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Abstract

Let (Xn,j) and (Yn,j) be two arrays of real random variables and f : R→ R a Borel

function. Define Dn =
∑

j f
(∑j−1

i=1 Yn,i

)
Xn,j and D = Z

√∫ 1

0
f2(BG(t)) dF (t) where

B is a standard Brownian motion, Z a standard normal random variable independent
of B, and F and G are distribution functions. Conditions for Dn → D, in distribution
or stably, are given. Among other things, such conditions apply to certain sequences
of stochastic integrals, when the quadratic variations of the integrand processes
converge in distribution but not in probability. An upper bound for the Wasserstein
distance between the probability distributions of Dn and D is obtained as well.
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1 The problem

Throughout, all random elements are defined on the same probability space, say
(Ω,A, P ), and (kn : n ≥ 1) is a sequence of positive integers such that limn kn = ∞.
Moreover, for each n ≥ 1,

(Xn,j : j = 1, . . . , kn)

is a vector of real integrable random variables and Fn,1 ⊂ . . . ⊂ Fn,kn ⊂ A an increasing
sequence of sub-σ-fields. We also let Fn,0 = {∅,Ω} and Fn,j = Fn,kn for j > kn.

The martingale CLT is a classical and basic result. It requires the following conditions
(see e.g. [3, Cor. 7] and [6, p. 58–59]):

(a) σ(Xn,j) ⊂ Fn,j and E
(
Xn,j | Fn,j−1

)
= 0 a.s. for all n and j;

(b) limnE
{

maxj |Xn,j |
}

= 0;

(c)
∑
j X

2
n,j

P−→ L, as n→∞, for some real random variable L;

(d) σ(L) ⊂ V where V = σ
(⋃

j

⋂
n σ
(
Fn,j ∪N

))
with N = {A ∈ A : P (A) = 0}.
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CLT for generalized martingale arrays

Theorem 1.1 (Martingale CLT). Under conditions (a)-(b)-(c)-(d),

kn∑
j=1

Xn,j
d−→
√
LZ as n→∞,

where
d−→ denotes convergence in distribution and Z is a random variable independent

of L such that Z ∼ N (0, 1). Moreover, condition (d) can be replaced by Fn,j ⊂ Fn+1,j ,
for all n and j, and in this case convergence is stable.

Suppose now that, in addition to (Xn,j), we are given a Borel function f : R→ R and
a further array of real random variables(

Yn,j : n ≥ 1, j = 1, . . . , kn
)

such that σ(Yn,j) ⊂ Fn,j for all n and j.

Our problem is to investigate the asymptotic behavior of

Dn =

kn∑
j=1

f
(
Sn,j−1

)
Xn,j where Sn,0 = 0 and Sn,j =

j∑
i=1

Yn,i.

To motivate this problem, we list some frameworks where Dn plays a role.

(i) Dn arises in parameter estimation and in the analysis of single-path behavior of
some processes; see e.g. [1].

(ii) Dn is involved in certain approximation schemes of stochastic differential equations.
This issue has been recently the object of intensive research when the equations
are driven by fractional Brownian motion; see [4], [5], [8], [11], [14].

(iii) Dn reduces to the Hermite weighted variation in the special case

Yn,j = B j
kn

−B j−1
kn

and Xn,j = k−1/2n Hq
(√

kn (B j
kn

−B j−1
kn

)
)

where B is Brownian motion and Hq the Hermite polynomial of degree q. More
generally, if B is fractional Brownian motion, Hermite weighted variations have
been investigated in [7], [9], [10], [11].

(iv) A possible version of (iii) is

Yn,j = k−1/2n Hp
(√

kn (B j
kn

−B j−1
kn

)
)

and Xn,j = k−1/2n Hq
(√

kn (B j
kn

−B j−1
kn

)
)

where p > 0, q > 0, p 6= q and B is Brownian motion. To our knowledge, this version
has not been studied to date.

To investigate the asymptotic behavior of Dn, an obvious strategy would be applying
Theorem 1.1 to Zn,j = f

(
Sn,j−1

)
Xn,j . Such a strategy often fails, however, for conditions

(c)-(d) are not guaranteed when Xn,j is replaced by Zn,j . For instance,
∑
j Z

2
n,j converges

in distribution, but not in probability, to some limit L. This may happen in point (iv) when

p 6= 1. Or else,
∑
j Z

2
n,j

P−→ L but L is not V-measurable. The latter fact can occur even
if f = 1; see Example 3.1.

2 Results

This paper focus on the limiting distribution of Dn. Our main result is Theorem 2.1,
which provides a new version of Theorem 1.1 not requiring conditions (c)-(d). While
the assumptions replacing (c)-(d) are actually strong, Theorem 2.1 allows to manage
some problems not covered by Theorem 1.1. In particular, Theorem 2.1 applies to
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CLT for generalized martingale arrays

the approximation of certain stochastic integrals when the quadratic variations of the
integrand processes converge in distribution but not in probability. To our knowledge,
situations of this type are usually neglected in the literature. Various examples are given
in Section 3, where we also obtain an upper bound for the Wasserstein distance between
the probability distribution of Dn and that of its limit (Example 3.5). To make the paper
more readable, all the proofs are postponed to the final Section 4.

Before stating our results, we introduce some more notation. From now on:

• f : R→ R is an Holderian function (the definition is recalled at the beginning of
Section 4);

• F is a continuous distribution function such that F (0) = 1− F (1) = 0;

• B = (Bt : t ≥ 0) is a standard Brownian motion;

• T =
{
Tt : 0 ≤ t ≤ 1

}
is a real cadlag process;

• Z is a standard normal random variable independent of (B, T ).

We also introduce the following conditions:

(?) There is a constant u > 0 such that

E
{(
Sn,j − Sn,i

)2} ≤ u j − i
kn

whenever 0 ≤ i < j ≤ kn;

(??) supn
∑
j E(X2

n,j) <∞ and there is a constant v > 0 such that

E(X2
n,j | Fn,j−1) ≤ v E(X2

n,j) a.s. for all n and j;

(? ? ?) For each m ≥ 1, the 2m-dimensional vectors

(
Sn, bhkn

m c ,

b (h+1)kn
m c∑

j=1+bhkn
m c

Xn,j : h = 0, 1, . . . ,m− 1
)

converge in distribution to(
T h

m
, uh Zh : h = 0, 1, . . . ,m− 1

)
where u2h = F ((h + 1)/m) − F (h/m) and (Z0, Z1, . . .) is an i.i.d. sequence of
standard normal random variables independent of T .

Condition (?) is automatically true if (Sn,j : 0 ≤ j ≤ kn) is a martingale and E(Y 2
n,j) ≤

u/kn for all n, j. Condition (??) is actually strong. However, (??) is trivially true when
supn

∑
j E(X2

n,j) < ∞ and Xn,j is independent of Fn,j−1. Moreover, in forthcoming
Theorem 2.1 and Corollary 2.2, condition (??) may be replaced by another assumption.
An analogous remark applies to (? ? ?). While admittedly involved, condition (? ? ?) holds
in a few meaningful situations.

Our main result is the following.

Theorem 2.1. Under conditions (a)-(?)-(??)-(? ? ?), one obtains Dn
d−→ D where

D = Z

√∫ 1

0

f2(Tt) dF (t).

Moreover, conditions (?)-(??) can be replaced by

E
(
X4
n,j) ≤

u

k2n
and E

{(
Sn,j − Sn,i

)4} ≤ u (j − i
kn

)2
(2.1)

for some constant u > 0 and all 0 ≤ i < j ≤ kn.
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CLT for generalized martingale arrays

Corollary 2.2. Let Tt = BG(t) for each t ∈ [0, 1], where G is a distribution function such

that G(0) = 0. Then, Dn
d−→ D provided:

• Conditions (a)-(b) hold;

• limnE
{

maxj |Yn,j |
}

= 0 and E
(
Yn,j | Fn,j−1

)
= 0 a.s. for all n and j;

• supn
∑
j E(X2

n,j) <∞ and there are constants u, v > 0 such that

E(Y 2
n,j) ≤ u/kn and E(X2

n,j | Fn,j−1) ≤ v E(X2
n,j) a.s. for all n and j;

(this condition may be replaced by (2.1));

• For all integers 0 ≤ h < m, one obtains

b (h+1)kn
m c∑

j=1+bhkn
m c

X2
n,j

P−→ F ((h+ 1)/m)− F (h/m),

b (h+1)kn
m c∑

j=1+bhkn
m c

Y 2
n,j

P−→ G((h+ 1)/m)−G(h/m) and

b (h+1)kn
m c∑

j=1+bhkn
m c

Xn,j Yn,j
P−→ 0.

To apply Corollary 2.2, we fix two centered orthonormal elements of L2(N (0, 1)), say
φ and ψ. Thus, φ : R→ R and ψ : R→ R are Borel functions satisfying∫

φ2dγ =

∫
ψ2dγ = 1 and

∫
φdγ =

∫
ψ dγ =

∫
φψ dγ = 0

where γ = N (0, 1). For instance, as in point (iv) of Section 1, one could take

φ =
Hp√∫
H2
pdγ

and ψ =
Hq√∫
H2
qdγ

where p > 0, q > 0, p 6= q and Hj denotes the Hermite polynomial of degree j. Our goal
is to find the limiting distribution of Dn when

Xn,j = k−1/2n ψ
(√

kn (B j
kn

−B j−1
kn

)
)

and Yn,j = k−1/2n φ
(√

kn (B j
kn

−B j−1
kn

)
)
. (2.2)

Corollary 2.3. Let Tt = Bt and F (t) = t for all t ∈ [0, 1]. If Xn,j and Yn,j are given

by (2.2), then Dn
d−→ D.

Our last result is that, up to requiring some further conditions, Dn → D stably. Here,
stable convergence is meant as follows. We say that Dn → D stably with respect to G,
where G ⊂ A is any sub-σ-field, if

Dn
d−→ D under P (· | H) for each H ∈ G with P (H) > 0.

Note that Dn → D stably with respect to σ(V ), where V is a random variable with values

in a separable metric space, if and only if (Dn, V )
d−→ (D,V ).

Corollary 2.4. Let T0 = 0 a.s. and Sn,j = T j
kn

for all n and j. Assume the conditions of

Theorem 2.1 or those of Corollaries 2.2 or 2.3. Then, Dn → D stably with respect to
σ(T ).

As an example, under the conditions of Corollary 2.4, one obtains

Dn√∫ 1

0
f2(Tt) dF (t)

d−→ Z ∼ N (0, 1)
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provided
∫ 1

0
f2(Tt) dF (t) > 0 a.s. We also recall that Tt = BG(t) in case of Corollary 2.2

while Tt = Bt and F (t) = t in case of Corollary 2.3.
In the special case of Brownian motion, Corollaries 2.2, 2.3 and 2.4 improve on some

existing results (which concern, more generally, fractional Brownian motion); see [7],
[11] and references therein.

3 Examples

We begin by noting that, if condition (d) is dropped, Dn may fail to converge in
distribution even if f = 1 and conditions (a)-(b)-(c) hold.

Example 3.1 (Example 4 of [6] revisited). Let f = 1, kn = 3n, and

Xn,j = 1{B1>0}
(
B j

n
−B j−1

n

)
if n < j ≤ 2n.

Define also

Xn,j = B j
n
−B j−1

n
if 1 ≤ j ≤ n and Xn,j = 0 if 2n < j ≤ 3n

or

Xn,j = 0 if 1 ≤ j ≤ n and Xn,j = B j
n
−B j−1

n
if 2n < j ≤ 3n

according to whether n is even or odd. Then, conditions (a)-(b)-(c) hold with Fn,j =

σ(Bt : t ≤ j/n). However, Dn =
∑
j Xn,j does not converge in distribution. Define in fact

U = B1 + 1{B1>0} (B2 −B1) and V = 1{B1>0} (B2 −B1) +B3 −B2.

Then,
∑
j Xn,j = U if n is even,

∑
j Xn,j = V if n is odd, but U and V have different

probability distributions (for instance, P (U < 0) 6= P (V < 0)).

The next example deals with a sequence of integrals driven by a compensated Poisson
process.

Example 3.2. Let B be the Borel σ-field on R+ and N =
{
N(B) : B ∈ B

}
a Poisson

process on (R+,B) with intensity λ. Thus, N(B) is a Poisson random variable with pa-
rameter λ(B) and N(B1), . . . , N(Bk) are independent whenever B1, . . . , Bk are pairwise
disjoint. Moreover, λ is a non-atomic Radon measure on B such that λ(R+) =∞. Let

Ψ =

∞∑
l=2

al Cl

where al is a constant, Cl is the Charlier polynomial of degree l and parameter 1, and∑∞
l=2 l! a

2
l <∞. Define

Vt = N([0, t])− λ([0, t]) and In = (rn−1, rn]

where 0 = r0 < r1 < r2 < . . . are such that λ((rn−1, rn]) = 1. Finally, let

q =

∞∑
l=2

l! a2l and Sn(t) =
1
√
q n

n∑
j=1

1Ij (t)

j−1∑
i=1

Ψ
(
N(Ii)

)
.

Then, Corollary 2.2 yields

1√
n

∫ rn

0

f
(
Sn(t)

)
dVt

d−→ Z

√∫ 1

0

f2(Bt) dt. (3.1)
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Define in fact

kn = n, Yn,j = (q n)−1/2Ψ
(
N(Ij)

)
, Xn,j = n−1/2

(
Vrj − Vrj−1

)
= n−1/2

(
N(Ij)− 1

)
.

On noting that Sn(t) = Sn,j−1 for each t ∈ Ij , one obtains

1√
n

∫ rn

0

f
(
Sn(t)

)
dVt =

1√
n

n∑
j=1

∫ rj

rj−1

f
(
Sn,j−1

)
dVt =

n∑
j=1

f
(
Sn,j−1

)
Xn,j = Dn.

Moreover, the sequence Lj :=
(
N(Ij)− 1

)
Ψ
(
N(Ij)

)
, j ≥ 1, is i.i.d. with

E(L1) = E
{(
N(I1)− 1

)
Ψ
(
N(I1)

)}
=

∞∑
l=2

alE
{
C1

(
N(I1)

)
Cl
(
N(I1)

)}
= 0.

Therefore, given m ≥ 1 and 0 ≤ h < m, the SLLN implies

b (h+1)n
m c∑

j=1+bhn
m c

Xn,jYn,j =
1
√
q n

b (h+1)n
m c∑

j=1+bhn
m c

Lj
a.s.−→ 1
√
q m

E(L1) = 0.

All the other conditions of Corollary 2.2 are easily seen to be true with F (t) = G(t) = t for
all t ∈ [0, 1]. Hence, (3.1) holds. Finally, we note that Dn converges stably with respect
to σ(N) (and not only in distribution). This is a direct consequence of (3.1), however,
which can be shown without involving Corollary 2.4.

We next turn to Wiener integrals.

Example 3.3. For any h ∈ L2([0, 1]), the Wiener integral of h is

Wt(h) =

∫ t

0

h(u) dBu, 0 ≤ t ≤ 1.

In this notation, we fix fn, gn ∈ L2([0, 1]) and we let

Jn =

∫ 1

0

f
(
Wt(gn)

)
dWt(fn).

We aim to give conditions for Jn to converge in distribution. Suppose

lim
n

∫ t

0

fn(u) gn(u) du = 0, lim
n

∫ t

0

f2n(u) du = F (t), lim
n

∫ t

0

g2n(u) du = G(t) (3.2)

for each 0 ≤ t ≤ 1, where F and G are distribution functions, F is continuous and
F (0) = 1− F (1) = 0. Under this condition, define

Xn,j =

∫ j
kn

j−1
kn

fn(u) dBu and Yn,j =

∫ j
kn

j−1
kn

gn(u) dBu.

Since W·(fn) and W·(gn) have independent increments, the conditions of Corollary 2.2
are easily seen to be true. In addition, the sequence (kn) can be taken such that

Dn − Jn
P−→ 0. Therefore,

Jn
d−→ Z

√∫ 1

0

f2(BG(t)) dF (t).

A last remark is that condition (3.2) does not imply convergence in measure of f2n
or g2n (with respect to Lebesgue measure). For instance, if fn(t) =

√
2 sin(nt) and

gn(t) =
√

2 cos(nt), then (3.2) holds but neither f2n nor g2n converge in measure.
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We now consider a situation where the integrand processes are essentially fractional.
For instance, they could be fractional Brownian motions.

Example 3.4. Let

Tt =

∫ 1

0

K(s, t) dBs and Jn =

∫ 1

0

f(Tt) fn(t) dBt

where K ∈ L2([0, 1]2) and fn ∈ L2([0, 1]). Suppose

lim
n

∫ t

0

fn(u) du = 0 and lim
n

∫ t

0

f2n(u) du = F (t), 0 ≤ t ≤ 1,

for some continuous distribution function F such that F (1) = 1. Then,

Jn −→ Z

√∫ 1

0

f2(Tt) dF (t) stably with respect to σ(T ).

Define in fact

Xn,j =

∫ j
kn

j−1
kn

fn(t) dBt and Yn,j = T j
kn

− T j−1
kn

.

As in Example 3.3, the sequence (kn) can be taken such that Dn − Jn
P−→ 0. Moreover,

the conditions of Theorem 2.1 are satisfied. Hence, stable convergence of Jn follows
from Corollary 2.4. Finally, we mention how to check the conditions of Theorem 2.1. The
basic remark is that

(
B j

kn

−B j−1
kn

: 1 ≤ j ≤ kn
)

is a martingale difference and

b (h+1)kn
m c∑

j=1+bhkn
m c

E
{
Xn,j

(
B j

kn

−B j−1
kn

)}
=

b (h+1)kn
m c∑

j=1+bhkn
m c

∫ j
kn

j−1
kn

fn(t) dt −→ 0

for all m ≥ 1 and 0 ≤ h < m. Based on this remark and σ(Ts : s ≤ t) ⊂ σ(Bs : s ≤ t), the
conditions of Theorem 2.1 can be proved by the same argument used in the proof of
Corollary 2.2.

Our last example provides an upper bound for the Wasserstein distance between
the probability distributions of Dn and D. The required conditions are actually strong.
However, in the special case of Brownian motion, such conditions improve on the results
known so far; see e.g. Theorem 1.1 of [7]. We also note that, based on these conditions,
one could also obtain upper bounds for the total variation distance; see [12] and [13].

Recall that, if X and Y are real integrable random variables, the Wasserstein distance
between their probability distributions is W (X,Y ) = suph |E

(
h(X)

)
− E

(
h(Y )

)
| where

sup is over the 1-Lipschitz functions h : R→ R.

Example 3.5. Suppose that:

• f is a bounded Lipschitz function such that inf|f | > 0;
• kn = h2n for some integer hn;
• For each n, the random vectors (Un,j , Vn,j), 1 ≤ j ≤ kn, are i.i.d. with

E(Un,1) = E(Vn,1) = E(Un,1Vn,1) = 0, E(U2
n,1) = E(V 2

n,1) = 1, E
{
U4
n,1+V 4

n,1

}
≤ u

for some constant u independent of n.

Define Xn,j =
Un,j

hn
, Yn,j =

Vn,j

hn
and D = Z

√∫ 1

0
f2(Bt) dt. Then, there is a constant c

independent of n such that

W (Dn, D) ≤ c

k
1/4
n

for each n ≥ 1. (3.3)

Inequality (3.3) applies, for instance, to Examples 3.2 and 3.3 (provided f and kn are as
above). Its proof is reported in Section 4.

ECP 28 (2023), paper 26.
Page 7/12

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP534
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


CLT for generalized martingale arrays

4 Proofs

In the sequel, as in condition (? ? ?), we let uh =
√
F ((h+ 1)/m)− F (h/m) and we

denote by (Z0, Z1, . . .) a i.i.d. sequence of standard normal random variables independent
of T . Moreover, f : R→ R is Holderian of parameter α. Precisely, there are two constants
α ∈ (0, 1] and b > 0 such that

|f(x)− f(y)| ≤ b |x− y|α for all x, y ∈ R.

We begin with a technical lemma.

Lemma 4.1. Fix an integer 1 ≤ m ≤ kn and assume conditions (a)-(?)-(??) or conditions
(a)-(2.1). For each h = 0, 1, . . . ,m− 1, define

S
(m)
n,j = Sn,bhkn

m c if bhkn
m
c ≤ j < b (h+ 1)kn

m
c.

Define also

D(m)
n =

kn∑
j=1

f
(
S
(m)
n,j−1

)
Xn,j .

Then, there is a constant c, independent of n and m, such that

E
{

(Dn −D(m)
n )2

}
≤ c

mβ

where β = α under (a)-(?)-(??) and β = α/2 under (a)-(2.1).

Proof. Assume (a)-(?)-(??) and define r = supn
∑kn
j=1E(X2

n,j). Then,

E
{

(Dn −D(m)
n )2

}
=

kn∑
j=1

E
{(
f(Sn,j−1)− f(S

(m)
n,j−1)

)2
X2
n,j

}
≤ v

kn∑
j=1

E
{(
f(Sn,j−1)− f(S

(m)
n,j−1)

)2}
E(X2

n,j)

≤ r v max
1≤j≤kn

E
{(
f(Sn,j−1)− f(S

(m)
n,j−1)

)2}
≤ r v b2 max

1≤j≤kn
E
{
|Sn,j−1 − S(m)

n,j−1|
2α
}

≤ r v b2 max
1≤j≤kn

E
{(
Sn,j−1 − S(m)

n,j−1
)2}α

.

Hence, to prove the first part of the Lemma, it suffices noting that

E
{(
Sn,j−1 − S(m)

n,j−1
)2}

= E
{(
Sn,j−1 − Sn,bhkn

m c
)2}

(4.1)

≤ u
j − 1− bhknm c

kn
≤ u

m
whenever 1 + bhkn

m
c ≤ j ≤ b (h+ 1)kn

m
c.

Similarly, under conditions (a)-(2.1), one obtains

E
{

(Dn −D(m)
n )2

}
=

kn∑
j=1

E
{(
f(Sn,j−1)− f(S

(m)
n,j−1)

)2
X2
n,j

}
≤

kn∑
j=1

√
E
{(
f(Sn,j−1)− f(S

(m)
n,j−1)

)4}
E(X4

n,j)
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≤ b2u1/2

kn

kn∑
j=1

E
{

(Sn,j−1 − S(m)
n,j−1)4

}α/2
≤ b2u1/2

kn

kn∑
j=1

( u
m

)α/2
=
b2u1/2uα/2

mα/2

where the last inequality follows from (4.1). This concludes the proof.

Proof of Theorem 2.1. For any real random variables X and Y , the bounded Lipschitz
metric between their probability distributions is ρ(X,Y ) = suph |E

(
h(X)

)
− E

(
h(Y )

)
|,

where sup is over the 1-Lipschitz functions h : R→ R such that −1 ≤ h ≤ 1. This metric
has the property that, for any sequence (Xn) of real random variables, limn ρ(Xn, X) = 0

if and only if Xn
d−→ X. Next, assume conditions (a)-(?)-(??)-(? ? ?) and define

D(m) = Z

√√√√m−1∑
h=0

f2
(
T h

m

)
u2h for m ≥ 1.

Writing D(m)
n as

D(m)
n =

m−1∑
h=0

f
(
Sn,bhkn

m c
) b (h+1)kn

m c∑
j=1+bhkn

m c

Xn,j ,

condition (? ? ?) implies D(m)
n

d−→
∑m−1
h=0 f

(
T h

m

)
uh Zh. Moreover, it is not hard to see

that
∑m−1
h=0 f

(
T h

m

)
uh Zh has the same distribution as D(m). Hence, for fixed m, condition

(? ? ?) yields D(m)
n

d−→ D(m) as n→∞. Observe now that

ρ(Dn, D
(m)
n ) ≤ E|Dn −D(m)

n | ≤
√
E
{

(Dn −D(m)
n )2

}
≤
√

c

mα

where the last inequality is because of Lemma 4.1. Therefore,

lim sup
n

ρ(Dn, D) ≤ lim sup
n

{
ρ(Dn, D

(m)
n ) + ρ(D(m)

n , D(m)) + ρ(D(m), D)
}

≤
√
cm−α/2 + lim sup

n
ρ(D(m)

n , D(m)) + ρ(D(m), D) =
√
cm−α/2 + ρ(D(m), D).

Finally, since F is continuous and the process
{
f2(Tt) : 0 ≤ t ≤ 1

}
has cadlag paths,∫ 1

0

f2(Tt) dF (t) = lim
m

m−1∑
h=0

f2
(
T h

m

)
u2h.

Hence, D(m) → D as m→∞, and this implies

lim sup
n

ρ(Dn, D) ≤ lim
m

{√
cm−α/2 + ρ(D(m), D)

}
= 0.

This proves that Dn
d−→ D under conditions (a)-(?)-(??)-(? ? ?). The proof is exactly the

same if (?)-(??) are replaced by (2.1).

Proof of Corollary 2.2. It suffices to prove (? ? ?), since all the other conditions of Theo-
rem 2.1 are trivially true. Let Tt = BG(t) for t ∈ [0, 1]. With this choice of T , condition
(? ? ?) is equivalent to requiring that, for each m ≥ 1, the vectors

( b (h+1)kn
m c∑

j=1+bhkn
m c

Yn,j ,

b (h+1)kn
m c∑

j=1+bhkn
m c

Xn,j : h = 0, 1, . . . ,m− 1
)
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converge in distribution to(
BG(h+1

m ) −BG( h
m ) , uh Zh : h = 0, 1, . . . ,m− 1

)
.

Fix m ≥ 1, two vectors (α0, . . . , αm−1) ∈ Rm and (β0, . . . , βm−1) ∈ Rm, and define

Mn =

m−1∑
h=0

{
αh

b (h+1)kn
m c∑

j=1+bhkn
m c

Yn,j + βh

b (h+1)kn
m c∑

j=1+bhkn
m c

Xn,j

}
and

M =

m−1∑
h=0

{
αh
(
BG(h+1

m ) −BG( h
m )

)
+ βh uh Zh

}
.

Then, it suffices to show that Mn
d−→M . In turn, Mn

d−→M follows from Theorem 1.1.
Define in fact

Un,j = αh Yn,j + βhXn,j whenever 1 + bhkn
m
c ≤ j ≤ b (h+ 1)kn

m
c

and q =

m−1∑
h=0

{
α2
h

(
G((h+ 1)/m)−G(h/m)

)
+ β2

h

(
F ((h+ 1)/m)− F (h/m)

)}
.

Then, Mn =
∑kn
j=1 Un,j and M ∼ N (0, q) (since (Zh) is independent of T = BG). Condi-

tions (a)-(b) hold by assumption. Condition (c) holds, with L = q, since

kn∑
j=1

U2
n,j =

m−1∑
h=0

{
α2
h

b (h+1)kn
m c∑

j=1+bhkn
m c

Y 2
n,j + β2

h

b (h+1)kn
m c∑

j=1+bhkn
m c

X2
n,j + 2αhβh

b (h+1)kn
m c∑

j=1+bhkn
m c

Xn,jYn,j

}
.

Finally, condition (d) is trivially true for L = q is a constant. Hence, (Un,j) satisfies the
conditions of Theorem 1.1 and this concludes the proof.

Proof of Corollary 2.3. If Xn,j and Yn,j are given by (2.2), the SLLN yields

b (h+1)kn
m c∑

j=1+bhkn
m c

X2
n,j =

1

kn

b (h+1)kn
m c∑

j=1+bhkn
m c

ψ2
(√
kn(B j

kn

−B j−1
kn

)
) L1−→

E
{
ψ2(B1)

}
m

=
1

m
.

Similarly,

b (h+1)kn
m c∑

j=1+bhkn
m c

Y 2
n,j

L1−→ 1

m
and

b (h+1)kn
m c∑

j=1+bhkn
m c

Xn,j Yn,j
L1−→

E
{
ψ(B1)φ(B1)

}
m

= 0.

Having noted these facts, it is straightforward to check the conditions of Corollary 2.2
with u = v = 1, Fn,j = σ

(
Bt : t ≤ j/kn

)
and F (t) = G(t) = t for all t ∈ [0, 1].

Proof of Corollary 2.4. Since T0 = 0 a.s., it suffices to show that(
Dn, T h

m
: h = 1, . . . ,m

)
d−→
(
D,T h

m
: h = 1, . . . ,m

)
(4.2)

for each m ≥ 1. To this end, since the conditions of Corollaries 2.2 or 2.3 imply those of
Theorem 2.1, we can assume the conditions of Theorem 2.1. Define

V (m)
n =

(
Th+1

m
− T h

m
, S

n, b (h+1)kn
m c − Sn, bhkn

m c,

b (h+1)kn
m c∑

j=1+bhkn
m c

Xn,j : h = 0, 1, . . . ,m− 1
)

and V (m) =
(
Th+1

m
− T h

m
, Th+1

m
− T h

m
, uh Zh : h = 0, 1, . . . ,m− 1

)
.
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Since Sn,j = T j
kn

, condition (? ? ?) implies V (m)
n

d−→ V (m) as n→∞ for all m ≥ 1. Hence,

condition (4.2) follows from the argument used in the proof of Theorem 2.1.

Proof of inequality (3.3). We just give a sketch of the proof.
Step 1. Since conditions (a)-(?)-(??) hold and f is Lipschitz, Lemma 4.1 applies with

β = α = 1 and m = hn. Hence, there is a constant q independent of n such that

W
(
Dn, D

(hn)
n

)
≤ E|Dn −D(hn)

n | ≤
√
E
{(
Dn −D(hn)

n

)2} ≤ q√
hn
.

Step 2. Let b be the Lipschitz constant of f and

Mn =

√√√√ 1

hn

hn−1∑
j=0

f2
(
B j

hn

)
and M =

√∫ 1

0

f2(Bt) dt.

Since D = ZM and Mn +M ≥ inf|f | > 0, one obtains

W
(
ZMn, D

)
≤ E|ZMn − ZM | ≤ E|Mn −M | ≤

1

inf|f |
E|M2

n −M2|

≤ 2 b sup|f |
inf|f |

hn−1∑
j=0

∫ j+1
hn

j
hn

E|Bt −B j
hn

| dt ≤ 2 b sup|f |
inf|f |

1√
hn
.

Step 3. For k = 0, 1, . . . , hn − 1, define

X∗n,k =
1√
hn

(k+1)hn∑
j=1+khn

Un,j and Y ∗n,k =
1√
hn

(k+1)hn∑
j=1+khn

Vn,j .

For each n ≥ 1, the bivariate random vectors
(
X∗n,k, Y

∗
n,k

)
, 0 ≤ k < hn, are i.i.d. with

mean 0 and covariance matrix I (where I is the identity matrix). Hence, by a result of
Bonis [2], there is a constant β independent of n such that

W2

[(
X∗n,k, Y

∗
n,k

)
, Z
]
≤
β
√
E(U4

n,1 + V 4
n,1)

√
hn

for each k = 0, 1, . . . , hn − 1,

where W2 is the Wasserstein distance of order 2 and Z a Gaussian bivariate random
vector with mean 0 and covariance matrix I.

Step 4. First note that

D(hn)
n =

f(0)√
hn

X∗n,0 +
1√
hn

hn−1∑
k=1

f

(∑k−1
i=0 Y

∗
n,i√

hn

)
X∗n,k.

Exploiting this formula for D(hn)
n and the assumptions on f , one obtains

W
(
D(hn)
n , ZMn

)
≤ δ

√√√√ 1

hn

hn−1∑
k=0

W 2
2

[(
X∗n,k, Y

∗
n,k

)
, Z
]

where δ is a constant idependent of n. (The latter inequality actually requires some
algebra, but we omit the explicit calculations). Hence, step 3 implies

W
(
D(hn)
n , ZMn

)
≤ δ

√
β2E(U4

n,1 + V 4
n,1)

hn
≤ δβ

√
u√

hn
.

In view of steps 1 and 2, this concludes the proof.
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