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Abstract. Fifteen three-dimensional classical minimally superintegrable systems in

a static electromagnetic field are shown to possess hidden symmetries leading to their

linearization, and consequently the corresponding subsets of maximally superintegrable

subcases are also linearizable. These results are strengthening the conjecture that

all three-dimensional minimally superintegrable systems are linearizable by means of

hidden symmetries, even in the presence of a magnetic field.

1. Introduction

In classical mechanics [44], Liouville theorem [23] was the starting point for the search of

complete integrability [30, 43, 1], and then superintegrability [37], a name that appears

for the first time in [45]. While the first steps in the study of superintegrability

was made by Bertrand [4] in the 19th century, it was Smorodinsky, Winternitz et

al. [13, 14, 25] that gave momentum to the field. Subsequently, many papers have

been published on this subject by different authors in different countries, see e.g.

[10, 19, 12, 40, 2, 42, 24, 29, 28, 8, 9, 39] and references therein. In this paper, our

goal is not to find new superintegrable systems, nor to find integrals of motion, but to

investigate known superintegrable systems in a static electromagnetic field by means of

hidden symmetries and how those can lead to linearizable equations.

The use of Lie symmetries [22] for differential equations has been tremendous, and

many textbooks are available, see e.g. [36, 41, 18, 17] and references therein. A major

drawback of Lie’s method is that it is useless when applied to systems of n first-order

equations, e.g. Hamiltonian equations, because they admit an infinite number of Lie

symmetries, and there is no systematic way to find even one-dimensional Lie symmetry

algebra, apart from trivial groups like translations in time admitted by autonomous

systems. However, in [31] it was remarked that any system of n first-order equations
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could be transformed into an equivalent system where at least one of the equations is of

second order. Then, the admitted Lie symmetry algebra is no longer infinite dimensional,

and hidden symmetries of the original system could be retrieved. Consequently, in

[31] hidden symmetries of the Kepler problem were determined by this method. Also,

in [34] the well-known linearization of the Kepler problem, as well as the linearity of

generalizations of the Kepler problem with and without drag were determined by means

of hidden symmetries.

Such hidden symmetries are more general than those considered e.g. in [7],

which are just symmetries of the Hamiltonian, in the sense that they are canonical

transformations where both positions and momenta change, and that leave the

Hamiltonian function unchanged.

In [35], it was shown that a two-dimensional superintegrable system [38], such that

the corresponding Hamilton-Jacobi equation does not admit the separation of variables

in any coordinates, can be transformed into a linear third-order equation by means of

hidden symmetries.

In [15], several examples of classical superintegrable systems in two-dimensional

Euclidean space [13, 42] were shown to possess hidden symmetries leading to their

linearization, and it was conjectured that all classical superintegrable systems in two-

dimensional spaces have hidden symmetries that make them linearizable.

In [16], nineteen classical superintegrable systems in two-dimensional non-Euclidean

spaces [19, 2, 3] were shown to possess hidden symmetries leading to linearity.

In [32], maximally superintegrable Hamiltonian systems in three-dimensional

Euclidean space [10, 11] were also linearized by means of their hidden symmetries,

and it was conjectured that three-dimensional minimally superintegrable systems may

be similarly linearizable.

In [33], minimally superintegrable Hamiltonian systems in three-dimensional

Euclidean space [10] were shown to possess hidden symmetries leading to their

linearization.

In [28], a systematic study of integrable and superintegrable systems in the presence

of a magnetic field in three-dimensional Euclidean space was initiated, and then

continued in several papers [26, 5, 27, 6]. All of those systems are autonomous, integrable

and separable in at least one set of coordinates.

The purpose of this work is to to show that all those fifteen nonlinear minimally

superintegrable systems are intrinsically linear by determining their hidden Lie

symmetries.

The classical Hamiltonian of a particle in Cartesian coordinates x⃗ = (x1, x2, x3)

and with linear momentum p⃗ = (p1, p2, p3) that moves under the influence of a static

electromagnetic field is

H =
1

2

(
(p1 + A1(x⃗))

2 + (p2 + A2(x⃗))
2 + (p3 + A3(x⃗))

2)+W (x⃗), (1.1)

where W (x⃗) represents the electrostatic potential and the three functions Aj(x⃗)

represent the components of the vector potential A⃗(x⃗) which defines the magnetic field
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B⃗(x⃗) = ∇ ∧ A⃗(x⃗). (In [26, 5, 27, 6], the mass and the charge of the particle have been

rescaled to 1 and -1, respectively. We will follow this convention throughout this paper.)

The Hamiltonian equations corresponding to the Hamiltonian (1.1) are:

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi

, (i = 1, 2, 3) (1.2)

i.e.:

ẋi = pi + Ai(x⃗), ṗi = −
3∑

j=1

(pj + Aj(x⃗))
∂Aj

∂xi

− ∂W

∂xi

. (1.3)

If we introduce the covariant momenta Πi = pi + Ai(x⃗), then the Hamiltonian

equations become invariant under the choice of gauge in the vector potential, i.e.

ẋi = Πi, Π̇i = ϵijkBj(x⃗)Πk −
∂

∂xi

W (x⃗), (i, j, k = 1, 2, 3), (1.4)

where ϵijk is the Levi-Civita symbol. A different choice of gauge in the vector potential A

yields a canonical transformation. Consequently, we use the covariant momenta notation

throughout this paper, i.e. without having to fix the vector potential.

We will also use cylindrical and spherical coordinates. The cylindrical coordinates

are defined as

x1 = r cos(θ), x2 = r sin(θ), (1.5)

with the x3-coordinate unchanged, and their associated covariant momenta are:

Π1 = Πr cos(θ)−
sin(θ)

r
Πθ, Π2 = Πr sin(θ) +

cos(θ)

r
Πθ, (1.6)

where r is the polar radius (r2 = x2
1 + x2

2). The spherical coordinates are defined as

x1 = R cos(θ) sin(ϕ), x2 = R sin(θ) sin(ϕ), x3 = R cos(ϕ) (1.7)

and their associated covariant momenta are:

Π1 = cos(θ) sin(ϕ)ΠR +
cos(θ) cos(ϕ)

R
Πϕ −

sin(θ)

R sin(ϕ)
Πθ,

Π2 = sin(θ) sin(ϕ)ΠR +
cos(ϕ) sin(θ)

R
Πϕ +

cos(θ)

R sin(ϕ)
Πθ, (1.8)

Π3 = cos(ϕ)ΠR − sin(ϕ)

R
Πϕ,

where R is the spherical radius (R2 = x2
1 + x2

2 + x2
3).

2. Two minimally superintegrable Cartesian systems with an additional

linear integral of motion

In [26], the authors considered Liouville integrable systems which possess two quadratic

integrals of motion (beyond the Hamiltonian) and determined three cases where an

additional integral linear in the momenta exists. We show that the two nonlinear

minimally superintegrable systems are actually linear. In [20] the linear minimally

superintegrable system, namely Case A.2, was studied and the eight-dimensional Lie

symmetry algebra of the corresponding linear Lagrangian equations was determined in

order to derive integrals of motion by means of a geometrical version Noether theorem.
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2.1. Case A.1

The scalar potential and the magnetic field are

W (x⃗) =
k

2

(
x2
1 + x2

2

)
− b2

4

(
x2
1 + x2

2

)2
, B⃗(x⃗) = [bx2,−bx1, 0] , (2.1)

respectively, where the parameter b dictates the strength of the magnetic field, while

the parameter k appears in the scalar potential only. We use cylindrical coordinates

and consequently the Hamiltonian equations are:

ṙ = Πr, θ̇ =
Πθ

r2
, ẋ3 = Π3, Π̇r =

Π2
θ

r3
+ b2r3 − (k + bΠ3)r, Π̇θ = 0, Π̇3 = brΠr. (2.2)

This system admits a three-dimensional Abelian Lie symmetry algebra generated by the

operators

∂t, ∂θ, ∂x3 , (2.3)

and consequently the six equations (2.2) can be reduced to the following three equations:

Π′
r =

Π2
θ

y33Πr

− (k − b2y23)y3
Πr

− by3
Π3

Πr

, Π′
θ = 0, Π′

3 = by3, (2.4)

where y3 ≡ r is the new independent variable. We can directly integrate the two last

equations and get

Πθ(y3) = a1, Π3(y3) =
b

2
y23 + a2, (2.5)

where a1 and a2 are arbitrary constants of integration. Substituting these results into

(2.4) yields the following first-order nonlinear (but separable) differential equation

Π′
r =

b2y63 − 2(a2b+ k)y43 + 2a21
2y33Πr

, (2.6)

that becomes linear by means of the transformation Πr(y3) =
√

u(y3), i.e.

u′(y3) = b2y33 − 2(a2b+ k)y3 +
2a21
y33

. (2.7)

This first-order differential equation is invariant under the translation by u, i.e. it admits

the Lie point symmetry ∂u. Hence, we can integrate it to get

Πr(y3) =

√
b2y63 − 4(a2b+ k)y43 + 4a3y23 − 4a21

2y3
, (2.8)

where a3 is an arbitrary constant of integration.

Therefore, Hamiltonian system (2.2) is linearizable using symmetries.

2.2. Case B

The case B in [26] is characterized by the following scalar potential and magnetic field:

W (x⃗) = V (x3), B⃗(x⃗) = [0, 0, bz] , (2.9)
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respectively. The function V is an arbitrary function of x3 and the magnetic field is

constant and oriented in the x3 direction. The Hamiltonian equations in Cartesian

coordinates are:{
ẋ1 = Π1, ẋ2 = Π2, ẋ3 = Π3,

Π̇1 = −bzΠ2, Π̇2 = bzΠ1, Π̇3 = −V ′(x3).
(2.10)

This system admits a three-dimensional Abelian Lie symmetry algebra generated by the

operators

∂t, ∂x1 , ∂x2 , (2.11)

and consequently the six equations (2.10) can be reduced to the following three

equations:

Π′
1 = −bz

Π2

Π3

, Π′
2 = bz

Π1

Π3

, Π′
3 = −V ′(y3)

Π3

, (2.12)

where y3 ≡ x3 is the new independent variable. The third equation (2.12) becomes

linear by means of the transformation Π3(y3) =
√

u(y3), and thus we get the general

solution

Π3(y3) =
√

a1 − 2V (y3). (2.13)

The two remaining equations in (2.12), i.e.:

Π′
1 = −bz

Π2√
a1 − 2V (y3)

, Π′
2 = bz

Π1√
a1 − 2V (y3)

, (2.14)

become a single linear second-order differential equation by solving the first by Π2 and

substituting its value into the second, i.e.

Π′′
1 =

V ′(y3)

a1 − 2V ′(y3)
Π′

1 +
b2zΠ1

2V ′(y3)− a1
, (2.15)

and its general solution is:

Π1(y3) = a2 sin

(
bz

∫
dy3√

a1 − 2V (y3)

)
+ a3 cos

(
bz

∫
dy3√

a1 − 2V (y3)

)
(2.16)

Hence, the Hamiltonian system (2.10) is linearizable for any function V (y3).

3. Ten minimally superintegrable Cartesian systems with an additional

quadratic (or higher-order) integral of motion

In [27], the investigation that began in [26] was continued by searching for

additional quadratic (or higher-order) integrals of motion. Eight classes of minimally

superintegrable systems were found and summarized in section 9.1 and three examples

(one linear) admitting higher-order integrals were presented in section 9.2. We

name them 9.2a, 9.2b, and 9.2c, respectively. We show that the two nonlinear

minimally superintegrable systems (Case 9.2a and Case 9.2b) hide linearity by means

of Lie symmetries. On the contrary, Case 9.2c corresponds to a linear minimally
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superintegrable system, and therefore is outside the scope of this paper, although

the corresponding three linear Lagrangian equations admits an eight-dimensional Lie

symmetry algebra that could be used to determine integrals of motion either by means

of Noether’s theorem as in [20] or by means of Jacobi last multiplier as in [35].

Here, we consider all the ten classes of nonlinear minimally superintegrable systems,

and determine their hidden linearity by means of Lie symmetries.

3.1. Case I.a

The case I.a in [27] is characterized by the following potential and magnetic field:

W (x⃗) = b1

(
k1 +

b3
b2
x1

)
eb2x2 − b21

2b22
e2b2x2 , B⃗(x⃗) =

[
b1e

b2x2 , b3, 0
]
, (3.1)

respectively. The Hamiltonian equations are
ẋ1 = Π1, ẋ2 = Π2, ẋ3 = Π3,

Π̇1 = b3Π3 − b1b3
b2

eb2x2 , Π̇2 =
b1
b2
eb2x2

(
b1e

b2x2 − b2b3x1 − b22k1
)
,

Π̇3 = b1e
b2x2Π2 − b3Π1.

(3.2)

This system admits a two-dimensional Abelian Lie symmetry algebra generated by the

operators ∂t, ∂x3 , and consequently the six equations (3.2) can be reduced to the following

four equations:
x′
1 =

Π1

Π2
, Π′

1 = b3
Π3

Π2
− b1b3eb2y2

b2Π2
,

Π′
2 = −b1e

b2y2 Π3

Π2
− b1b3e

b2y2 x1

Π2
+ b1eb2y2

b2Π2

(
b1e

b2y2 − b22k1
)
,

Π′
3 = b1e

b2y2 − b3
Π1

Π2
,

(3.3)

with y2 ≡ x2 the new independent variable. Substituting the ratio Π1/Π2 with x′
1 into

the last equation in (3.3) yields a linear equation that can be integrated, i.e.:

Π3(y2) =
b1
b2
eb2y2 − b3x1 − a1, (3.4)

Then, the three remaining equations in (3.3) become:

x′
1 =

Π1

Π2

, Π′
1 = −b3

b3x1 + a1
Π2

, Π′
2 =

b1(a1 − b2k1)e
b2y2

Π2

. (3.5)

The third equation becomes linear by means of the transformation Π2(y2) =
√

u(y2),

and its general solution is

Π2(y2) =

√
b2(−2k1b1b2eb2y2 + 2a1b1eb2y2 + a2b2)

b2
. (3.6)

The two remaining equations become a single linear second-order ordinary differential

equation by solving the first equation by Π1 and substituting its value into the second

equation, i.e.

x′′
1 =

−b1b2(a1 − k1b2)e
b1y2

2b1(a1 − k1b2)eb2y2 + a2b2
x′
1 −

b2b3(b3x1 + a1)

2b1eb2y2(a1 − k1b2) + a2b2
. (3.7)

Therefore, this minimally superintegrable system (3.2) is linearizable using hidden

symmetries.
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3.2. Case I.b

The case I.b in [27] is characterized by the following potential and magnetic field:

W (x⃗) = − b21
2
(x2

1 + x2
2)

2 − b22
2x4

1

− b23
2x4

2

− b1

(
b2
x2
2

x2
1

+ b3
x2
1

x2
2

)
− b2b3

x2
1x

2
2

+ k1(x
2
1 + x2

2) +
k2
x2
1

+
k3
x2
2

, (3.8)

B⃗(x⃗) =

[
2b1x2 − 2

b3
x3
2

,−2b1x1 + 2
b2
x3
1

, 0

]
, (3.9)

respectively. The Hamiltonian equations are:

ẋ1 = Π1, ẋ2 = Π2, ẋ3 = Π3,

Π̇1 = 2b21x1(x
2
1 + x2

2)− 2b1b2
x2
2

x3
1

+ 2b1b3
x1

x2
2

− 2b1x1Π3

−2b22
x5
1

− 2b2b3
x3
1x

2
2

+ 2b2
Π3

x3
1

− 2k1x1 +
2k2
x3
1

,

Π̇2 = 2b21x2(x
2
1 + x2

2) + 2b1b2
x2

x2
1

− 2b1b3
x2
1

x3
2

− 2b1x2Π3 −
2b2b3
x3
2x

2
1

−2b23
x5
2

+ 2b3
Π3

x3
2

− 2k1x2 +
2k3
x3
2

,

Π̇3 = 2b1(x1Π1 + x2Π2)− 2b2
Π1

x3
1

− 2b3
Π2

x3
2

.

(3.10)

This system admits a two-dimensional Abelian Lie symmetry algebra generated by

the operators ∂t, ∂x3 , and consequently the six equations (3.10) can be reduced to the

following four equations:

x′
1 =

Π1

Π2

,

Π′
1 = −2k1

x1

Π2

+
2k2
x3
1Π2

+
2(b1x

4
1 − b2)

y22x
5
1Π2

(b1y
2
2x1

+(b1y
4
2 − y22Π3 + b3)x

2
1 + b2y

2
2),

Π′
2 = −2k1y2

Π2

+
2k3
y32Π2

+
2(b1y

4
2 − b3)

y52x
2
1Π2

(b1y
2
2x

4
1

+(b1y
4
2 − y22Π3 + b3)x

2
1 + b2y

2
2),

Π′
3 = 2

b1x
4
1 − b2
x3
1

Π1

Π2

+
2b1y

4
2 − 2b3
y32

,

(3.11)

where y2 ≡ x2 is the new independent variable. Substituting the ratio Π1/Π2 with x′
1

into the last equation in (3.11) yields a solvable equation which can be easily integrated,

i.e.:

Π3(y2) = b1x
2
1 +

b2
x2
1

+
b1y

4
2 − a1y

2
2 + b3

y22
, (3.12)
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Then, the three remaining equations in (3.11) become:
x′
1 =

Π1

Π2

, Π′
1 = 2K1

x1

Π2

− 2
K2

x3
1Π2

,

Π′
2 =

2K1y
4
2 − 2K3

y32Π2

.
(3.13)

where K1 = a1b1 − k1, K2 = a1b2 − k2, K3 = a1b3 − k3. The third equation in (3.13)

becomes linear by means of the transformation Π2(y2) =
√
u(y2), and its general solution

is

Π2(y2) =

√
2K1y42 + a2y22 + 2K3

y2
. (3.14)

The two remaining equations become a single nonlinear second-order ordinary

differential equation by solving the first equation by Π1 and substituting its value into

the second equation, i.e.

x′′
1 = 2

x′
1x

3
1(y

4
2K1 −K3)− x4

1y
3
2K1 + y2K2

x3
1y2(a2y

2
2 − 2y42K1 − 2K3)

. (3.15)

This equation admits a three-dimensional Lie symmetry algebra isomorphic to sl(2,R)
and becomes linear if K2 = 0. Therefore, we use the general method described in [21]

and that may be applied to any second-order ordinary differential equation that admits a

Lie symmetry algebra sl(2,R). If we solve equation (3.15) with respect to K2 and derive

once with respect to y2, then the following nonlinear third-order equation is obtained

x′′′
1 = −3

x′′
1x

′
1

x1

− 6(K1y
4
2 −K3)(y2x1x

′′
1 − x1x

′
1 + y2(x

′
1)

2)

y22x1(2K1y42 + a2y22 + 2K3)
, (3.16)

which is linearizable since it admits a seven-dimensional Lie symmetry algebra and in

particular possesses the linearizing symmetry

v =
1

x1

∂x1 , (3.17)

that yields the linearizing transformation x1(y2) =
√

f(y2). Consequently, equation

(3.16) becomes the following linear equation:

f ′′′ = −6
(y2f

′′ − f ′)(K1y
4
2 −K3)

2y22(K1y42 +K3)− a2y42
, (3.18)

whose general solution is:

f(y2) = a3 + a4(a2y
2
2 − 4K3) + a5

√
a2y22 − 2y42K1 − 2K3. (3.19)

Therefore, the minimally superintegrable system (3.10) is linearizable using hidden

symmetries.
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3.3. Case I.c

The case I.c in [27], is characterized by the following potential and magnetic field

W (x⃗) = − b21
2

(
4x2

1 + x2
2

)2 − b22
2
x2
1 −

b23
2x4

2

− b2b3x1

x2
2

− b1b2x1(4x
2
1 + x2

2)

− 4b1b3x
2
1

x2
2

+
k3
x2
2

+ k1(4x
2
1 + x2

2) + k2x1, (3.20)

B⃗(x⃗) =

[
2b1x2 −

2b3
x3
2

,−8b1x1 − b2, 0

]
(3.21)

respectively. The Hamiltonian equations are:

ẋ1 = Π1, ẋ2 = Π2, ẋ3 = Π3,

Π̇1 = 8b21x1(4x
2
1 + x2

2) + b1b2(12x
2
1 + x2

2) +
8b1b3x1

x2
2

− 8b1x1Π3

+b22x2 +
b2b3
x2
2

− b2Π3 − 8k1x1 − k2,

Π̇2 = 2b21x2(4x
2
1 + x2

2) + 2b1b2x1x2 −
8b1b3x

2
1

x3
2

− 2b1x2Π3 −
2b2b3x1

x3
2

−2b23
x5
2

+ 2b3
Π3

x3
2

− 2k1x2 +
2k3
x3
2

,

Π̇3 = 2b1(4x1Π1 + x2Π2) + b2Π1 −
2b3Π2

x3
2

.

(3.22)

This system admits a two-dimensional Abelian Lie symmetry algebra generated by

the operators ∂t, ∂x3 , and consequently the six equations (3.22) can be reduced to the

following system of four equations:

x′
1 =

Π1

Π2
,

Π′
1 =

(
8b21y

2
2 + b22 − 8k1 +

8b1b3
y22

)
x1

Π2

+
b1b2y

4
2 − k2y

2
2 + b2b3

y22Π2

−
(
8b1

x1

Π2

+
b2
Π2

)
Π3 + 32b21

x3
1

Π2

+ 12b1b2
x2
1

Π2

,

Π′
2 =

(
−2b1y2 +

2b3
y32

)
Π3

Π2

+ 8b1

(
b1y2 −

b3
y32

)
x2
1

Π2

+2b2

(
b1y2 −

b3
y32

)
x1

Π2

+
2b21y

8
2 − 2k1y

6
2 + 2k3y

2
2 − 2b23

y52Π2

,

Π′
3 = (8b1x1 + b2)

Π1

Π2

+
2b1y

4
2 − 2b3
y32

,

(3.23)

where y2 ≡ x2 is the new independent variable. Substituting the ratio Π1/Π2 with x′
1

into the fourth equation of system (3.23) yields an equation that can be easily integrated,

i.e.

Π3(y2) = 4b1x
2
1 + b2x1 +

b1y
4
2 − a1y

2
2 + b3

y22
, (3.24)
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where a1 is a constant of integration. Then, the three remaining equations in (3.23)

become: 
x′
1 =

Π1

Π2

, Π′
1 = 8(a1b1 − k1)

x1

Π2

+
a1b2 − k2

Π2

,

Π′
2 =

(2a1b1 − 2k1)y
4
2 − 2a1b3 + 2k3

y32Π2

.
(3.25)

The third equation (3.25) becomes linear by means of the transformation Π2(y2) =√
u(y2), and its general solution is

Π2(y2) =

√
2(a1b1 − k1)y42 + a2y22 + 2a1b3 − 2k3

y2
, (3.26)

where a2 is a new constant of integration. The two remaining equations, i.e.
x′
1 =

y2Π1√
2(a1b1 − k1)y42 + a2y22 + 2a1b3 − 2k3

,

Π′
1 =

y2(8(a1b1 − k1)x1 + a1b2 − k2)√
2(a1b1 − k1)y42 + a2y22 + 2a1b3 − 2k3

,
(3.27)

become a single linear second-order ordinary differential equation by solving the first

equation by Π1 and substituting its value into the second equation, i.e.

x′′
1 =

2(k1− a1b1)y
4
2 + 2a1b3 − 2k3

y2(2(a1b1 − k1)y42 + a2y22 + 2a1b3 − 2k3)
x′
1 +

8(a1b1 − k1)y
2
2

2(a1b1 − k1)y42 + a2y22 + 2a1b3 − 2k3
x1

+
(a1b2 − k2)y

2
2

2(a1b1 − k1)y42 + a2y22 + 2a1b3 − 2k3
, (3.28)

an its general solution is

x1(y2) = a3

√
2(a1b1 − k1)y42 + a2y22 + 2a1b3 − 2k3

+ a4(4(a1b1 − k1)y
2
2 + a2) +

(a1b2 − k2)y
2
2

2a2
. (3.29)

Thus, the minimally superintegrable system (3.22) is linearizable using hidden

symmetries.

3.4. Case I.d

The case I.d in [27], is characterized by the following potential and magnetic field

W (x⃗) = k1(x
2
1 + x2

2) + k2x1 + k3x2 −
1

2

(
b1x

2
1 + b1x

2
2 + b2x1 + b3x2

)2
, (3.30)

B⃗(x⃗) = [2b1x2 + b3,−2b1x1 − b2, 0] , (3.31)

respectively. The Hamiltonian equations are:
ẋ1 = Π1, ẋ2 = Π2, ẋ3 = Π3,

Π̇1 = (b1x
2
1 + b1x

2
2 + b2x1 + b3x2 − Π3)(2b1x1 + b2)− 2k1x1 − k2,

Π̇2 = (b1x
2
1 + b1x

2
2 + b2x1 + b3x2 − Π3)(2b1x2 + b3)− 2k1x2 − k3,

Π̇3 = (2b1x2 + b3)Π2 + (2b1x1 + b2)Π1.

(3.32)
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This system admits a two-dimensional Abelian Lie symmetry algebra generated by

the operators ∂t, ∂x3 , and consequently the six equations (3.32) can be reduced to the

following system of four equations:

x′
1 =

Π1

Π2
,

Π′
1 = (b1x

2
1 + b1y

2
2 + b2x1 + b3y2 − Π3)

2b1x1 + b2
Π2

− 2k1x1 + k2
Π2

,

Π′
2 = (b1x

2
1 + b1y

2
2 + b2x1 + b3y2 − Π3)

2b1y2 + b3
Π2

− 2k1y2 + k3
Π2

,

Π′
3 = (2b1y2 + b3) + (2b1x1 + b2)

Π1

Π2

,

(3.33)

where y2 ≡ x2 is the new independent variable. Substituting the ratio Π1/Π2 with x′
1

into the fourth equation of system (3.33) yields an equation that can be easily integrated,

i.e.

Π3(y2) = b1x
2
1 + b2x1 + b1y

2
2 + b3y2 − a1, (3.34)

where a1 is a constant of integration. Then, the three remaining equations in (3.33)

become: 
x′
1 =

Π1

Π2

, Π′
1 = 2(a1b1 − k1)

x1

Π2

+
a1b2 − k2

Π2

,

Π′
2 =

2(a1b1 − k1)y2 + a1b3 − k3
Π2

.
(3.35)

The third equation in (3.35) becomes linear by means of the transformation Π2(y2) =√
u(y2), and its general solution is

Π2(y2) =
√

2a1b1y22 + 2a1b3y2 − 2k1y22 − 2k3y2 + a2 (3.36)

The two remaining equations, i.e.
x′
1 =

Π1√
2(a1b1 − k1)y22 + 2a1b3y2 − 2k3y2 + a2

,

Π′
1 =

2(a1b1 − k1)x1 + a1b2 − k2√
2(a1b1 − k1)y22 + 2a1b3y2 − 2k3y2 + a2

,
(3.37)

become a single linear second-order ordinary differential equation by solving the first

equation by Π1 and substituting its value into the second equation, i.e.

x′′
1 =

2(k1 − a1b1)y2 − a1b3 + k3
2(a1b1 − k1)y22 + 2(a1b3 − k3)y2 + a2

x′
1

+
2(a1b1 − k1)x1 + a1b2 − k2

2(a1b1 − k1)y22 + 2(a1b3 − k3)y2 + a2
(3.38)

and its general solution is

x1(y2) = a3

√
2a1b1y22 + 2a1b3y2 − 2k1y22 − 2k3y2 + a2

+ a4(2(a1b1 − k1)y2 + a1b3 − k3) +
k2 − a1b2

2(a1b1 − k1)
. (3.39)

Consequently, the minimally superintegrable system (3.32) is linearizable using hidden

symmetries.
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3.5. Cases II

All four systems of type II in [27] can be treated in the same manner. The scalar

potential and the magnetic field of each case are as follow:

• Case II.a

W (x⃗) = k1x1 + k2e
b2x1 − b21

2b22
e2b2x1 , B⃗(x⃗) =

[
0, 0, b1e

b2x1
]
. (3.40)

• Case II.b

W (x⃗) = − b21
2
x
2(b2−2)
1 + b1(b2 − 2)k1x

b2−2
1 +

k2
x2
1

, (3.41)

B⃗(x⃗) =
[
0, 0, b1(b2 − 2)xb2−3

1

]
. (3.42)

• Case II.c

W (x⃗) = −b2

2
(ln |x1|)2 + k1 ln |x1|+

k2
x2
1

, B⃗(x⃗) =

[
0, 0,

b

x1

]
. (3.43)

• Case II.d

W (x⃗) = −bk1
ln |x1|
x2
1

− k2
1

8x4
1

+
k2
x2
1

, B⃗(x⃗) =

[
0, 0,

b

x3
1

]
. (3.44)

We notice that all potentials depend on x1 only, and all magnetic fields have only

one component along the x3-axis, B3(x1), that depends on x1 only. Therefore, the

Hamiltonian equations are:

ẋ1 = Π1, ẋ2 = Π2, ẋ3 = Π3,

Π̇1 = −B3(x1)Π2 −
dW (x1)

dx1

,

Π̇2 = B3(x1)Π1,

Π̇3 = 0.

(3.45)

The sixth and third equation can be immediately solved (Π3 = a0 ⇒ x3 = a0t+a1), and

consequently the equations of motion are reduced to the remaining four equations (i.e.,

a system in two-dimensional space) that admit a two-dimensional Abelian Lie symmetry

algebra generated by the operators ∂t, ∂x2 , and consequently the four equations can be

reduced to the following system of two equations (N.B. Equation x′
2 = Π2/Π1 is easy to

integrate once system (3.46) is solved.): Π′
1(y1) =

−f ′
3(y1)Π2 −W ′(y1)

Π1

,

Π′
2(y1) = f ′

3(y1),
(3.46)

where y1 ≡ x1 is the new independent variable, B3(y1) = f ′
3(y1), and prime denotes the

total derivative with respect to y1. The second equation can be easily integrated, i.e.

Π2(y1) = f3(y1) + a2 (3.47)

and then the first equation in (3.46) becomes

Π′
1(y1) =

−f ′
3(y1)(f3(y1) + a2)−W ′(y1)

Π1

, (3.48)
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which can be linearized by the transformation Π1(y1) =
√

2u(y1), and its general

solution is

Π1(y1) =
√

a3 − a2f3(y1)− f3(y1)2/2−W (y1). (3.49)

Consequently, the four minimally superintegrable systems of type II in [27] are all

linearizable using hidden symmetries.

3.6. Case 9.2a

The potential and magnetic field of Case 9.2a are

W (x⃗) =
k1
x2
2

+ k2x
2
2, B⃗(x⃗) = [0, b, 0] , (3.50)

respectively. The Hamiltonian equations are:

ẋ1 = Π1, ẋ2 = Π2, ẋ3 = Π3, (3.51)

Π̇1 = bΠ3, Π̇2 =
2k1
x3
2

− 2k2x2, Π̇3 = −bΠ1. (3.52)

Case 9.2a is actually a subcase of Case B by exchanging x2 with x3. In the following,

we show another way to determine the hidden linearity of Case 9.2a. If we derive the

three covariant momenta Πi(i = 1, 2, 3) from equations (3.51) and replace them into

equations (3.52), then we obtain the following system of three second-order equations,

i.e.

ẍ1 = bẋ3, ẍ2 =
2k1
x3
2

− 2k2x2, ẍ3 = −bẋ1. (3.53)

The second equation in x2 admits a three-dimensional Lie symmetry algebra sl(2,R)
generated by the following operators:

∂t, sin(
√

8k2t)∂t +
√

2k2x2 cos(
√
8k2t)∂x1 ,

cos(
√

8k2t)∂t −
√

2k2x2 sin(
√

8k2t)∂x1 . (3.54)

However, if k1 = 0, then the same equation admits an eight-dimensional Lie symmetry

algebra sl(3,R) and thus it is linearizable. Therefore, we use the general method

described in [21] and that may be applied to any second-order ordinary differential

equation that admits a Lie symmetry algebra sl(2,R). If we solve the second-order

equation with respect to k1 and derive once with respect to y2, then the following

nonlinear third-order equation is obtained

˙̈x2 = −3ẋ2ẍ2

x2

− 8k2ẋ2. (3.55)

which admits a seven-dimensional Lie symmetry algebra, and therefore is linearizable.

Indeed, the new dependent variable u(t) = x2
2 transforms equation (3.55) into the linear

equation

˙̈u = −8k2u̇ ⇒ u(t) = c1 + a1 sin(
√

8k2t) + a2 cos(
√

8k2t), (3.56)
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where c1, a1 and a2 are integration constant. However, since v = x−1
2 ∂x2 is not a

symmetry of the second-order differential equation (3.53), an additional constraint on

the integration is needed. By substituting u in (3.53), we get

c1 =

√
a21k2 + a22k2 + k1

k2
, (3.57)

x2(t) =

√√√√
a1 sin(

√
8k2t) + a2 cos(

√
8k2t) +

√
a21k2 + a22k2 + k1

k2
. (3.58)

The two remaining equations in (3.53) are linear, i.e.

ẍ1 = bẋ3, ẍ3 = −bẋ1. (3.59)

If we derive ẋ3 from the first equation and replace it into the second equation, then the

second equation becomes a linear third-order equation in the dependent variable x1, i.e.

˙̈x1 = −b2ẋ1, (3.60)

and its general solution is

x1(t) = a3 sin(bt) + a4 cos(bt) + a5. (3.61)

Consequently, we have shown that system Case 9.2a can be linearized in two

different ways by means of hidden symmetries.

3.7. Case 9.2b

The potential and magnetic field of case 9.2b are

W (x⃗) = − b23
2

(
l1x

2
1 +m1x

2
2

)2
+ b3

(
l2x

2
1 +m2x

2
2 − b2m1

x2
2

x2
1

− b1l1
x2
1

x2
2

)
+

k1
x2
1

+
k2
x2
2

− 1

2

(
b2
x2
1

+
b1
x2
2

)2

(3.62)

B⃗(x⃗) =

[
2b3m1x2 −

2b1
x3
2

,−2b3l1x1 +
2b2
x3
1

, 0

]
, (3.63)

respectively. (This system is integrable but not superintegrable in general. By imposing

some constraints on the parameters, the system becomes minimally superintegrable.

However, we will not impose those constraints.) The Hamiltonian equations are

ẋ1 = Π1, ẋ2 = Π2, ẋ3 = Π3,

Π̇1 = −2b22
x5
1

+ b2

(
−2m1b3x

2
2

x3
1

+
2x2

2Π3 − 2b1
x3
1x

2
2

)
+ 2l1b

2
3x1(l1x

2
1 +m1x

2
2)

+
2b3x1

x2
2

(
b1l1 − (l1Π3 + l2)x

2
2

)
+

2k1
x3
1

,

Π̇2 = b2

(
2m1b3

x2

x2
1

− 2b1
x2
1x

3
2

)
+ 2b23m1x2

(
l1x

2
1 +m1x

2
2

)
−2

b3
x3
2

((m1Π3 +m2)x
4
2 + b1l1x

2
1) +

2k2
x3
2

− 2b1
x5
2

(b1 − x2
2Π3),

Π̇3 = −2b1
Π2

x3
2

− 2b2
Π1

x3
1

+ 2b3(l1x1Π1 +m1x2Π2).

(3.64)
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This system admits a two-dimensional Abelian Lie symmetry algebra generated by

the operators ∂t, ∂x3 , and consequently the six equations (3.64) can be reduced to the

following system of four equations:

x′
1 =

Π1

Π2

,

Π′
1 =

(
2b2
x3
1

− 2b3l1x1

)
Π3

Π2

+
2b23l

2
1x

3
1

Π2

+
2b3x1

y22Π2

(b3l1m1y
4
2 − l2y

2
2 + b1l1)

+
−2b2b3m1y

4
2 + 2k1y

2
2 − 2b1b2

y22x
3
1Π2

− 2b22
x5
1Π2

,

Π′
2 = (b1 − b3m1y

4
2)

2Π3

y32Π2

− 2b3l1x
2
1

y32Π2

(b1 − b3m1y
4
2)

+
2b23m

2
1y

8
2 − 2b3m2y

6
2 + 2k2y

2
2 − 2b21

y52Π2

+ 2b2
b3m1y

4
2 − b1

y32x
2
1Π2

,

Π′
3 =

(
2b3l1x1 −

2b2
x3
1

)
Π1

Π2

+
2b3m1y

4
2 − 2b1
y32

.

(3.65)

where y2 ≡ x2 is the new independent variable. Substituting the ratio Π1/Π2 with x′
1

into the fourth equation of system (3.65) yields an equation that can be easily integrated,

i.e.

Π3(y2) = b3l1x
2
1 +

b2
x2
1

+
b3m1y

4
2 − a1y

2
2 + b1

y22
, (3.66)

Then, the three remaining equations in (3.65) become:
x′
1 =

Π1

Π2
,

Π′
1 = 2b3(a1l1 − l2)

x1

Π2

+ 2
k1 − a1b2
x3
1Π2

,

Π′
2 =

2b3(a1m1 −m2)y
4
2 − 2a1b1 + 2k2

y32Π2

.

(3.67)

The third equation in (3.67) becomes linear by means of the transformation Π2(y2) =√
u(y2), and its general solution is

Π2(y2) =

√
2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2

y2
. (3.68)

The two remaining equations become a single nonlinear second-order ordinary

differential equation by solving the first equation by Π1 and substituting its value into

the second equation, i.e.

x′′
1 =

−2b3(a1m1 −m2)y
4
2 + 2a1b1 − 2k2

y2(2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2)
x′
1

+
2b3y

2
2(a1l1 − l2)

2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2
x1

− 2y22(a1b2 − k1)

2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2
x−3
1 . (3.69)

This equation admits a three-dimensional Lie symmetry algebra sl(2,R). However, if

K1 ≡ k1 − a1b2 = 0, then the same equation admits an eight-dimensional Lie symmetry
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algebra sl(3,R) and thus it is linearizable. Therefore, we use again the general method

described in [21]. If we solve the second-order equation with respect to K1 and derive

once with respect to y2, then the following nonlinear third-order equation is obtained

x′′′
1 = − 3

x′′
1x

′
1

x1

− 6
b3(a1m1 −m2)y

4
2 − a1b1 + k2

y2(2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2
x′′
1

− 6
b3(a1m1 −m2)y

4
2 − a1b1 + k2

y2(2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2)

(x′
1)

2

x1

+ 2
((4l1 −m1)a1 − 4l2 +m2)b3y

4
2 − 3a1b1 + 3k2

y22(2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2)
x′
1, (3.70)

which possesses a seven-dimensional Lie symmetry algebra, hence it is linearizable and

in particular possesses the linearizing symmetry

1

x1

∂x1 , (3.71)

that yields the linearizing transformation x1(y2) =
√
u(y2) that turns equation (3.70)

into the following linear equation:

u′′′ = 6
−b3(a1m1 −m2)y

4
2 + a1b1 − k2

y2(2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2)
u′′

+
2((4l1 −m1)a1 − 4l2 +m2)b3y

4
2 − 6a1b1 + 6k2

y22(2b3(a1m1 −m2)y42 + a2y22 + 2a1b1 − 2k2)
u′, (3.72)

and its general solution can be written in terms of hypergeometric functions.

Consequently, we have shown that system (3.64) is linearizable by means of hidden

symmetries.

4. Three minimally superintegrable system of non-subgroup type admitting

non-zero magnetic fields and an axial symmetry

In [5] the authors studied three-dimensional integrable systems of non-subgroup type

admitting non-zero magnetic fields and an axial symmetry. The systems correspond

to the circular parabolic, oblate and prolate spheroidal cases. In addition to those

integrable cases, one minimally superintegrable system was found with an additional

quadratic integral of motion. This system represents the intersection between the

circular parabolic case and the spherical case with a magnetic field. In [6] the

authors continued the study of three-dimensional integrable systems of non-subgroup

type admitting non-zero magnetic fields and an axial symmetry. Two new minimally

superintegrable systems admitting an additional quadratic integral were presented and

they represent the intersection of more than one integrable case.

We do not consider the superintegrable systems admitting an additional linear

integral as determined in [5] and [6] since they are subcases of the systems we have

already investigated in our present paper.

Here, we consider all the three classes of nonlinear minimally superintegrable

systems, and determine their hidden linearity by means of Lie symmetries.
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4.1. The intersection of the circular parabolic and spherical cases

The scalar potential and the magnetic field are

W (x⃗) =
k1
r2

+
k2
R

+
k3x3

r2R
+

b2m
2R2

+
bzbmx3

2R
− bzbnr

2

2R
+

bmbnx3

R2
− b2nr

2

2R2
− b2z

8
r2, (4.1)

B⃗(x⃗) =

[
(bm + bnx3)x1

R3
,
(bm + bnx3)x2

R3
,
bmx3 + bn(R

2 + x2
3)

R3
+ bz

]
. (4.2)

We will use a more natural set of coordinates, the spherical coordinates, as defined in

equations (1.7) and (1.8). The Hamiltonian equations are

Ṙ = ΠR, ϕ̇ =
Πϕ

R2
, θ̇ =

Πθ

R2 sin2(ϕ)
,

Π̇R =
Π2

ϕ

R3
+

Π2
θ

R3 sin2(ϕ)
+

2k1
R3 sin2(ϕ)

+
k2
R2

+
2k3 cos(ϕ)

R3 sin2(ϕ)
− bnΠθ

R2
− bzΠθ

R

+
b2m
R3

+
bnbm cos(ϕ)

R2
+

bzbn
2

sin2(ϕ) +
b2z
4
R sin2(ϕ),

Π̇ϕ =
Π2

θ cos(ϕ)

R2 sin3(ϕ)
+

2k1 cos(ϕ)

R2 sin3(ϕ)
+

k3(cos
2(ϕ) + 1)

R2 sin3(ϕ)
− bmΠθ

R2 sin(ϕ)

−bzΠθ cos(ϕ)

sin(ϕ)
− 2bnΠθ cos(ϕ)

R sin(ϕ)
+ b2n cos(ϕ) sin(ϕ) +

bnbm sin(ϕ)

R

+bzbnR cos(ϕ) sin(ϕ) +
bmbz
2

sin(ϕ) +
b2z
4
R2 cos(ϕ) sin(ϕ),

Π̇ϕ = bnΠR sin2(ϕ) + bzRΠR sin2(ϕ) + bzΠϕ cos(ϕ) sin(ϕ)

+
bmΠϕ sin(ϕ)

R2
+

2bnΠϕ cos(ϕ) sin(ϕ)

R

(4.3)

This system admits a two-dimensional Abelian Lie symmetry algebra generated by the

operators ∂t, ∂θ, and consequently the six equations (4.3) can be reduced to the following

system of four equations:

R′ =
R2ΠR

Πϕ

,

Π′
R =

Πϕ

R
+

Π2
θ

RΠϕ sin
2(y2)

+
2k1

RΠϕ sin
2(y2)

+
k2
Πϕ

+
2k3 cos(y2)

RΠϕ sin
2(y2)

− bnΠθ

Πϕ

−bzRΠθ

Πϕ

+
b2m
RΠϕ

+
bmbn cos(y2)

Πϕ

+
b2zR

3 sin2(y2)

4Πϕ

+
bnbzR

2 sin2(y2)

2Πϕ

Π′
ϕ =

Π2
θ cos(y2)

Πϕ sin
3(y2)

+
2k1 cos(y2)

Πϕ sin
3(y2)

+
k3(cos

2(y2) + 1)

Πϕ sin
3(y2)

− bmΠθ

Πϕ sin(y2)

−2bnRΠθ cos(y2)

Πϕ sin(y2)
− bzR

2Πθ cos(y2)

Πϕ sin(y2)
+

b2nR
2 cos(y2) sin(y2)

Πϕ

+
bmbnR sin(y2)

Πϕ

+
bnbzR

3 sin(y2) cos(y2)

Πϕ

+
bmbzR

2 sin(y2)

2Πϕ

+
b2zR

4 sin(y2) cos(y2)

4Πϕ

Π′
θ = R2 sin2(y2)(bn + bzR)

ΠR

Πϕ

+ sin(y2)(bzR
2 cos(y2) + 2bnR cos(y2) + bm),

(4.4)
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where y2 ≡ ϕ is the new independent variable. If we take the ratio ΠR/Πϕ from the first

equation and substitute it into the fourth equation, then it can be integrated directly

by expressing Πθ as a function of R and and y2, i.e.

Πθ =
bz
2
R2 sin2(y2) + bnR sin2(y2)− bm cos(y2) + a1, (4.5)

where a1 is a constant of integration. Substituting this result into (4.4), we are left with

the following three nonlinear equations

R′ =
R2ΠR

Πϕ

, (4.6)

Π′
R =

a1bn + k2
Πϕ

+
Πϕ

R
+

(−2a1bm + 2k3) cos(y2) + a21 + b2m + 2k1
RΠϕ sin

2(y2)
, (4.7)

Π′
ϕ =

(−a1bm + k3) cos
2(y2) + (a21 + b2m + 2k1) cos(y2)− a1bm + k3

Πϕ sin
3(y2)

. (4.8)

The equation (4.8) is separable and linearizable by setting Πϕ(y2) =
√

u(y2). Hence, we

obtain

Πϕ(y2) =

√
−a2 cos2(y2) + (2a1bm − 2k3) cos(y2)− a21 − b2m + a2 − 2k1

sin2(y2)
, (4.9)

where a2 is a constant of integration. The remaining two nonlinear equations are

R′ =
R2ΠR sin(y2)√

−a2 cos2(y2) + (2a1bm − 2k3) cos(y2)− a21 − b2m + a2 − 2k1
, (4.10)

Π′
R =

(a2 + (a1bn + k2)R) sin(y2)

R
√

−a2 cos2(y2) + (2a1bm − 2k3) cos(y2)− a21 − b2m + a2 − 2k1
. (4.11)

If we derive ΠR from (4.10) and substitute it into (4.11), then we obtain the nonlinear

second-order equation

R′′ = 2
(R′)2

R
+ α(y2)R

′ − β(y2)R
2 − γ(y2)R, (4.12)

where α(y2), β(y2) and γ(y2) are given by

α(y2) =
(k3 − a1bm) cos

2(y2) + (a21 + b2m + 2k1) cos(y2)− a1bm + k3
sin(y2)(a2 cos2(y2)2 + 2(k3 − a1bm) cos(y2) + a21 + b2m − a2 + 2k1)

, (4.13)

β(y2) =
(a1bn + k2) sin

2(y2)

a2 cos2(y2)2 + 2(k3 − a1bm) cos(y2) + a21 + b2m − a2 + 2k1
, (4.14)

γ(y2) =
a2 sin

2(y2)

a2 cos2(y2)2 + 2(k3 − a1bm) cos(y2) + a21 + b2m − a2 + 2k1
. (4.15)

However, this equation admits an eight-dimensional Lie symmetry algebra, and therefore

it is linearizable by the transformation of the dependent variable, R(y2) = 1/v(y2) that

yields the linear equation

v′′ = α(y2)v
′ + γ(y2)v + β(y2), (4.16)
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and its general solution is

v(y2) = a3

√
a2 cos2(y2) + 2(k3 − a1bm) cos(y2) + a21 + b2m − a2 + 2k1

− (a1bn + k2)((k3 − a1bm) cos(y2) + a21 + b2m − a2 + 2k1)

a21(a2 − b2m) + 2a1bmk3 − a22 + a2(b2m + 2k1)− k2
3

+ a4(a1bm − k3 − a2 cos(y2)) (4.17)

where a3 and a4 are constants of integration.

We can conclude that the minimally superintegrable system (4.3) is linearizable by

means of hidden symmetries.

4.2. The intersection between the cylindrical, spherical, oblate and prolate spheroidal

cases

Now let us consider the minimally superintegrable systems coming from section 5 in [6].

This Hamiltonian system is at the intersection of four integrable cases: the cylindrical,

spherical, oblate spheroidal and prolate spheroidal cases. The scalar potential and the

magnetic field are

W (x⃗) =
k1
r2

+
k2
x2
3

− k3R
2 − bpbsR

4

4x2
3

− bzbpr
2

4x2
3

− bzbs
4

r2R2 − b2s
8
r2R4 +

b2z
8
x2
3 −

b2pr
2

8x4
3

,

B⃗(x⃗) =

[
bpx1

x3
3

− bsx1x3,
bpx2

x3
3

− bsx2x3,
bp
x2
3

+ bs(r
2 +R2) + bz

]
. (4.18)

We use the cylindrical coordinates as defined in (1.5) and (1.6), and in those coordinates,

the Hamiltonian equations are

ṙ = Πr, θ̇ =
Πθ

r2
, ẋ3 = Π3,

Π̇r =
2k1
r3

+ 2k3r +

(
bz
2
r2 − Πθ

)
bp
rx2

3

+
(
2r2 + x2

3

)(bz
2
r2 − Πθ

)
bs
r

−(bzr
2 − Πθ)

Πθ

r3
+

b2pr

4x4
3

+
bsbpr

x2
3

(r2 + x2
3) +

b2sr

4
(3r4 + 4r2x2

3 + x4
3),

Π̇θ =
bpr

x3
3

(x3Πr − rΠ3) + bs(r(2r
2 + x2

3)Πr + r2x3Π3) + bzrΠr,

Π̇3 =
2k2
x3
3

+ 2k3x3 +

(
Πθ −

bzr
2

2

)
bp
x2
3

+
bs
2
(bzr

2 − 2Πθ)x3

−
b2pr

2

2x5
3

+
bsbp
2x3

3

(x4
3 − r4) +

b2sr
2x3

2
(x2

3 + r2)− b2z
4
x3.

(4.19)

This system admits a two-dimensional Abelian Lie symmetry algebra generated by

the operators ∂t, ∂θ, and consequently the six equations (4.19) can be reduced to the

following system of four equations:

x′
3 =

Π3

Πr

, (4.20)

Π′
r =

b2py2

4x4
3Πr

+
bsbpy2
x2
3Πr

(x2
3 + y22) +

bp(bzy
2
2 − 2Πθ)

2x2
3y2Πr

+
b2sy2
4Πr

(x4
3 + 4x2

3y
2
2 + 3y42)
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+

(
bz
2
y22 − Πθ

)
bs(2y

2
2 + x2

3)

y2Πr

+
2k1
y32Πr

+
2k3y2
Πr

+ (Πθ − bzy
2
2)

Πθ

y32Πr

, (4.21)

Π′
θ = (x3Πr − y2Π3)

bpy2
x3
3Πr

+ ((x2
3 + 2y22)Πr + y2x3Π3)

bsy2
Πr

+ bzy2, (4.22)

Π′
3 = −

b2py
2
2

2x5
3Πr

+ (x4
3 − y42)

bsbp
2x3

3Πr

+ (−bzy
2
2 + 2Πθ)

bp
2x3

3Πr

+ (x2
3 + y22)

b2sy
2
2x3

2Πr

+ (bzy
2
2 − 2Πθ)

bsx3

2Πr

+
2k2
x3
3Πr

+
2k3x3

Πr

− b2zx3

4Πr

, (4.23)

where y2 ≡ r is the new independent variable. If we derive Π3 from (4.20) and substitute

it into (4.22), then it can be integrated directly by expressing Πθ as a function of x3 and

y2, i.e.

Πθ(y2) = y22

(
bsx

2
3

2
+

bp
2x2

3

)
+

bs
2
y42 +

bz
2
y22 + a1, (4.24)

where a1 is an constant of integration. We are left with the following three equations

x′
3 =

Π3

Πr

, (4.25)

Π′
r =

(−4a1bs + 2bpbs − b2z + 8k3)y
4
2 + 4a21 + 8k1

4y32Πr

, (4.26)

Π′
3 = ((−4a1 + 2bp)bs − b2z + 8k3)

x3

4Πr

+
a1bp + 2k2

x3
3Πr

. (4.27)

The equation (4.26) is separable and linearizable by setting Πr(y2) =
√

u(y2). Its general

solution is

Πr(y2) =

√
(−4a1bs + 2bpbs − b2z + 8k3)y22

4
− 4a21 + 8k1

4y22
+ a2, (4.28)

where a2 is a constant of integration. Consequently, we are left with the following two

nonlinear equations

x′
3 =

2y2Π3√
(−4a1bs + 2bpbs − b2z + 8k3)y42 + 4a2y22 − 4a21 − 8k1

, (4.29)

Π′
3 =

y2
2x3

3

(−4a1bs + 2bpbs − b2z + 8k3)x
4
3 + 4a1bp + 8k2√

(−4a1bs + 2bpbs − b2z + 8k3)y42 + 4a2y22 − 4a21 − 8k1
. (4.30)

If we derive Π3 from (4.29) and substitute it in the equation (4.30), then we obtain the

following nonlinear second-order equation

x′′
3 =

αy42 − α1

y2(−αy42 − 4a2y22 − α1)
x′
3 +

y22(α2 − x4
3α)

x3
3(−αy42 − 4a2y22 − α1)

, (4.31)

where

α = (−4a1 + 2bp)bs − b2z + 8k3, α1 = −4a21 − 8k1, α2 = −4a1bp − 8k2. (4.32)

This equation admits a three-dimensional Lie symmetry algebra isomorphic to sl(2,R)
and becomes linear if α2 = 0. Therefore, we use the general method described in [21]

and that may be applied to any second-order ordinary differential equation that admits
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a Lie symmetry algebra sl(2,R). If we solve equation (4.31) with respect to α2 and

derive once with respect to y2, then the nonlinear third-order equation that is obtained

admits a seven-dimensional Lie symmetry algebra, and is therefore linearizable.

Consequently, we have shown that system (4.19) is linearizable by means of hidden

symmetries.

4.3. The intersection between the cylindrical and circular parabolic cases

Here, we consider the Hamiltonian system at the intersection of the circular parabolic

case and the cylindrical case with a non-zero magnetic field. This system is minimally

superintegrable and has been investigated in Section 6 in [6]. The associated scalar

potential and magnetic field are

W (x⃗) = k1x3 +
k2
r2

+ k3(r
2 + 4x2

3)−
r2

32

(
2bz + bq(r

2 + 4x2
3)
)2

, (4.33)

B⃗(x⃗) =
[
−2bqx1x3,−2bqx2x3, bz + bq(r

2 + 2x2
3)
]
. (4.34)

We use the cylindrical coordinates as defined in (1.5) and (1.6), and in those coordinates,

the Hamiltonian equations are

ṙ = Πr, θ̇ =
Πθ

r2
, ẋ3 = Π3,

Π̇r =
Π2

θ

r3
+

2k2
r3

− 2k3r − (bz + bq(r
2 + 2x2

3))
Πθ

r

+(bq(r
2 + 4x2

3) + 2bz)(bq(3r
2 + 4x2

3) + 2bz)
r

16
,

Π̇θ = (bq(r
2 + 2x2

3) + bz)rΠr + 2bqr
2x3Π3,

Π̇3 = −k1 − 8k3x3 − 2bqx3Πθ +
bqr

2x3

2
(bq(r

2 + 4x2
3 + 2bz),

(4.35)

This system admits a two-dimensional Abelian Lie symmetry algebra generated by

the operators ∂t, ∂θ, and consequently the six equations (4.35) can be reduced to the

following system of four equations:

x′
3(y2) =

Π3

Πr

, (4.36)

Π′
r(y2) =

Π2
θ

y32Πr

− (bq(y
2
2 + 2x2

3) + bz)
Πθ

y2Πr

+
b2qy2x

4
3

Πr

+
bqy2(bqy

2
2 + bz)x

2
3

Πr

+
3b2qy

8
2 + 8bzbqy

6
2 + (4b2z − 32k3)y

4
2 + 32k2

16y32Πr

, (4.37)

Π′
θ(y2) = y2(bqy

2
2 + 2bqx

2
3 + bz) + 2bqy

2
2x3

Π3

Πr

, (4.38)

Π′
3(y2) = − 2bqx3

Πθ

Πr

+
4b2qy

2
2x

3
3 + (b2qy

4
2 + 2bqbzy

2
2 − 16k3)x3 − 2k1

2Πr

, (4.39)

where y2 ≡ r is the new independent variable. If we derive Π3 from (4.36) and substitute

it into (4.38), then it can be integrated directly by expressing Πθ as a function of x3 and
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y2, i.e.

Πθ(y2) = bqy
2
2x3(y2)

2 +
bq
4
y42 +

bz
2
y22 + a1, (4.40)

where a1 is a constant of integration. Using this result, we are left with the following

nonlinear equations:

x′
3(y2) =

Π3

Πr

, (4.41)

Π′
r(y2) =

(−a1bq − 4k3)y
4
2 + 2a21 + 4k2

2y32Πr

, (4.42)

Π′
3(y2) = −(2a1bq + 8k3)

x3

Πr

. (4.43)

The equation (4.42) is separable and linearizable by means of the transformation

Πr(y2) =
√
u(y2), and consequently we have

u(y2) = a2 −
(
a1bq
2

+ 2k3

)
y22 −

a21 + 2k2
y22

, (4.44)

where a2 is a constant of integration. Consequently, we are left with the following two

linear first-order differential equations

x′
3(y2) =

2Π3√
4a2 − 2(a1bq + 4k3)y22 − 4(a21 + 2k2)y

−2
2

, (4.45)

Π′
3(y2) =

(4a1bq + 16k3)x3 + 2k1√
4a2 − 2(a1bq + 4k3)y22 − 4(a21 + 2k2)y

−2
2

. (4.46)

We can conclude that the minimally superintegrable system (4.35) is also

linearizable.

5. Final remarks

In this paper, fifteen three-dimensional nonlinear minimally superintegrable systems in

a static electromagnetic field are shown to possess hidden symmetries leading to their

linearization, and consequently the corresponding subsets of maximally superintegrable

subcases are also linearizable.

We underline that in each case none of the known first integrals have been used.

Our results are strengthening the conjecture that all three-dimensional minimally

superintegrable systems are linearizable by means of hidden symmetries.

It is worth noting that Case 9.2b, namely Hamiltonian system (3.64), is just

integrable, not superintegrable. Some parameters need to be commensurable for the

system to be superintegrable, constraints that we did not impose. This example hints

that also integrable systems may possess hidden symmetries leading to linearization.
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