological systems, can be found in systems inspired by specific bio-
logical entities: superorganisms (Hölldobler and Wilson, 2009), such as 
ant colonies (Bonabeau et al., 1998). These systems fall under the um-
brella of complex adaptive systems but specifically focus on the collec-
tive behavior of swarm systems (Bonabeau et al., 1999) associated with 
intelligence, cognition, or robotics (according to the related field of 
modeling). These bio-inspired artificial systems adopt organizational 
features and relational networks of processes from living organisms, 
modeling their interaction methods based on biochemical signals. An 
ant colony can be considered an autopoietic organization in many re-
spects, including unity (even without distinct boundaries), network 
structure, and chemical relationships. The specific mechanism of stig-
mergy, based on pheromones, enables widespread coordination among 
the agents forming the colony in response to the environmental context. 
This exemplifies an agent/environment relationship based on chemical 
factors. In a superorganism, life and cognition, i.e., the parts and their 
goal-oriented, cognitively understandable functions, are closely inter-
twined. However, they are the life and cognition of the superorganism 
itself, rather than the individual organisms that comprise it. Conse-
quently, life and cognition emerge as properties of the collective 
behavior of the colony-forming agents, which can be computationally 
modeled. The connection with the life and cognition of the constituents 
assumes a secondary role, as observed in relation to complex adaptive 
systems in general. This seems to violate the principle of unity that 
makes autopoietic machines what they are, by making superorganisms 
and the systems inspired by them a collection of autopoietic machines, 
rather than a unitary system. Nevertheless, the intertwined aspects of 
life and cognition remain intriguing from the perspective of simulating 
and explaining life and cognition through computational models 

inspired by superorganisms. A potential solution to reconcile these two 
perspectives could involve redefining the notion of biological unity 
within the framework of autopoiesis. By adopting a more flexible un-
derstanding of system unity, the relationship between life and cognition 
can be better characterized within an autopoietic organizational view. 
However, it is crucial to determine to what extent a deflationary notion 
of system unity is acceptable within the autopoietic framework without 
compromising its explanatory power regarding the characteristics of 
living systems it supports. 

5. Conclusion 

In the final part of their 1974 Biosystems article, Varela, Maturana, 
and Uribe present a model that serves as a simple embodiment of 
autopoietic organization. This model depicts a universe composed of 
only a few elements capable of composing, concatenating, or dis-
integrating. The rules governing the interactions are explicitly formu-
lated, allowing for a step-by-step execution of the resulting 
computational model. The actions described by these rules primarily 
involve chemical processes, such as catalyzing reactions formalized 
within the considered universe. Autopoietic organization is the specific 
process generated by the properties of the components, enabling the 
creation of the system’s dynamic unity. Importantly, the autopoietic 
organization is not preexisting in the initial state of the elements, 
whether in representational or embodied forms. It emerges as a result of 
the inherent properties of the system. The ultimate outcome is a network 
of processes involving the components, which becomes a recognizable 
entity within the universe and co-produces itself along with its compo-
nents. Prior to the beginning of the overall process, there is no preex-
isting network or its components. As stated by authors, “The properties 
of an autopoietic system [ …] are determined by the constitution of this 
unity, and are, in fact, the properties of the network created by, and 
creating, its components. Therefore, to ascribe a determinant value to 
any component, or to any of its properties, because they seem to be 
‘essential’, is a semantic artifice” (Varela et al., 1974: 192). While 
components are necessary for the production of the network, none of 
them is essential in the process. Each component contributes to the 
network’s formation, but no individual component holds inherent 
importance. 

This leads to a continuous and radical form of emergentism, wherein 
every interaction and step is explicitly accounted for, even though it is 
undoubtedly impossible to predict the evolution of the system in the 
most complex living systems. This aligns with the computational irre-
ducibility often encountered in attempts to model such complex systems 
(Zwrin and Delahaye, 2013). However, the contribution of individual 
components remains clear and transparent. Their nature as components 
is a consequence of the process that makes the interaction among pro-
cesses within a dynamic network the crucial element of the autopoietic 
mechanism. There is no external creation, but rather a self-construction 
that inherently enables self-maintenance as a constitutive property of 
the system itself. The macro and micro levels are distinct yet inter-
connected without abrupt transitions. In this sense, life and cognition 
can be traced back to the same foundation, the same set of principles 
governing the formation and persistence of the system as an entity. From 
a cognitive standpoint, these principles gradually give rise to increas-
ingly complex modes of interaction with the external environment, 
transitioning from being inherent properties of living systems to forms of 
cognition. 

It is beyond the scope of this discussion to delve into other aspects 
that connect autopoiesis and cognition, which Maturana and Varela also 
explore and establish from the beginning. For instance, the autopoietic 
aspects of neural systems and processes, which form the basis of the 
study of cognition in autopoietic terms, have not been addressed here. 
The primary objective of this article is to emphasize and explicitly 
highlight the role of organization in autopoietic systems and to inves-
tigate the relationship between the properties of living systems and their 
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cognitive capabilities. To this end, various contemporary approaches in 
AI, where the organization of the system is crucial and which exhibit 
bio-inspired characteristics, have been considered. However, these ap-
proaches are not fully realized autopoietic systems to varying degrees. 
The hypothesis is that bio-inspired “chemical” AI approaches (along 
with their models and simulations) serve as promising candidates for 
bridging the gap between life and cognition within the autopoietic 
framework of artificial modeling. Nonetheless, this line of research is 
still far from yielding conclusive results. The concept of applying 
computational AI to chemistry (as opposed to utilizing AI for the analysis 
of chemical and biochemical data to make new discoveries) remains an 
underexplored field, despite the aforementioned foundations present in 
the evolution of AI. 

Nonetheless, if the goal is to situate the explanation and synthetic 
modeling of cognition within the framework of the living, autopoiesis, in 
its original formulation, provides a valid conceptual framework, espe-
cially considering the development of computational theories on 
cognition in recent decades. Additionally, the fundamental assumption 
is that achieving a complete realization of cognition detached from the 
living is hard. Instead, significant progress has been made in modeling 
specific cognitive performances over the past two decades, inevitably 
bringing forth epistemological challenges for AI systems, such as black 
box systems, explainability, appropriate simulation definitions, 
modeling problems, and the general relationship between natural and 
artificial systems. The hypothesis supported in this article is that by 
utilizing autopoiesis theory and its specific notion of organization (a 
network of invariant processes that self-produce along with its compo-
nents, independent of the substrate), it is possible to create self-emergent 
systems that serve as promising candidates for AI (cognitive) systems. 
Moreover, these systems should also exhibit self-maintenance at a lower 
level. Consequently, drawing stronger and deeper inspiration from 
chemical and biochemical processes in computational modeling is 
crucial to further develop complex autopoietic computational 
mechanisms. 
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