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Abstract—Fog computing is a distributed paradigm that ex-
tends cloud computing closer to the edge of the network, and
even beyond that. By employing local resources, it enables quicker
and more effective data processing and analysis. The optimization
and automation of resource allocation, data processing, and job
scheduling in the fog environment are made possible by the
application of machine learning to Fog Computing Orchestration.
It is also important, when working with the network computing
models, to consider the XaaS paradigm, as it promotes the
flexibility and scalability of fog services, bringing the concept
of “service” into the foreground. Therefore, the need for a fog
orchestrator enabling such characteristics arises, leveraging AI
and the “service-centric” approach to enhance users’ service
fruition. The design and development of such an orchestrator
will be the objective of the early-stage PhD project presented in
this paper.

Index Terms—Everything-as-a-Service, Fog Computing, Ser-
vice Orchestration

I. INTRODUCTION AND CONTEXT

Modern telecommunication systems are meant to be dis-
tributed, flexible, scalable, and intelligent. They are required to
dynamically adapt themselves to handle the amount of traffic
coming from the ever-increasing number of connected devices.
Furthermore, telecommunications equipment is expected to
support agile and efficient provisioning of new services, which
are highly diversified in terms of requirements and charac-
teristics, to meet the heterogeneity of the service providers
and users, guaranteeing their required Quality-of-Experience
(QoE). This trend is characterized by increasingly critical
needs in terms of networking and computing performance,
depending on application context [1]. New-generation network
services must fulfill very tight latency requirements to end-
user or machine-to-machine applications, thus making latency
one of the most important parameters in the performance
evaluation process of the service providers. The advent of the
Internet of Things (IoT) paradigm has made this trend even
stronger, bringing a massive number of devices that have to
exchange information on networks inside houses, workplaces,
and cities.

In the last decade, Cloud Computing (CC) was consolidated
in the telecommunications world as the leading paradigm
for service provisioning. It allows providers to offer network
services, computing resources, and storage space to users in a
highly efficient way, by taking advantage of both hardware
and software resources deployed in the network. However,
due to cost-efficiency reasons, such resources usually reside

in remote locations and are shared with a large number
of users, strongly affecting communication latency. For this
reason, new paradigms for service provisioning such as Fog
Computing (FC) and Edge Computing (EC) have been gaining
massive traction and are being thoroughly investigated. The
rationale behind them is that a large portion of services can
be offered by resources that are easily deployable in network
segments closer to end-users or data sources. Therefore, from
the point of view of latency, FC and EC can achieve significant
improvements in comparison to CC thanks to such proximity.
Although the definition might vary depending on the context,
EC usually includes computing facilities such as small data
centers located immediately after the access segment, while
FC often includes heterogeneous fixed and mobile resources
found between the cloud and the edge, or even beyond that.
These paradigms are expected to revolutionize next-generation
network systems, enabling service providers to cope with
increasingly stringent constraints. Moreover, these paradigms
(including CC, which is foreseen to remain a fundamental
part of the system) will enable groundbreaking Quality-of-
Service (QoS) levels in networks, while also shedding light
on new interesting research areas, such as the Edge-to-Cloud-
Continuum (ECC), representing the intention of network ten-
ants and service providers in befitting from true end-to-end
(E2E) management and control capabilities [2].

In order to provide the aforementioned capabilities, the
world of networking is moving towards a service-centric
approach, possibly applied to EC and FC environments. A
service is an entity running at the network application layer
and/or above, that provides data storage, manipulation, pre-
sentation, communication, or other capabilities to the users.
A service network is a structure that brings together several
entities to deliver a particular composite service.

II. PROBLEM STATEMENT

Although the services offered by EC/FC infrastructures
are meant to be largely equivalent to those offered by their
Cloud counterparts, they are inherently different, starting from
their more distributed and dynamic nature [3]. Hence, it is
quite natural to borrow the Everything-as-a-Service (XaaS)
Cloud service model classification [4] and apply it to EC/FC
scenarios as well, thus extending it towards a more flex-
ible and dynamic environment. The XaaS model includes
sub-paradigms that provide specific characteristics to the
users, such as Infrastructure-as-a-Service (IaaS), Platform-as-



a-Service (PaaS), Software-as-a-Service (SaaS), and Function-
as-a-Service (FaaS). However, an additional effort is required
to redefine the usage of the paradigm in a dynamic envi-
ronment where resource-constrained nodes are employed to
provide one out of a set of supported services, based on their
availability at the time when a user requests it.

In order to cope with the complexity of this process,
pervasive adoption of Artificial Intelligence (AI) is expected
to take place. AI is a broad term, encompassing an evolving
field of computational algorithms that are designed to em-
ulate human intelligence by learning from experience in the
surrounding environment, as well as covering several branches
such as natural language processing, robotics, computer vision,
and Machine Learning (ML). These techniques are evermore
relevant following the advent of new technologies, such as
the aforementioned IoT, that produced an explosion of data
volumes generated by an increasing number of applications.
This is strongly impacting the evolution of distributed digital
infrastructures for data analytics and the application of ML
techniques to them. While data analytics used to be mainly
performed on Cloud infrastructures, the rapid development of
IoT infrastructures and the requirements for low-latency and
secure processing have motivated the development of Edge
analytics [5].

III. RELATED WORK

Fog computing has the ability to process data more quickly
and efficiently closer to the network’s edge, hence lowering
latency. Many methods have been put forth in the field of or-
chestration, including model-driven orchestration and service-
oriented orchestration. These techniques are often constrained
in terms of flexibility and scalability.

Given that the OpenFog [6] is one of the most well-
known open-source platforms for fog computing, it is helpful
to mention it briefly before digging into the literature on
fog orchestration. OpenFog is the standard in the field of
FC, it aims at enabling the development and deployment of
intelligent IoT applications by providing a standard architec-
ture and framework for distributed computing at the edge of
the network. The OpenFog reference architecture, however,
is primarily concerned with the Fog Node (FN) level, as
the orchestration level details are only superficial, and new
specifications in this area are anticipated. In the literature, most
of the works on fog orchestration make their foundations on
the OpenFog standard.

In [7] authors propose a novel architecture for fog com-
puting orchestration called “Foggy”. In order to fulfill the
demands of fog applications, which in turn seek access to
and use the resources and services made available by that
infrastructure, Foggy manages the workload placement in the
Fog environment. In particular, its framework is decomposed
into three tiers, called “cloud tier”, “edge cloudlets” and “edge
gateways”, ordered based on the proximity of the requested
resources to the user (e.g. the edge gateways nodes are placed
nearer to the user compared to edge cloudlets nodes, providing
applications with lower latency times).

In [8] authors developed a prototype orchestrator architec-
ture to prove key fog concepts. In their tests two Key Perfor-
mance Indicators (KPIs) were considered: Time to Orchestrate
measures the start time and how the system behaves when
orchestrating different services in different setups (e.g. varying
image size, image location, etc.); Opportunity Losses verifies
if all the requirements at a point in time are satisfied and
the orchestration is successfully instantiated; Time to scale
and time to migrate both single microservices or the entire
composite service.

In [9] authors devise an architecture to manage resources in
the Fog using a hybrid approach. In the IoT and South-Bound
Fog Levels, a distributed management of applications and
services is proposed, applying choreography techniques to en-
able automated fast decision-making. A centralized approach
to orchestrate applications and services taking advantage of
global knowledge of the resources available in the network is
suggested for the North-Bound Fog and Cloud Levels instead.

The aforementioned work defines and proposes novel mod-
els for service orchestration in fog computing, in particular
underlying its distributed nature and the need for efficient
monitoring and information about resources availability of
both nodes and services. However, even if the orchestrator
possesses and makes use of services’ information (regarding
needed computational resources, location, access rights, etc.),
as well as nodes’ information, it uses such information in
order just to provide a decision on which node to deploy
the service on. Moreover, these approaches do not take into
account the nature of the services themselves, neglecting the
specific requirements of different provisioning models (i.e.
IaaS, PaaS, SaaS and FaaS).

In [10], instead, authors propose a service-centric approach,
bringing the nature of the services on top of the orchestration
functionalities. They propose the so-called “FORCH” orches-
tration system, which makes use of the information collected
from the nodes (i.e. the available resources), and deploys the
services requested by the users. In particular, the activation
of the selected service depends on the nature of the service
itself (i.e. the service provisioning model that has to be used)
and the current status of the system. However, the weakness
of FORCH resides in the decision-making process regarding
service placement. Indeed, the allocation process is based on
resource availability from different nodes, considering only the
current CPU availability of the different ones. This underlines
the need for intelligent service placement in FC orchestration
architecture.

Nowadays, current efforts to automate and enhance the
orchestration process using ML have produced encouraging
results. These methods, however, have mostly been designed
for centralized cloud settings and might not work well in fog
computing scenarios. Nonetheless, ML has found broad appli-
cation in multiple aspects of fog computing, from improving
data processing and analysis to enhancing security and energy
efficiency.

In particular, in [11], [12], [13], and [14] the authors focus
on the topic of task offloading in vehicular fog networks,



proposing different solutions for optimizing energy efficiency,
service latency, and performance in general.

In [15] the authors focus on the problem of load balancing
in fog networks. In particular, they propose a novel dynamic
resource allocation method based on Reinforcement Learning
(RL) and genetic algorithm. This technique monitors the traffic
in the network continuously, collects information about each
server load, handles the incoming requests, and distributes
them equally and dynamically among the available servers.

In [16] authors deal with the problem of powering FN with
unpredictable sources of energy, such as wind/solar sources.
They propose a RL technique to choose a server activation
policy that ensures the minimum job loss probability.

Finally, in [17] and [18] authors deal with
resource/application provisioning. In particular, in [18]
authors propose a new RL-based agent that learns about the
best resource allocation decisions, focused on reducing costs
and energy consumption.

In the last couple of years, a lot of effort has been put into
implementing different ML techniques in different working
mechanisms of Fog Networks. However, a real service-centric
approach has not been considered when dealing with the
provisioning of services to users in an intelligent way. A lot
of effort from the research studies has been driven toward
particular use cases and a general solution to efficient service
provisioning has not arisen.

IV. ORCHESTRATOR FOR INTELLIGENT SERVICE
PROVISIONING IN FOG COMPUTING

The introduction of the OpenFog [6] standard, followed by
the need for an energy-efficient, secure, flexible, and scal-
able service deployment, assess the importance of a general-
purpose fog orchestrator enabled with ML to provide such
skills.

The expected outcome of this work, indeed, is a new
AI-based service-aware Fog Computing orchestration system,
able to exploit ML algorithms for different purposes, such as
decision-making for service allocation or energy-efficient ser-
vice provisioning. This includes the design and development of
the required software components as well as their testing and
security validation. This would be also accomplished thanks
to the guidelines provided by other reference architectures
and models such as the aforementioned OpenFog standard.
Furthermore, the development of this new system relies on
the achievement of a vast number of skills along with the
understanding of several concepts, algorithms, and models,
such as the awareness of the newest network security flaws,
the knowledge of the best-performing ML algorithms and the
most innovative network models.

The system is envisioned to revolve around AI-based com-
ponents for data analytics and informed decision-making,
based on monitoring information and closed-loop feedback
from the underlying infrastructure. To this aim, different
ML patterns, algorithms, and techniques are expected to be
applied, such as Deep-Reinforcement Learning (DRL), which
makes use of neural networks to make decisions based on a

Fig. 1. System architecture.

previous training phase and on a reward system. Of course, the
approach chosen to handle such heavy ML algorithms would
be selected thanks to a meaningful study of other architectures,
understanding and underlying their points of strength, and their
centralized/distributed nature.

Additionally, the orchestrator is intended to employ a
”service-centric” approach, in which the service is considered
the fundamental entity. The system is designed to map nodes
to services, elevating the abstraction of services to the top
hierarchical level in the software structure. This facilitates the
implementation of the Everything-as-a-Service model on the
proposed orchestration system.

The architecture of the proposed orchestration system is
shown in Fig. 1 and is composed of multiple different macro-
blocks needed to provide the desired functionalities. Although
the orchestration level of the architecture is represented as
a unique entity, each individual internal component can be
unbundled and deployed in different locations of the network.
Before introducing the different components at the orches-
tration level, it is worth describing the reference context the
system will be working in. The orchestrator-level components
will have the capabilities to interact with the edge/access
network and the Cloud. The nodes and users can connect to
either networks, communicating with the orchestrator through
the former.

In Fig. 1 the presence of the Cloud is also highlighted, as
it is an important component from the point of view of the
system. The latter can pull contents (such as container images
or configuration data) from the Cloud and use them to provide
services to users, with the benefits of the Fog/Edge approach.

The following is a description of the functional components
of the orchestration level, with details on the purpose and
scope of each of them.

• Controller: it is the entity that oversees and coordinates
the work of all other functional elements. It exchanges
information with the Cloud and pulls data from it if
necessary. It is also in charge of handling failures that



may occur in the system, taking control and trying to
find a solution for them before interrupting the request
being served.

• Decision Maker (DM): it is the element where the
ML algorithms are executed. As already underlined, AI
is key in the orchestrator, so ML algorithms run by
this entity enable the system to take the best fitting
choices regarding where to deploy services and how to
manage the users/nodes. It is interesting to notice that the
connection between the Controller and the DM is needed,
as it could be necessary to download newer and/or more
effective algorithms for specific scenarios. On the other
hand, the link between the DM and the Infrastructure
Manager is necessary too, as information about how and
where to allocate the services cannot be taken without
the knowledge of the current configuration and status of
hardware and software resources.

• Infrastructure Manager (IM): it is the entity in charge
of actuating the service deployment decisions taken by
the other elements, as well as providing monitoring over
the underlying resources. The IM can interact directly
with hardware/software resources provided they have the
necessary interfaces, and/or with another infrastructure
management platform. For compatibility purposes, the IM
element may have multiple instances, each specialized in
the interaction with a different underlying infrastructure.
The monitoring functionalities may require an additional
agent component to be active at the node level.

• Gateway (GW): it is the contact point between nodes
and orchestrator. Through the GW the nodes can interact
with the orchestrator requesting services. Conversely,
additional information on nodes can be gathered through
the GW by the system.

At FN level, ML techniques are expected to be implemented
as well. As underlined, the orchestrator collects information
from the nodes in order to provide suitable data to the DM
and make a decision regarding which node to deploy the
service on. Such data regards not only currently available
resources on the nodes, but also information on resources
consumption for previously deployed services. This enables
the orchestrator, not only to reserve resources on the nodes
taking into consideration the nature of the service itself and its
requirements, but also to make decisions based on the expected
energy consumption from the different nodes. From the point
of view of energy efficiency, the nodes are expected to run
agents able to learn how and when to accept service requests,
optimizing energy usage. To enable intelligent management
of resources it will be mandatory to understand also the
relationship between energy consumption and providing a
particular service to a user.

V. CONCLUSION

In conclusion, FC is a distributed paradigm that enhances
cloud computing by enabling faster and more effective data
processing and analysis. Orchestration in fog computing has

been approached through different methods, including model-
driven and service-oriented orchestration, and recent efforts
have focused on a service-centric approach. However, the
decision-making process regarding service placement still re-
quires improvement, and current research is looking into the
application of machine learning to fog computing orchestra-
tion. While there are challenges in implementing ML methods
in fog computing, such as the need for distributed learning and
limited resources, recent studies have shown promising results
in optimizing energy efficiency, service latency, and perfor-
mance in general. The development of a new system enabled
with ML, in all the various aspects of service provisioning, will
foster more efficient resource allocation and improved service
delivery in fog computing environments, further enhancing the
concept of XaaS.
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