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A B S T R A C T   

Transportation system resilience towards events that disrupt system scheduling and nominal functioning is a key 
challenge for both planners and transport operators. The development of effective policies to enhance resilience 
requires the analysis of the relationships between the type of disruptive event, the characteristics of the transport 
system under analysis and its response. This paper aims to contribute to this topic by providing some vulnera
bility and resilience indices for a complex transport node (airport) within a comprehensive framework based on 
an element-by-element approach able to identify both disturbances for which transportation systems are more 
vulnerable (or more resilient) and responses in terms of vulnerability and resilience. Infrastructural, organiza
tional and technological transportation system elements that are more likely affected by given disruptions are the 
starting point for clustering possible disruptive events. The approach has been tested by simulating four Euro
pean airports, for which the effects of different types of disruption have been discussed. The obtained results 
show that the responses of transport system elements to the same type of disruptive events may be different, 
according to several factors depending on both system features and use of resources. Furthermore, the duration 
of the disturbance may be relevant for the system vulnerability, while resilience and vulnerability do not 
necessarily vary in the same way.   

1. Introduction 

In complex systems like transportation ones, which in turn may be 
split into several sub-systems, disruptive events of different magnitude 
and nature may affect any of the sub-system components, at any time, 
due to technical failures, extreme natural events or external, intentional 
human acts (Gu et al., 2020; Zhu and Levinson., 2012). Events such as 
labour conflicts (strikes) and changes in regulations or policies (service 
restrictions due to environmental or legal constraints) affect planning 
and management aspects. Finally, economic/political crises or health 
emergencies, such as the recent case of the Covid-19 outbreak, might 
affect the demand-side (Hendrickson and Rilett, 2020; Rothengatter 
et al., 2021; Schaefer et al., 2021). 

Due to the complex relationships among their several sub-systems, 
transportation systems react differently to different types of disruptive 
events, depending on both type of disruption and system specific fea
tures, included the interconnection and complexity of the several (sub-) 
system elements. If one of the transport components is disrupted, also 
the related ones are likely to be affected (Yap et al., 2018; Büchel et al., 

2020), although impacts can be significantly reduced if the system is 
designed and operated to respond and adapt to unexpected events 
(Zhang and Li, 2018). Particularly, a suitable allocation of resources 
would guarantee acceptable transport operation levels during and after 
a disruption (McDaniels et al., 2008; Belkoura et al., 2016). 

In the above context, resilience has gained growing importance as it 
includes aspects such as responsiveness, recovery and adaptation 
(D’Lima and Medda, 2015; Azolin et al., 2020; Ferreira et al., 2017). A 
holistic approach to resilience that considers interconnections, interde
pendency, complexity and uncertainty would improve system responses 
to exogenous or endogenous shocks (Cheng et al., 2021; Linkov et al., 
2014). 

Resilience investigation in the transportation field is linked to system 
vulnerability, generally focused on a specific transportation mode 
(Leobons et al., 2019): rail (Sun et al., 2018), air (Janić, 2015), roads in 
urban context (Jenelius et al., 2006; Jenelius and Mattsson, 2012), 
public transport (Cats and Jenelius, 2018), freight (Chen and 
Miller-Hooks, 2012; Darayi et al., 2017) and maritime (Zavitsas et al., 
2018). Many studies consider specific disruption cases, by analysing one 
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type of disturbances. For example, Lu (2018) explores resilience of rail 
systems when affected by operational failures. Many works focus on 
climate disasters (Chan and Schofer, 2016), such as floods (Duy et al., 
2019), seismic hazards (Trucco et al., 2013; Wu and Chen, 2019), hur
ricanes (Zhu et al., 2017). Many others analyze a specific catastrophic 
event. For example, Bruyelle et al. (2014) consider the disruptive event 
of the terroristic attacks in London in 2005; Comes and Van de Walle 
(2014) and Mudigonda et al. (2019) address the case of Hurricane Sandy 
in 2012; Wilkinson et al. (2012) assess vulnerability of the European air 
transportation network during the Eyjafjallajökull volcano eruption in 
2010. 

Previous research proposed several methods and measures to esti
mate both the consequence and the optimal reaction to disruptions, 
although relationships between causes of disruption, affected elements 
and system vulnerability and resilience have not been fully explored yet. 
Therefore, this study wants to contribute to the state of the art by pro
posing some vulnerability and resilience indices within a more general 
framework based on an element-by-element approach (Postorino et al., 
2019), which allows analysing the effects generated on/by the elements 
(infrastructural, organizational, technological) interested by disruptive 
events, which have been grouped into clusters based on the trans
portation elements primarily affected. The vulnerability index summa
rizes the system disruption impacts coming from the different elements, 
while the resilience index – split into its absorptive and restorative 
components – synthesises the system ability to adsorb disruption effects 
and recover to standard – or nominal – conditions. The goal is to explore 
if and to what extent the vulnerability and resilience of a transportation 
system – or a significant part of it such as a complex node – change 
depending on both type and duration of disruption and system features. 
Particularly, the study focuses on the analyses of airport disruptions and 
its vulnerability and resilience, especially on the airside airport system. 
An application has then been made by simulating different types of 
disruption at four airports in EU in order to measure their resilience by 
using the proposed resilience index. The relationships among the several 
elements of the airside airport system and the way they affect the system 
response to disruptive events have been explored and discussed starting 
from the obtained results. 

In what follows, the literature review on transportation vulnerability 
and resilience is discussed in Section 2, while Section 3 introduces the 
proposed vulnerability index by considering explicitly the different 
system elements. In Section 4, a case study is presented in which the 
vulnerability and resilience of four European airports are evaluated for 
different disruptions. Finally, Section 5 discusses the results obtained 
while Section 6 reports some concluding remarks. 

2. Short literature review on transportation system 
vulnerability and resilience: main concepts and indexes 

Over the last decades, the concepts of transportation system 
vulnerability and resilience have been largely discussed and several 
definitions have been proposed. Despite an agreed definition is still 
lacking, some established aspects of both resilience and vulnerability 
can be identified (Bešinović, 2020; Zhou et al., 2019; Pan et al., 2021), 
which are useful for measuring them, typically by suitable indexes. The 
first formalisation of the vulnerability concept for road transport sys
tems is due to Berdica, who defines it as “a susceptibility to incidents that 
can result in considerable reductions in road network serviceability” (Berd
ica, 2002), which is considered as reference description also for other 
transportation systems (Faturechi and Miller-Hooks, 2015). According 
to some authors, vulnerability is 1) the probability of occurrence of the 
disruptive event and 2) the consequences caused by the event (Calvert 
and Snelder, 2018), although such probability is often unidentifiable, 
given the non-recurrent nature of disruptive events (Jenelius et al., 
2006). In the literature most studies focus mainly on the consequences of 
vulnerability and then on the assessment of the produced impacts, 
without taking explicitly into account the probability of occurrence of 

the disturbance (Taylor and D’Este, 2007). 
To summarize the vulnerability concept (see also Fig. 1), in standard 

conditions the system works at its nominal performance level F0 (Wan 
et al., 2018; Enjalbert et al., 2011; Dorbritz, 2011), which might vary if a 
disruption occurs at time t1 on a given system element. In this case, 
generally the system performance changes and reaches a minimum 
level, Fmin, at time t2 when the disruption event ends. The system re
quires an additional time, usually referred to as “recovery time”, to re
turn to its original performance level at time t3. Vulnerability refers to 
the overall performance loss (PL) during the period [t1 - t3] and can be 
estimated as the dashed area over the curve in Fig. 1a (Malandri et al., 
2018; Cats and Jenelius, 2018; Bruneau et al., 2003). 

As for resilience, the initial definition of the time necessary to 
recover after a disruptive event (D’Lima and Medda, 2015) has been 
further enlarged to include the whole disruption horizon, which in
cludes the phases before, during and after the disruptive event (Francis 
and Bekera, 2014). In the context of socio-technical systems, the widely 
accepted definition of resilience is “the intrinsic ability of a system to adjust 
its functioning prior to, during, or following changes and disturbances, so that 
it can sustain required operations under both expected and unexpected con
ditions” (Hollnagel, 2011). Properties of a resilient system are, among 
the others, redundancy, robustness, resourcefulness and rapidity (Bru
neau et al., 2003). Particularly, a resilient system is able to absorb, adapt 
and recover quickly from disruptive events (Faturechi and Miller-Hooks, 
2015; Vugrin et al., 2010) accordingly to the following capabilities 
(Fig. 1b): 

(i) Absorptive capability: the system maintains its features and mini
mizes disruption consequences – it refers to the response phase, 
when the disruptive event is ongoing and has not been cleared yet 
(from t1 to t2).  

(ii) Restorative capability: the system returns to original performance 
levels, or to a new state with improved performances – it refers to 
the recovery phase (from t2 to t3), from the end of the disruption 
event until the restoration of undisrupted conditions.  

(iii) Adaptive capability: the system adapts to changes by reorganizing 
functions and activities – it refers to the entire disruption period, 
including the response and the recovery phases (from t1 to t3). 

The pre-disruption phase in Fig. 1b refers to a learn-and-prepare step, 
i.e., starting from disruptive events in the past, the system is prepared to 
face disruption events that could produce similar effects. 

Many studies have addressed the resilience problem by qualitative 
approaches, rather than quantitative ones. In these latter, indices are 
generally used to emphasize different aspects of system resilience, 
instead of resilience as a whole (Zhou et al., 2019). In the literature, 
vulnerability and resilience have been measured based on some per
formance indicators among which system performance degradation over 
time (Twumasi-Boakye and Sobanjo, 2018); rapidity of loss and recov
ery (Nan and Sansavini, 2017; Liao et al., 2018); amount of demand 
satisfied in post-disruption phase (Chen and Miller-Hooks, 2012; Jin 
et al., 2014). Among the proposed measures, some main vulnerability 
indicators refer to connectivity, accessibility, and serviceability 
depending on the involved aspect (Taylor, 2017; Gu et al., 2020). 
Connectivity indicators are generally related to the topology of the 
considered transport system. Several vulnerability measures have been 
used including clustering coefficient, edge betweenness, closeness or 
network efficiency (Derrible and Kennedy, 2010; Adjetey-Bahun et al., 
2016; Zhang et al., 2018; Mishra et al., 2012; Latora and Marchiori, 
2005). Furthermore, the percolation theory has also been used to 
investigate vulnerability (von Ferber et al., 2012). In some other studies, 
vulnerability has been measured by accessibility indicators derived from 
the Hansen integral accessibility index (Taylor et al., 2006). Finally, 
network vulnerability based on serviceability has been measured by 
indices generally associated with travel times or costs (Jenelius et al., 
2006; Jenelius and Mattsson, 2012; Leng et al., 2018; Leng and Corman, 
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2020), by distinguishing whether the congestion effects are included or 
not (Mattsson and Jenelius, 2015). 

Resilience metrics based on different response capabilities (absorp
tive and restorative) and indicators of system operational functionality 
have been introduced for complex, integrated, and interconnected sys
tems such as transportation systems (Nan and Sansavini, 2017). Basi
cally, these metrics consider resilience as a dynamic property of the 
system and are based on the same general concept of estimating how a 
function expressing system performance in loss or recovery phases 
varies during the time horizon in which a disruption occurs. Among the 
most widely used metrics, resilience has primarily been quantified as the 
system performance loss – total or average – from the occurrence of 
disruption (Adams et al., 2012; Baroud et al., 2014), which measures the 
degradation of system quality over time and refers to its absorptive 
capability. Some other studies focus on the system restorative capability 
(D’Lima and Medda, 2015; Hosseini and Barker, 2016), and resilience is 
evaluated as the “rapidity” of the system recovery (i.e., slope of the 
curve in the time interval t2-t3, see Fig. 1). In other research, resilience is 
computed as a time-dependent ratio of recovery to loss (Liao et al., 2018; 
Wang et al., 2015). 

As for air transportation, both effects at air network or node (airport) 
levels have been considered. Some studies analyze air network resilience 
and vulnerability as the change in connectivity (Wei et al., 2013), 
clustering coefficient (Li et al., 2014), or the size of the largest connected 
component (Sun et al., 2017). Some studies propose performance-based 
resilience/vulnerability indexes in terms of passenger inconvenience 
and delayed or rerouted flights (Lordan et al., 2014; Malandri et al., 
2017; Zhou and Chen, 2020). In Faturechi et al. (2014) the resilience of 
an airport runway-taxiway system is measured as its ability to adap
tively allocate airport resources to absorb and resist to disturbances. In 
Comes et al. (2020), an approach is presented which evaluates airport 
resilience including the rapid adaptation of the system itself to a new 
performance level after a disaster. 

In the above context, this paper proposes a resilience index defined 
as the transport system capability – during and immediately after the 
occurrence of a disruptive event – to reduce efficiently both the 
magnitude and duration of the deviation from targeted operational 
performance levels. According to this definition, the resilience index 
includes both the capability to withstand the disruption (absorptive 
capability) and the efficiency of the recovery phase, i.e., how fast the 
system can return to the original configuration (restorative capability). 
Finally, the resilience index has been evaluated in terms of throughput, 
in line with other studies (Adjetey-Bahun et al., 2016; Zhang and 
Miller-Hooks, 2015, Trucco et al., 2013), while vulnerability has been 
estimated by considering only the “consequence” side, without 
including the probability of occurrence. To obtain suitable measures, 
which take into account both system components and their relation
ships, both absorptive and restorative capabilities have been estimated 
by considering the several components of the involved (sub-)systems. 

With respect to resilience indicators in the literature, the proposed 
index considers two components (absorptive and restorative) simulta
neously, while previous studies generally consider only one of them or, 

in some cases, both, but separately. Moreover, other than incorporating 
absorptive and restorative capabilities into a single metric, the advan
tage of the proposed index is that it allows to understand both the 
prevalence of one resilience component over the other and if the overall 
system behavior in disrupted conditions is due to a great absorptive 
capability or on a great ability to recover. This makes the proposed index 
effective in supporting planning and implementation of actions 
addressed to mitigate the effects generated by a disruptive event, as 
discussed in the next sections. 

3. Vulnerability and resilience of complex nodes: airport case 

For a suitable resilience measure of a complex node, the contribution 
and impacts of the different elements that interact among them should 
be modelled within a general framework. In this section, the resilience 
index proposed in this study is presented by considering explicitly the 
potentially impacted elements accordingly to the disruption causes. 

3.1. The general problem 

Let S(X, O, M) be a transportation node. X is the vector representing 
physical and service characteristics of the several node elements; O is the 
vector of transport operators that realize the service in S and M is the 
vector of technical service providers. The elements of O and M refer to 
the specific features of both transport operators and service providers. 
For an airport node, X includes airside infrastructures (set of runways, E; 
set of available parking stands, F), while the elements of O refer to 
airlines and the elements of M refer to technical service providers such 
as ground handling and ATC,1 which deploy both staff resources and 
equipment to perform their functions. 

Let CAPτ be the runway capacity (or maximum throughput capacity) 
of S in the nth sub-period τ in the reference period T, defined as the 
expected number of movements (landings and take-offs) that can be 
performed at the airport runway system during the period τ in T (de 
Neufville and Odoni, 2003). 

By referring to Fig. 1, a disruptive event D(td), whose duration is td =

[t1, t2], undermines the performance of S with respect to standard (or 
nominal) conditions. Particularly, D(td) affects the involved resources 
(arcs/nodes, transport operators and providers) at different levels. De
viations from the originally planned operations, caused by partial or 
total unavailability of resources (infrastructural, operational, techno
logical), generate a reduction in capacity and a loss of the system per
formances, which impact mainly on vehicle/passenger flows and service 
operations. Both the absorptive and restorative capabilities are related 
to the loss of capacity LoCD of the transport system during the disruption 
period td. LoCD is defined as the difference between the transport system 
capacity utilization in baseline conditions during td and the effective 
capacity utilization in disrupted conditions during the same period. Let 
CAPτ,D be the system capacity in disrupted conditions. The system re
stores the original performances after a recovery time tr = [t2, t3]. The 
total disruption period tt corresponds to the time interval [t1, t3]. 

Potential disruptions have been grouped in four clusters (C1, C2, C3 

Fig. 1. System disrupted performance, vulnerability (a) and resilience (b) capabilities.  
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and C4), accordingly to some main impacted transportation system 
operations/infrastructures. Cluster C1 refers to disruptions on arcs and/ 
or nodes (such as runways/taxiways or aprons), which cause a direct 
reduction in their capacity (CAPτ = CAPτ,D) by a percentage PCAP that 
directly affect infrastructure and services (X) as well as providers of 
technical services (M) – e.g., ground handling or ATC. Cluster C2 con
cerns the total unavailability of one or more arcs and/or nodes of the 
service network, which directly impacts on infrastructures and services 
(X) and might generate the need to re-route/re-schedule traffic units on 
alternative routes/facilities. Cluster C3 refers to disruptions involving 
failure in service operations, which might be due to two main causes: (i) 
industrial actions, which reduce the number of available workers by a 
percentage PO or PM for one or more operators Oi or for one or more 
providers of technical services Mj; (ii) failure of technical equipment (e. 
g., ground radar), which result in lacking services until an alternative 
resource is available again or until the failure is cleared. Finally, Cluster 
C4 refers to the complete disruption (temporary closure) of the entire 
airport for the period td. In this condition, the capacity CAPτ,D is equal to 
0 for each sub-period τ in td and all the operations are temporary 
suspended. 

Table 1 summarizes the most common causes of disruption for each 
cluster and the disrupted resources for an airport node. 

Vulnerability and resilience of the airside part of an airport node1 

may be estimated by following a three-step procedure (see also Fig. 2). 

Step 1 

At step 1, transportation system infrastructures, technologies and 
operations at the airside are modelled in nominal conditions and this is 
referred to as “baseline scenario”. The level of complexity of X (physical 
and service characteristics) depends on the required details to represent 
the performed operations, also by considering the specific features of O 
and M. Service airside operations are split into sequential and interre
lated processes, for example processes include approaching, landing and 
take-off cycle (LTO), turnaround and pushback, taxi-out and take-off 
(see Section 3.2). 

Step 2 

At step 2, a “what-if” approach is adopted to model different 
disruption scenarios, the baseline scenario being known from step 1. A 
disruptive event modifies the state of one or more of the required re
sources and generates performance losses in the linked processes that, if 
not recovered during suitable buffer times, are likely to generate 
cascading effects/failures on successive operations (disrupted perfor
mance). Disruptions – identified in the respective clusters C1, C2, C3 and 
C4 – and their effects (see also Table 1) are modelled at resource level, i. 
e. number of runways, taxiways, stands, ground handling personnel 
units and ground technical equipment (see section 3.2). 

Step 3 

At step 3, the vulnerability indicator proposed in Cats and Jenelius 
(2018); Malandri et al. (2018), is estimated based on variations of a 
selected KPI for baseline (KPI0) and disrupted conditions: 

υ=
∫ t3

t1
[KPI0 − KPI(t)]dt (1) 

Still referring to Fig. 1b, the absorptive capability refers to the time 
interval td = [t1, t2], in which the transportation system performance 
decreases from the nominal level F0 to a minimum level Fmin. From an 
absorptive point of view, the more the ability to process remains un
changed (i.e., the throughput) despite the ongoing disruption, the more 
the system is resilient. Therefore, the slower the performance decreases, 
the more the system is resilient. For a given disruption period tt = td + tr, 
the absorptive capability Rabs is here defined as follows: 

Rabs = −
LoCD

td
(td+tr )

(2) 

Eq. (2) expresses how quickly the impact produced by the disruption 
will propagate while it actually takes place, which is inversely related to 
resilience so that a negative sign is due. The denominator ranges in ]0, 1] 
and Rabs tends to -∞ for td/(td +tr) tending to 0. For a given tt, the greater 
the duration of the disruption compared to the recovery time is, the 
more resilient the system is (and vice versa), in other words the time 
needed to recover is much less than the disruption duration. 

As for the restorative capability, it refers to the time interval tr = [t2, 
t3] (Fig. 1b), when system performance increases from the minimum 
value Fmin to the initial performance level F0. The system resilience (in 
terms of recovery, Rrec) depends on how quickly it returns to the initial 
condition, measured by the level of throughput before the disruption 
occurred. Then, the restorative capability Rrec is here defined as: 

Rrec =
LoCD

tr
(td+tr )

(3) 

As in Eq. (2), the denominator ranges in ]0, 1] and Rrec tends to +∞ 
for td/(td +tr) tending to 0. The denominator in this case expresses the 
weight of the recovery time tr on the total time of disruption tt. Here the 
sign is positive, since the ratio expresses the speed at which the system 
recovers the operating conditions of full functionality starting from the 
time in which the disruption ends. 

The overall resilience RESD is then defined as the algebraic sum of the 
above introduced components: 

RESD =Rabs +Rrec = −
LoCD

td
(td+tr)

+
LoCD

tr
(td+tr )

(4) 

If RESD is negative, then the overall resilience of the system is low, 
that is, its ability to recover (restorative capability) is not sufficient to 
fully compensate for its low capacity to absorb the effects of disruptive 
events. On the other hand, when RESD is positive the ability to recover 
system functionality following disruption is greater than any weakness 
exhibited by the system during its occurrence; it should be noted that 
this does not mean that the system does not suffer the effects of 
disruption by showing weakness, but rather that it is able to respond 

Table 1 
Potential causes of airport disruptions, involved resources and effects.  

Cluster Disruption type Potential causes Effects 

C1 Reduced runway/ 
taxiway/apron 
capacity 

Radar problems 
ATCa issues 
Lighting problems 
Thunderstorms 

CAPτ,D =

CAPτ ∗ (1 − PCAP)

C2 Unavailable 
runway/taxiway/ 
apron 

Incident 
Maintenance 
Infrastructure issues 

Closure of the 
affected 
infrastructure(s) 

C3 On-ground 
operations’ issues 

Industrial actions Available personnel 
reduced by a 
percentage PM or PO 

Technical failure of 
equipment 

The involved piece of 
equipment cannot be 
used 

C4 Temporary 
closure of the 
airport 

Power failures 
Security alert 
Fires 
Large-scale natural 
hazards (earthquakes, 
volcanic eruptions, 
flooding, etc …) 

CAPτ,D = 0  

a Air Traffic Control. 

1 Note that the steps described in Fig. 2 may apply to other transportation 
nodes, like train stations and ports. 
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with greater strength and speed in restoring its functionality than the 
strength and speed with which it lost it. Finally, when the absorptive and 
restorative capabilities are equivalent, they compensate each other and 
the overall resilience index is zero, which indicates a neutral balance 
between damage absorption and recovery, i.e. td/(td + tr) = 0.5 (Fig. 3). 

To summarize, such a metric incorporates in a unique indicator: 1) 
the minimum level of transportation system performance during the 
entire disrupted period [t1 – t3]; 2) the performance loss LoC over the 
same period; 3) the absorptive capability of the system, i.e. the slowness 
of the performance reduction during the disruption duration [t1 – t2]; 4) 
the restorative capability, i.e. the rapidity of recovering the undisturbed 
functional level F0 during the recovery time interval [t2 – t3]. Finally, 
this index allows highlight whether system resilience is primarily 
attributable to one or the other component. 

3.2. Airport airside model and processes 

The system of runways, taxiways and aprons may be decomposed in 

nodes – where operations effectively take place – and arcs, which 
represent relationships among nodes. Nodes may be grouped in physical 
ones (e.g., aprons) and virtual ones (e.g., temporal positions in a pro
cess). Arcs, characterized by capacity, direction and length are physical 
(in this case length is the real distance between the two connected 
nodes) and virtual (in this case length is the time gap between the two 
connected nodes) accordingly to the nature of nodes. As for aprons, they 
are physical nodes characterized by a capacity equal to the number of 
stands, while the activities performed there are represented by virtual 
nodes and arcs (see also below). When an aircraft arrives at the apron 
and occupies one stand, the apron available capacity decreases. 

Let KS be the set of aircraft k(a,w) expected to land at a given airport, 
described by S(X, O, M), during T. Each arriving aircraft k(a,w) is 
operated by airline a (low-cost or full service) and is of type w (narrow or 
wide body). Arrivals and departures follow the airport flight schedule 
and each k(a,w) performs the same sequence of activities (approaching, 
landing, taxi-in, turnaround, pushback, taxi-out and take-off, see Fig. 4). 
In the following, the same notation k(a,w) - or simply k - will be used to 

Fig. 2. Methodological framework.  

Fig. 3. Resilience surface.  
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identify both the flight and the aircraft operating that flight. 

3.2.1. Modelling landing and taxi-in activities 
Let k(a,w) ∈ KS be an aircraft approaching the airport Terminal 

Manoeuvring Area (TMA) at a time tak given by: 

tak = STAk − tapproach (5)  

where STAk is the Scheduled Time of Arrival of k(a,w) and tapproach is the 
time required for the approaching phase.2 tapproach is a stochastic vari
able, mainly depending on aircraft separation standards in the en-route 
airspace, TMA congestion and strategies adopted by air traffic control
lers. While completing the approaching phase, the aircraft is assigned to 
one of the runways e ∈ E according to potential restrictions regarding 
runway use and its current operating condition. As for current operating 
conditions, the runway e is said free if: (i) no other aircraft is using it 
neither for landing nor for take-off, and (ii) a minimum time has passed 
from the previous utilization in order to allow aircraft tail-vortices to 
dissolve according to ICAO separation standards (ICAO, 2007). If 
runway e is not free, the aircraft will queue following a FIFO rule. 

At the end of the landing phase, k(a,w) leaves e and moves along the 
taxiways towards its assigned stand/apron f ∈ F by using the shortest 
available path. Stand allocation depends on airline, aircraft type, 
runway used for landing and, again, potential restrictions. The duration 
of the taxi-in phase is a random variable depending on the length of the 
taxiing path (distance between e and f) and the average speed of the 
aircraft (Wang et al., 2021). 

3.2.2. Modelling turnaround operations 
Turnaround operations start as the aircraft k has arrived at stand f. 

They begin when chocks are placed in front of the aircraft wheels at the 
“on-block time”. Several activities i are then performed to handle the 
aircraft and prepare it for the next departure (Fig. 5). Due to several 
constraints, turnaround operations are realized in a given order, 
particularly some of them must be realized sequentially, while some 
others may be performed simultaneously (Schmidt, 2017). In Fig. 5, the 
same colour is used to indicate sequential activities. More in details, 
after chock positioning, passengers disembark begins together with 
baggage and cargo unloading. At the same time, potable water is 
replenished and, when completed, waste water servicing can start. 
Refuelling activities usually begin at the end of passenger disembarka
tion, as well as cleaning and catering activities. Then, according to 
schedule, passengers of the following flight board and cargo and 
baggage are loaded. When all these operations are completed, chocks 

are removed and the aircraft is ready to move. 
Turnaround time is estimated as the time interval between chocks-on 

and chocks-off and it depends on both the availability of ground handler 
workers and the duration of each turnaround activity. The latter is 
assumed to be stochastic (Malandri et al., 2019; Postorino et al., 2020) 
and described by a probability distribution function (see Appendix A) 
whose functional forms and parameters are derived from aircraft man
uals and previous literature (AIRBUS, 2017; Bevilacqua et al., 2015; 
Mota et al., 2017) in order to simulate the considered activities as close 
as possible to operational practice. 

3.2.3. Taxi-out and runway line-up and take-off 
When turnaround operations are completed, pushback operations 

start at the aircraft Scheduled Time of Departure (STDk). Aircraft k is 
assigned to the available departing runway e and taxies out. Taxi-out 
time is strongly influenced by airport congestion conditions and if 
there is a queue of departing aircraft, k will wait for runway clearance 
following the priority criteria of the ground control. Particularly, pri
ority is always given to landing aircraft, so that if e is used for both 
landing and take-off operations, waiting time might also be due to other 
aircraft potentially landing or approaching the TMA during the same 
time interval. 

3.3. Vulnerability and resilience estimation 

By following Eq. (1), a suitable vulnerability indicator should mea
sure the airport performance loss during tt, which here may be defined as 
a function of the number of disrupted flights during td. In this perspec
tive, in this paper the airport performance under disruption conditions 
has been expressed in terms of late departures (NL), diverted (ND) and 
cancelled (NC) flights. Delayed, diverted and cancelled flight generate 
impacts to different extents – cancelled flight generally being the most 
relevant ones. 

As for late departures, a flight k(a,w) is departing late if its Actual 
Time of Departure, ATDk, is higher than its Scheduled Time of Depar
ture, STDk, by more than 15 min in accordance to ruled standards 
(Eurocontrol, 2019). The departing delay of k(a,w) is then evaluated as: 

DELk =ATDk − STDk (6) 

The total number of late departing flights, NL, is given by the sum of 
the flights km(a,w) departing with a delay greater than 15 min during T: 

NL =
∑

m
km (a,w|DELk > 15′

) (7) 

Diverted and cancelled flights (ND and NC respectively) are identified 
based on the following assumptions: 

Fig. 4. Sequence of activities at the airport airside.  

2 This is the phase of commercial flight starting when an aircraft descends 
below 5,000 feet AGL and ending when the aircraft reaches the runway 
threshold. 
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i. if during the approaching phase a flight has to wait for a time greater 
than tdiverted to land, but no slots are available, it is diverted to an 
alternate airport;  

ii. if a departing flight experiences a delay higher than tcancelled with 
respect to its STDk, it is cancelled. 

Vulnerability is then defined as the sum of NC, ND and NL, suitably 
weighted to take into account the different impacts produced by them: 

υD =
wL

wC
NL +

wD

wC
ND + NC (8) 

The highest the vulnerability value is, the highest the impact on 
airport performances is. 

The weights w(.) represent the substitution rates among the different 
types of disrupted aircraft, so that υD may be considered as the equiva
lent number of cancelled flights. More in detail, the weights refer to 
generalized costs for delayed (wL), diverted (wD) and cancelled (wC) 
flights: 

wL = gL • DELtot,T [€] (9)  

wD = gD[€] (10)  

wC = gC[€] (11) 

The costs for delayed flights (wL) depend on the length of the delay 
and are quantified using an additive unit cost coefficient gL[€/min]; the 
costs for diverted and cancelled flights are non-additive costs and are 
measured by gD and gC [€]. 

Finally, the proposed resilience index of Eq. (4) depends on the Loss 
of Capacity LoCD, which in the airport context has been characterized as 
the difference between the throughput rate in standard (or baseline) 
conditions during the period τ = td, TRB

td, and the throughput rate in 
disrupted conditions during the same period, TRD

td: 

LoCD =TRB
td − TRD

td (15) 

The aircraft throughput rate, TRτ, during the generic period τ is 
defined as: 

TRτ =

(
Nland,τ + Ntakeoff ,τ

)/
τ

CAPτ  

where Nland,τ and Ntakeoff,τ are, respectively, the number of landing and 
departing aircraft during τ and CAPτ is the maximum number of 
allowable movements in the same period. In nominal conditions, CAPτ is 
lower than or equal to the denominator; then, TRτ ranges from 0 (no 
flights during τ) to 1 (full use of the available runway capacity). LoCD 
also ranges in the interval [0,1] – when there is no disruption TRD

td = TRB
td 

and LoCD is zero, while for decreasing values of TRB
td, LoCD increases and 

is equal to 1 for TRD
td = 0. 

Resilience RESD is then estimated as: 

RESD =Rabs +Rrec = −
TRB

td − TRD
td

td
(td+tr)

+
TRB

td − TRD
td

tr
(td+tr)

(16)  

4. Application 

The proposed methodology and the vulnerability and resilience in
dicators have been applied to four different airports (Table 2): 
Amsterdam-Schiphol (AMS, large hub), Barcelona-El Prat (BCN, hub), 
Manchester (MAN, large regional airport) and Hamburg-Fuhlsbüttel 
(HAM, regional airport), with different characteristics (layout, size and 
infrastructure) but sharing the similar geographical location (Western 
Europe). For each of the clusters defined in Section 4.1, one disruptive 
event (cause) has been identified and chosen among those really 
happened over the last ten years (Table 3). In more detail, with regard to 
cluster C1, a 7-h radar failure was considered, beginning at 9AM with a 
capacity loss PCAP = 60%; for cluster C2, the presence of an aircraft on 
the runway was considered, resulting in the unavailability of the infra
structure resource involved, for a duration of 2 h beginning at 12AM; 
with regard to cluster C3, a 6-h ground service industrial action begin
ning at 8AM was assumed, resulting in a reduction in provider resources 
PM = 40%. Finally, for cluster C4, a complete suspension of operations 
(total loss of capacity) was imposed due to a massive power failure 
lasting 3 h beginning at 10AM. 

For each disruption scenario, the start time t1 of the disruptive event, 
its duration td, the involved resources and the effects on system perfor
mances have been identified. Such data have been retrieved from 
Eurocontrol (Network Operations Reports - Eurocontrol, 2019, 2020). 

The airside model described in Section 4 has been implemented and 
simulated for each of the four airports by using the agent-based simu
lation software AnyLogic (www.anylogic.com). The four airport opera
tional systems will be referred to as SAMS, SBCN, SMAN and SHAM. 

For each simulation, the schedule refers to the same day (16/10/ 
2019) for the considered airports, starting from 3 a.m. Arriving aircraft 

Fig. 5. Sequence of activities during aircraft turnaround.  

Table 2 
Main data and figures of the analysed airports.  

Airport Number of 
runways 

Mov/ 
yeara 

Movements during the 
day of analysis 

% narrow- 
body aircraft 

AMS 5 483,227 1,382 80% 
BCN 3 326,694 1,009 90% 
MAN 2 193,185 537 95% 
HAM 2 139,791 414 97%  

a Data retrieved from https://ec.europa.eu/eurostat/statistics-expla 
ined/index.php/Air_transport_statistics. 
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are simulated in the airport local airspace immediately before the 
approaching phase. For each arriving aircraft, the information regarding 
the aircraft type w (narrow or wide body), the airline a operating the 
flight and the scheduled times of departure STD are available (source: 
www.flightradar24.com). 

When the simulation reaches the start time of the considered 
disruption, t1, the involved variables change depending on the cluster 
(see Section 4.1). When the disruption is cleared at time t2 = t1+td, such 
variables return to their baseline status. If during the simulation an 
approaching aircraft has to wait for a time more than tdiverted = 45 min to 
land, the aircraft is diverted to another airport and it is no longer 
considered in the simulation. In addition, if a flight has a delay higher 
than tcancelled = 180 min (3 h), it is cancelled and, again, it is no longer 
considered in the simulation. However, both diverted and cancelled 
flights contribute to eqs. (8)-(11). Particularly, the coefficients of eqs. 
(9)-(11) estimated by Eurocontrol (2018), which include both monetary 
(e.g. passenger compensation, luggage delivery, food and accommoda
tion) and non-monetary costs (e.g. crew repositioning, lost demand), 
have been used: 

wL = 100 • DELtot,T € ; wD = 7, 400 €; wC = 17, 650 € 

The model has been validated by checking the simulated values with 
the available data (such as flight schedules, movements/hour, arrivals 
and departures, taxi-in, taxi-out and turnaround durations, included 
comparison between simulated delays and historical data). Once 
developed, verified and validated, simulations have been used to 
determine vulnerability and resilience indicators in the identified sce
narios. Finally, several disruption durations have been considered by 
varying td. 

4.1. Results 

In what follows, only average values are reported. In the baseline 
scenarios, operations proceed according to the schedule and no depar
ture delays occur during the simulation. Then, the disruption scenarios 
DC1-DC4 reported in Table 3 have been simulated for the four chosen 
airports. As expected, for each scenario disruptive events cause depar
ture delays during and after the disruption duration (Table 4), and the 
maximum delay is generally reached at the end of td. For each aircraft k, 
DELk is computed as in (6). The total departure delay during τ, DELtot,τ is 
computed as the sum of the departure delays of the flights departing 
within τ. Similarly, the total departure delay during the period of 
analysis T, DELtot,T, is computed as the sum of the departure delays DELk 
of all the flights departing within T. Finally, the average delay per flight, 
DEL, has also been considered. 

Vulnerability and resilience values are shown in the last four col
umns of Table 4 and computed as reported in Section 4.3 (Eqs. (8) and 
(14)). 

The vulnerability and resilience indicators obtained in the several 
scenarios for the four airports can be analysed at two levels: 1) within 
each cluster, for each considered airport; 2) for the same airport in the 
various clusters. 

As for vulnerability, the airports with the highest number of move
ments (AMS and BCN) are generally the most vulnerable and have the 
highest number of disrupted flights (this is evident, in particular, for 
clusters C1, C2, and C4). Instead, differences in average delay per flight 
in the same clusters are less significant. For example, in cluster C4 the 
average delay for each airport is practically the same, against significant 
differences in the total number of disrupted flights. 

As regards resilience, in Cluster C1 (reduced runway/taxiway/apron 
capacity), the absorptive and restorative reactions of the four airports 
appear significantly different: BCN has a low absorptive capability (Rabs 
= − 0.464) but at the same time a marked restorative capability (Rrec =

1.082), which results in a good, overall resilience. The same thing 
cannot be said for AMS, which instead tends to compensate almost 
exactly absorptive and restorative capabilities, with an overall resilience 
almost neutral, thus showing a behaviour more similar to HAM, despite 
the difference in size and characteristics between the two airports. 

The situation is more heterogeneous in the case of type C2 disruption 
(unavailable runway/taxiway/apron), where AMS and HAM show poor 
overall resilience (<0), due essentially to poor restorative capability, 
compared to good absorptive resilience. On the other hand, good re
covery performance allows BCN and MAN to compensate for lower 
absorptive ones, and to provide positive overall resilience. 

Cluster C3 (on-ground operation issues) shows a substantial trade-off 
between resilience and absorptive capacity when the disruption involves 
ground handling operations, regardless of the characteristics of the 

Table 3 
Disruption scenarios in the experimental study (source: Eurocontrol 2019, 
2020).  

Scenario DC1 DC2 DC3 DC4 

Cluster C1 C2 C3 C4 
Disruption 

type 
Reduced 
runway/ 
taxiway/ 
apron 
capacity 

Unavailable 
runway/ 
taxiway/apron 

On-ground 
operation 
issues 

Temporary 
closure of the 
airport 

Cause Radar failure Aircraft on 
runway 

Ground 
service 
industrial 
action 

Power failure 

Duration td 

(h) 
7 2 6 3 

Start time t1 09:00 a.m. 12:00 a.m. 08:00 a.m. 10:00 a.m. 
Effect on 

resources 
PCAP = 60% 1 runway 

unavailable 
PM = 40% PCAP = 100%  

Table 4 
Results obtained by simulating the disrupted scenarios.    

NC ND NL DEL tot,T [h] DEL [h] td [h] tr [h] LoC v Rrec Rabs RESD 

DC1 SAMS 0 10 166 198.88 1.20 7 6.5 0.13 72 0.260 − 0.242 0.019 
SBCN 1 63 133 195.27 1.47 7 3 0.32 94 1.082 − 0.464 0.618 
SMAN 0 4 31 28.25 0.91 7 1.5 0.03 12 0.226 − 0.0449 0.178 
SHAM 0 0 20 13.35 0.67 7 1.5 0.02 6 0.120 − 0.026 0.094 

DC2 SAMS 0 0 51 54.13 1.06 2 4 0.01 18 0.012 − 0.024 − 0.012 
SBCN 0 0 30 22.87 0.76 2 1.5 0.11 8 0.249 − 0.186 0.062 
SMAN 0 0 16 9.22 0.58 2 1 0.03 4 0.079 − 0.039 0.039 
SHAM 0 0 9 5.33 0.59 2 3 0.03 3 0.046 − 0.070 − 0.023 

DC3 SAMS 0 0 59 53.50 0.91 6 1.5 0.01 18 0.074 − 0.019 0.056 
SBCN 0 0 51 35.88 0.70 6 1.5 0.02 12 0.083 − 0.021 0.062 
SMAN 0 0 65 49.42 0.76 6 1.5 0.01 18 0.044 − 0.011 0.033 
SHAM 0 0 42 27.38 0.65 6 1 0.02 10 0.108 − 0.018 0.090 

DC4 SAMS 51 87 56 101.65 1.82 3 2 0.71 122 1.765 − 1.177 0.588 
SBCN 9 87 73 124.78 1.71 3 3 0.92 88 1.847 − 1.847 0.000 
SMAN 2 32 26 29.82 1.15 3 1 0.46 25 1.841 − 0.614 1.228 
SHAM 5 27 14 22.57 1.61 3 1 0.43 20 1.707 − 0.569 1.138  

C. Malandri et al.                                                                                                                                                                                                                               

http://www.flightradar24.com


Transport Policy 139 (2023) 109–122

117

involved airports. Finally, cluster C4 (temporary total closure) shows an 
extremely low absorptive capacity due to the severity of the disruptive 
event, while the restorative capability (however high on average) is 
substantially the same for each airport. 

The resilience and vulnerability values are summarized in Fig. 6. 
Results show that vulnerability and resilience are not necessarily 
consistent. For example, in the case of type C1 disruption, the most 
vulnerable airport (BCN) is also the most resilient and, at the same time, 
the second most vulnerable airport (AMS) is the less resilient. In fact, 
BCN, which is very impacted and shows a low absorptive resilience, 
recovers fast. In this case, the high resilience value can be explained 
because of the high number of cancelled flights (63). In fact, while 
cancellations affect strongly the airport vulnerability – this is the term 
with the greatest weight – a high number of cancelled flights allows 
operations to return normal rapidly. On the contrary, AMS, whose 
vulnerability is not as high as BCN, takes longer to recover because of 
accumulated congestion due to a lower number of cancellations (10) and 
a high number of delayed aircraft. 

Some alternative disruption scenarios have been examined by 
changing the disruption duration. Disruptions are assumed to start at 8 
a.m. for all the scenarios; for cluster C1, different runway capacity re
ductions have been considered (PCAP equal to 40%, 60% and 80%), 
referred to as C1(CAPτ,D = 60%), C1(CAPτ,D = 40%) and C1(CAPτ,D =

20%). Fig. 7 depicts vulnerability and resilience trends as a function of 
the duration of disruption td. As it can be seen, vulnerability increases 
more than linearly with td. 

However, the steepness is different depending on the disruption 
cluster. For clusters C1 and C4 vulnerability shows a steep grown, while 
in cases C2 and C3 vulnerability grows less than linearly and, even if 
duration increases, impacts are contained. Results indicate that 
vulnerability values are higher when reductions in landing and take-off 
capacities are relevant – i.e., scenarios in clusters C4 and C1(CAPτ,D =

60%). Infrastructural problems (C2) do not significantly affect the 
vulnerability values and, even if the duration of disruption increases, 
impacts are contained. 

As for resilience trends, there are some interesting aspects. For dis
ruptions belonging to cluster C4, airports generally show a more resil
ient behaviour, with resilience values increasing with td. For disruptions 
of types C2 (infrastructural) and C3 (ground operations), values are 
steady around zero, independently on the duration of the disruption. 
Negative values are observed only when disruptions durations are 
relatively short (up to 4 h), indicating a predominance of the absorptive 
capacity for short disruptive events, which is consistent with the low 
values of vulnerability observed. Conversely, in all cases resilience is 
higher for long disruption durations (td = 14–16 h); when the disruption 
finishes at the end on the day (between 10 p.m. and midnight) airports 
are less congested and delays can be more easily reduced, with a 
consistent predominance of the restorative capability. 

5. Discussion 

The results obtained by the case study of the airport airside system 
paves the way for several comments, with implications for policy and 
research. 

5.1. Research implications/main findings 

The application of the proposed methodological framework to four 
different airports to compare their vulnerability and resilience behav
iours shows that different transportation sub-systems respond differ
ently to different types of disruptions, but also they may have different 
responses to the same disruption. 

By considering a specific type of disruption, the response depends on 
the characteristics of the system, including the number of available re
sources and infrastructure and the system layout. For the presented case 
study, results show that, within each disruption cluster, airport airside 
systems behave and react in a different manner. This is evident, for 
example, by considering resilience results in scenario DC1 and DC4 
(disruption at the landing/take-off level and complete closure of the 
airport), as depicted in Fig. 6. In terms of vulnerability, the two bigger 
airports AMS and BCN are in general more impacted than smaller ones 
(MAN and HAM) and this is quite intuitive. In fact, when airports are 
very busy in terms of aircraft movements, a disruption in the landing and 
take-off processes affects a larger number of flights and cause a higher 
total delay. However, by focusing on scenario DC1, despite AMS is busier 
than BCN (1,382 simulated movements for the first airport, against 
1,009 for the second one), the latter shows a higher value of vulnera
bility (see Table 4). Although airport vulnerability has been associated 
to the size of the airport (Lordan et al., 2014), however, the analysis 
performed here shows that the airport size does not have always a linear 
relation with vulnerability and resilience, and referring only to size 
might hidden some other relevant factors. For example, airport 
vulnerability may be influenced by the system (planned) “utilization” 
during the period of disruption, and thus on the residual capacity, which 
is the difference between the airport declared capacity and the sched
uled number of movements. The relation between vulnerability and 
residual capacity emerges from the results of the case study. In fact, BCN 
operates almost at its runway capacity limit (high scheduled “utiliza
tion” during the disruption period, i.e., 95% of the airport capacity, 
residual capacity of 5%) and is the most vulnerable. Differently, AMS 
has more residual runway capacity (scheduled airport capacity utiliza
tion at 79% during the disruption period, residual capacity of 21%) and 
results less vulnerable than BCN, so that the spare (or residual) runway 
capacity could play an important role. Similarly, MAN and HAM are less 
vulnerable as their capacity utilization is still relatively high during the 
disruption (54% and 47% respectively). 

However, the relation between vulnerability and residual capacity 
can be observed only for disruptions related to landings and take-offs 

Fig. 6. Vulnerability (left) and resilience (right) values obtained in the four scenarios.  
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(scenario DC1). By considering infrastructural disruptions (scenario 
DC2), airports still behave differently, however vulnerability is likely to 
depend on the infrastructural facilities of each airport. Results suggest 
that vulnerability may depend on the number of aircraft movements per 
airport runway, during the period of disruption. In fact, the considered 
airports – AMS, BCN, MAN and HAM in order of decreasing vulnerability 
- schedule, respectively, almost 100, 80, 64 and 53 aircraft movements 
within the disruption period. 

When turnaround operations are affected (DC3), all airports show 
approximatively the same vulnerability. However, by considering the 

sizes of the four airports and the number of aircraft to handle, smaller 
airports (MAN and HAM) are relatively more vulnerable than the others. 
This may be due to the greater resourcefulness (at the level of on-ground 
operations) of bigger airports with respect to smaller ones. In fact, 
ground resources in smaller airports are tightest, even in nominal con
ditions and they struggle at handling the accumulated congestion. On 
the contrary, the bigger airports (AMS, BCN) have acceptable responses 
to the disruption as they have more resources and, when the disruption 
is cleared and all the operators return available, a higher number of 
operators is available for managing congestion, thus helping to reduce 

Fig. 7. Vulnerability and resilience expressed as a function of disruption duration, for different clusters and airports.  
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the impacts of such type of disruptions. Then, smaller airports should 
focus on turnaround processes and on the opportunity to have some 
suitable, additional resources to cope with such disturbances. 

The results also point out that vulnerability and resilience of a 
transport system are different depending on the type of disruption event. 
Referring to the results of the case study, in general airport systems are 
more vulnerable when disruptions affect runway capacity (clusters C1 
and C4) (as shown by curves in Fig. 7). Conversely, disruptions related to 
turnaround operations (cluster C3) are less impacting. 

Moreover, as the application proved vulnerability depends on the 
duration of the disruption, resulting in steep vulnerability growth. In 
fact, when the disruption duration increases, accumulate delays result in 
serious congestion at the node, the number of cancelled flights is likely 
to grow and, as a consequence, also the vulnerability value. In fact, the 
number of cancellations is the factor with the higher weight in vulner
ability expressed by Eq. (8). The steepness of the curve depends on the 
ability of the system to allow aircraft to depart despite the limited 
number of resources. When the curves stay almost constant (for example 
in case of infrastructural issues, cluster C2), aircraft can depart, as they 
are delayed but not cancelled: the system in disrupted conditions can be 
seen as a server processing aircraft with a lower capacity. Differently, 
when curves grow steep (for example when landing and take-off ca
pacity are reduced significantly, cluster C1) aircraft probably cannot 
depart and they are cancelled. 

The resilience index proposed in this work allows capturing the 
absorptive and restorative capabilities of transport systems. A resilience 
value RESD >> 0 indicates a recovery behaviour that is much better than 
the adsorptive one. In this case, the greater inefficiencies stand during 
the disruptive event. By considering scenario DC4, for example, HAM 
and MAN are more efficient in terms of restorative than absorptive 
capability, with an overall resilience of 1.1 and 1,2, respectively. 
Conversely, a negative resilience value is related to inefficiencies during 
the recovery phase. In this case, knock-on effects propagate on system 
successive operations, despite the disruption being finished. This situa
tion can be caused, for example, by the absence of buffer times. 

Another result emerging from the analysis is that high vulnerability 
values do not necessarily correspond to low resilient behaviours, and 
vice-versa. In the literature, often they have been considered with 
opposite meanings (Seeliger and Turok, 2013). However, while 
vulnerability focuses on the loss of serviceability and impacts on the 
system, the resilience concept also includes the ability of the system to 
recover and absorb, which depends on the characteristics of the systems. 
For example, accordingly to the adopted indicators, in DC1 BCN is very 
vulnerable but also very resilient. The high vulnerability comes from the 
high number of cancellations and relative high costs, as the airport is not 
able to let some aircraft departures during the disruption. Therefore, 
during the recovery phase the system does not have to handle the 
accumulated congestion and queuing aircraft. Finally, transportation 
system restorative capability may be influenced also by the schedule 
during the recovery period: if the disruption finishes during an off-peak 
period, a higher number of resources can be spent for the recovery. 

5.2. Policy implications 

The proposed methodology is helpful for policy makers and opera
tors to identify vulnerable processes in transport systems, depending on 
the type of disruption, in order to plan suitable actions and policies to 
enhance their resilience. 

From stakeholders’ point of view, understanding if some emergency 
strategies are recommended, where – i.e., on which process/element of 
the system – efforts and attention should be prioritized, and when actions 
are more convenient to start is a relevant aspect. Particularly, under
standing which process/element of a transport system is influencing its 
resilient/vulnerable behaviour will help planning different, flexible 
strategies to respond quickly to disruptions and deploy resources. The 
clustering adopted in the proposed methodology allows analyzing and 

planning strategies for a limited number of situations, making preven
tive analyses affordable. 

As for the if domain, a policy should be also “to do nothing” when 
actions are assumed to be more costly than useful. In this perspective, a 
preventive analysis may identify those situations where the “to do 
nothing” strategy should be more convenient. A disruption – and its 
duration – may be considered acceptable if the expected vulnerability is 
lower than a prefixed threshold. Also, note that, as pointed out in the 
previous section, high vulnerability values do not necessarily corre
spond to low resilient behaviours. When the vulnerability curves grow 
steeper its values are greater than the fixed threshold, actions will be as 
effective as they are taken fast because in these cases even one additional 
hour of disruption makes vulnerability increasing significantly. For 
example, in the case of the two bigger airports considered in this study – 
AMS and BCN – the vulnerability value is more than double when the 
disruption duration passes from 1 to 2 h, and continues to grows 
significantly for increasing disruption duration. When the vulnerability 
curves do not grow steeply actions do not need to be started 
immediately. 

Regarding the where point, the clustering allows identifying specific 
processes, i.e., each disruption cluster corresponds to the malfunction
ing of a specific element/process. For example, if a system is highly 
vulnerable to disruptions of cluster DC2 (infrastructural issues), the 
infrastructure can be considered as a critical element within the system. 
By performing a preventive vulnerability analysis, the analyst can 
identify the vulnerability of the system element(s) for the different 
disruptions, compare them and draw a priority list based on the values of 
the vulnerability index. By referring to Fig. 7, for example, bigger air
ports (AMS and BCN) should focus on landing and take-off processes and 
related elements (ATC, radar, lighting). Smaller airports (HAM and 
MAN), instead, should pay attention also to infrastructural elements, for 
example by monitoring runways pavements conditions. 

Concerning when, reaction strategies can be differentiated into pre-, 
inter- and post-disruption strategies. The first (pre-disruption) strategies 
consist in preparing the transport system to possible disruptive events, 
by planning buffer times between successive operations or designing 
additional resources. Inter-disruption strategies are those deployed 
when the disruption is in action (interval t1-t2). These include efforts for 
a) clearing the disruption by means of designated personnel and re
sources or b) trying to maintain operations as well performing as 
possible. Post disruption strategies are those applied when the disruptive 
event is finished (interval t2-t3), where additional resources should be 
deployed for managing the recovery process, to return as soon as 
possible to a baseline state. Fig. 8 provides indications on when it is most 
appropriate to undertake action to mitigate the effects caused by a 
disruption, depending on the characteristics of the resilience indicator 
considered and the prevalence of the system’s absorptive or resilience 
capacity. More in detail, when RESD is high, the absorptive capability is 
lower than the restorative one. In this case, the recovery process is 
relatively efficient and efforts should be directed to strength the primary 
response, within the interval t1-t2. On the contrary, a low or negative 
resilience index value comes from a poor restorative capability, thus 
suitable strategies should focus on the recovery process (in this case, the 
intervention should be located temporally in the interval t2-t3). Finally, 
as discussed previously, if the vulnerability is below a pre-fixed 
threshold, the “to do nothing” option may be adopted. 

6. Conclusions 

Given the role of transportation in territorial systems, the improve
ment of resilience and reduction of vulnerability is a primary goal for 
policy makers and transport operators. This paper presents a compre
hensive methodological approach for assessing transportation system 
vulnerability and resilience by considering the nature of the disruptive 
event and the features and resources of considered system elements. 
Disruptions have been grouped into clusters depending on which 
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resource is made unavailable and, consequently, on which trans
portation system process is primarily affected. The proposed general 
framework has been specified for the airport airside system, and the 
methodology has been applied to four European airports and several 
disruption scenarios as case study. 

One of the key findings of this study is that disruption types and 
characteristics of the system are crucial in evaluating system resilience 
and vulnerability. In fact, despite the need to provide guidelines for 
improving transportation system resilience and reducing vulnerability, 
the results have shown that a generalization is not possible. As the 
application has shown, the different behaviours depend on the charac
teristics and traffic schedule of the system, including residual capacity, 
and available resources. In this perspective, the proposed methodology 
and indicators allow stakeholders to set their own strategies based on 
their specific features. Particularly, performing preventive analyses 
based on the system simulation as proposed here may help in under
standing vulnerable processes, and thus to differentiate priorities and 
strategies to timely and effectively respond and recover from 
disruptions. 

The proposed resilience index combines transportation system 
restorative and absorptive capabilities and helps understanding whether 
the transportation system is more affected by the disruptive event during 
the response phase or when it recovers. The developed resilience metric 
offers an enhanced perspective on transport system behaviour under the 
effect of disruptive events by providing insights into system performance 
in different phases and at the transition points among them. The results 
obtained by simulating the case study show indeed that a low value of 
resilience not necessarily corresponds to a high vulnerability and that a 
preventive joint analysis of both vulnerability and resilience indices 
should be performed. 

A further finding is that there is a relation between the duration of 
the disruption and the vulnerability, which, in the authors’ knowledge, 
has not been remarked in previous studies. Vulnerability grows in 
different ways depending on the type of disruption. Particularly, the 
application shows that vulnerability curves grow steeper for disruptions 
related to landing and take-off processes and are almost constant for 
disruptions at infrastructural and on-ground operation levels. However, 
the steepness is different for the airport considered, with more similar
ities between airports of similar size (AMS and BCN on the one side, 
MAN and HAM on the other side). 

Although the highlighted results are an improvement with respect to 
previous literature, the sample of airports analysed in this work is small 

to provide acceptable statistical information, and some other analyses 
should be performed by considering a greater number of cases. More
over, the specification of the disruption-recovery scenarios can be 
improved by incorporating more detailed and practical factors, specif
ically adapted to the transport systems element under analysis. For 
example, the system resilience under network cascading delay effects 
can be further explored. In any case, it must be emphasized that 
numerous elements, in addition to operational or topological factors 
closely related to vulnerability, play a relevant role in assessing resil
ience. Even if it is difficult to summarize in a single index a complex 
phenomenon such as the resilience of a transportation system, however 
the proposed metric is scalable and adaptable to different systems, by 
adapting the KPIs used to evaluate the LoC to the specific system under 
analysis. 

A further investigation should focus on the sensitivity analysis of the 
resilience index with respect to the parameter values and distribution 
functions (see Appendix A) considered in the simulation. Particularly, 
variations in some simulation parameters might affect the simulation 
result, such as turnaround time of LCC flights, which is lower on average 
and is expected to affect the resilience measure. Furthermore, the loss of 
capacity measure assumes that the transportation network has a fixed 
capacity in optimal serviceability conditions that cannot be increased. In 
reality, however, transportation systems often have the ability to adapt 
and eventually increase their capacity in response to exceptional events. 
Finally, the loss of capacity measure only considers the immediate ef
fects of a disruption on the transportation network (the t1-t3 period in 
Fig. 1) and it does not capture the potential long-term impacts of the 
disruption, such as the loss of market share of a transport service, or the 
negative effects on stakeholders who are not directly affected by the 
disruptive event when it takes place. 

Further tests concerning other transport systems are expected in 
order to investigate whether the patterns observed for resilience and 
vulnerability indicators can be generalized to some extent. Moreover, 
further analysis is needed to identify how residual capacity affects 
transport systems resilience and to find the relation between vulnera
bility and the degree of system utilization, as well as between recovery 
times and operation characteristics. 
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Appendix A. Probability distribution functions to represent duration of turnaround activities  

Activity Sub-activity ti 

Chocks on - 30 s 
Disembarking Stairs positioning TRIANGULAR (1.8, 2, 2.3 min) 

Passengers disembarking 20 pax/min 
Cleaning Cleaning TRIANGULAR (13, 16.5, 19.5 min) 
Catering Catering truck connection TRIANGULAR (0.85, 1.05, 1.2 min) 

Departure catering loading TRIANGULAR (7,8, 9 min) 
Arriving catering unloading TRIANGULAR (3, 4, 5 min) 
Catering truck disconnection TRIANGULAR (0.95, 1.15, 1.3 min) 

Potable Water Water truck connection TRIANGULAR (0.65, 0.8, 0.95 min) 
Potable water replenishment TRIANGULAR (4, 5, 6 min) 
Water truck disconnection TRIANGULAR (0.45, 0.6, 0.85 min) 

Waste-water Waste-water truck connection TRIANGULAR (0.65, 0.8, 0.95 min) 
Waste-water TRIANGULAR (4, 5, 6 min) 
Waste-water truck disconnection TRIANGULAR (0.45, 0.6, 0.85 min) 

Baggage/Cargo Unloading Loader positioning TRIANGULAR (40, 60, 80 s) 
Arriving baggage/cargo unloading TRIANGULAR (5, 7, 9 min) 
Loader disconnection TRIANGULAR (40, 60, 80 s) 

Refuelling Fuel truck connection TRIANGULAR (0.7, 0.9, 1.2 min) 
Refuelling TRIANGULAR (7, 8, 9 min) 
Fuel truck disconnection TRIANGULAR (1.0, 1.2, 1.4 min) 

Baggage/Cargo Loading Loader positioning TRIANGULAR (40, 60, 80 s) 
Departing baggage/cargo loading TRIANGULAR (5, 7, 11 min) 
Loader disconnection TRIANGULAR (40, 60, 80 s) 

Passengers boarding Passengers boarding 12 pax/min 
Stairs removing TRIANGULAR (1.0, 1.3, 1.6 min) 

Chocks off - 30 s 
Pushback  TRIANGULAR (3.0, 4.0, 5.0 min)  
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