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We examine the Newman-Janis algorithm’s application to an exact regular static solution sustained by a
minimally coupled scalar field with a nonstandard kinetic term. Although coordinate complexification
leads to a regular Kerr-like black hole, we are facing discrepancies in Einstein’s equations in a fairly small
domain, for which the regularizing parameter is responsible. Outside this most intriguing region, the

geometry is nothing but the standard Kerr spacetime.
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I. INTRODUCTION

Despite the long history of efforts at spacelike singularity
resolution in general relativity (GR) classical solutions, the
investigation of the nonsingular (or so-called regular) black
holes and their regular rotating counterparts is extremely
popular nowadays [1-16]; see also recent reviews [17-19]
and references therein. To construct a static regular sol-
ution, one relies on one of the following approaches: (i) to
solve Einstein’s field equations associated with a special
kind of spacetime symmetry and matter sources [20-29],
(i1) to derive a solution as quantum corrections to the
classical one [30-35], or (iii) to write the metric ad hoc,
motivating it by phenomenological “tractability” [5-10,
36-38], and try to analyze the effective matter content.
Nevertheless, figuring out the physical source sustaining
the latter’s appealing spacetimes is not trivial. In particular,
one can regularize the Schwarzschild metric by some new
length scale parameter b, resulting in a richer causal
structure that seamlessly interpolates between a traversable
wormhole and the so-called black-bounce geometry [6].
This even, one-parameter extension is sustained by a
combination of a minimally coupled phantom scalar field
and a magnetic field within nonlinear electrodynamics [39].
The physical sources for other black-bounce spacetimes,
not to mention numerous regular black hole models, are
unknown. The only known thing about the sources in GR is
the necessity to violate the energy dominance conditions to
avoid singularities [40]. Generalizing to realistic cases,
rotating spacetimes, by imposing axial symmetry is more
challenging.

Apart from Kerr’s unique exact solution [41], there are
still only a few ways to introduce rotation into spacetime.
The first in origin is the Newman-Janis algorithm (NJA).
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This algorithm provides a set of steps to derive the axially
symmetric solutions from the spherically symmetric ones:
the Kerr metric from the Schwarzschild one [42] and the
Kerr-Newman one from the Reissner-Nordstrom one [43].
This approach is based on introducing a vierbein, or tetrad,
of null vectors and a series of complex coordinate con-
jugation transformations. We do not dwell on the steps’
details here, since we follow the NJA below. The rigorous
validity of a complex coordinate transform in the
Schwarzschild-to-Kerr case rests on two assumptions:
the spacetime is an empty solution of Einstein’s equations
and belongs to the Kerr-Schild algebraic class [44]. The
existence of the Kerr-Newman solution indicates that the
first one is not necessary for the NJA to be successful in
general. As for the second assumption, the representation of
the metric in the Kerr-Schild form provides validity for the
complex coordinate transformation in GR [45]. However, if
the metric is not reducible to this form, this does not imply
that the complex coordinate transformation is unfair; no
one has any conception of whether it will yield reasonable
results. This is established by the fulfillment of Einstein’s
equations.1 Notwithstanding, the NJA is widely used to
generate regular rotating solutions [3-5,50-54], disregard-
ing either the source of a seed metric and/or its rotating
counterpart. The uncertainty of a coordinate transform
originating from different ways of getting real quantities
from complex ones [54-56] is also worth noting. To avoid
the ambiguous coordinate complexification, one can gen-
erate a stationary solution by implication of a new unknown
function arising as a conformal metric multiplier [57,58].
The explicit form of this function is governed by the

'Here, we would like to note that the application of the NJA to
an arbitrary non-GR spherically symmetric solution leads to
pathologies possessing naked singularities [46]; application to the
case of GR with a minimally coupled massless/self-interacting
scalar field miscarries [47-49].
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reducibility of a rotated metric to the Boyer-Lindquist
form [59] and the Einstein equations. Consequently, this
technique assumes that the physical source is known,
though one uses this approach to gain “exact” solutions,
overlooking the seed metric’s sources [4]. A vacuum or
electrovacuum axisymmetric solution can be obtained via
the Ernst equation [60,61]; its generalization to other
nonvacuum cases is unknown. Since the regularized GR
solution requires a violation of energy dominance con-
ditions, this may lead to interpolation between a regular
black hole and a wormhole. As to the wormhole case,
attempts to gain an analytical stationary generalization,
even for the simplest known Bronnikov-Ellis worm-
hole [62,63], fail [64]; whereas the remaining solutions
to the nonvacuum FEinstein equations are known either
perturbatively in the slow rotation approximation [65,66] or
numerically [67,68].

In the present paper, we examine the Newman-Janis
algorithm’s application to the regular phantom black
hole [27]. This regular static geometry either provides a
wormbhole or a black hole with a Schwarzschild-like causal
structure, but with an asymptotically de Sitter expansion
instead of a singularity. The source of the seed spacetime is
a minimally coupled scalar field with a nonstandard kinetic
term. This completely solvable example permits the matter
content’s expression via geometry. Although naive
Newman-Janis coordinate complexification in the scalar
background leads to a regular Kerr-like black hole, we are
facing discrepancies in Einstein’s equations in a fairly small
domain, for which the regularizing parameter is respon-
sible. Outside this most intriguing region, the energy
dominance conditions are slightly violated, and the geom-
etry is nothing but standard Kerr’s spacetime.

This paper is organized as follows: Sec. II contains a
brief review of the globally regular exact solution [27]. The
regular Kerr-like spacetime is constructed from the seed
static metric via the Newman-Janis procedure in Sec. IIL
Section IV is devoted to the matter content of the obtained
static and spinning solutions, and Sec. V to discussion.

II. SEED REGULAR GEOMETRY

Consider the following spherically symmetric metric:

du?

$2 = A(u)(dx®)? -
45" = A -

— 2 (u)dQ3, (1)

where dQ3 = (dx?)? + sin’x?(dx?)? is the line element
on a unit sphere; the area function r(u) is regular and
positive everywhere and has at least one minimum at
some u = upy,, at which r(uy;,) > 0, ¥ (uy,) =0, and
' (umin) > 0, providing the existence of two asymptotic
regions with r(u) ~ |u| at u — +oco. The corresponding
nontrivial Einstein tensor components read as follows:

] r// r/2 1
0wl oal a4~ 2
G r r r2+r2’ 2
I 21
Gi=-A——A—+—=, 3
" r r2+r2 (3)
1 r/ r//
R=G = —ar—al_al 4
2 3 2 r r ( )

where the prime notation refers to the derivative with
respect to u, ' =d/du and " = d?/du®.

The exact solution of interest to us can be derived for a
minimally coupled scalar field with a wide set of possible
forms of the Lagrangian L(¢, (¢ ,)%), which is able to
violate the null energy condition: T)k,k* > 0 for any null
vector k*, kﬂk" = 0. As some examples, one can mention
scalar fields with a nonstandard kinetic term, such as a
phantom one, k essence, or, in particular, a tachyonic field,
etc. For ¢ = ¢p(u), as for a usual minimally coupled scalar
field, all these models hold equality for the stress-energy
tensor’s components,” T9[¢] = T3[¢] = T3[¢], as well as
the corresponding components of the Einstein tensor G,
and of the Ricci tensor RY,. Using this fact, or by noting the
difference between G) and G3, one obtains

1 P! 21
—A"—A——A—+—=0. 5
2 r rz—l_r2 ( )

To find a globally regular geometry, we choose the
simplest possible area function,

) = Vi T B

which is suitable for the conditions of the regular minimum

and gives us the following analytic solution to the equation
3

above™

b = const > 0, (6)

Al)=1+c, (2 +b%) +c, ((u2 —l—bz)tan‘l%—l- ub>. (7)

Depending on ¢; and ¢, values, the obtained solution may
be asymptotically flat or anti—de Sitter in the static region
and asymptotically de Sitter in the nonstatic region. By
setting ¢; = —mc,/2 and ¢,b° = u to ensure the regularity
of A(u) at b — 0 and the Schwarzschild form, i.e., A(u) ~
1 = 2uy/3u at u - +oo correspondingly, we get

’An appropriate algebraic structure of the stress-energy tensor
was first discussed by Gliner: to generate the regular spherically
symmetric solution, the structure has the characteristics [(1111)],
[11(11)], [(11)(11)], or [1(111)], where brackets denote the
components’ equality [69]. The latter one corresponds to the
case we are considering here.

*We denote arctan® as tan~' * and arccot® as cot™' £,
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Alw) =1- % ((u2 + b?)cot”! % - ub>. (8)

This redshift metric function either provides a wormhole or
a regular black hole with a Schwarzschild-like causal
structure, but with an asymptotically de Sitter expansion
instead of a singularity.

We have a traversable wormhole if 2b > zu,, a regular
black hole if 0 < 2b < zu, with a single horizon at u,,
which is a regular zero of A(u;,) = 0, or aregular black hole
with a single extremal horizon (black throat) at u = 0 if
2b = nuy. Beyond the event horizon (if it exists), there is a
bounce to anisotropic Kantowski-Sachs cosmology with
two scale factors, A(u) and r(u). In the exceptional case, by
setting the constant uy, = 0, one gets the Bronnikov-Ellis-
like wormhole [62,63], i.e., A(u) = 1. Some additional
features of this globally regular solution were also
revealed in [70].

III. FROM THE REGULAR SCHWARZSCHILD-
LIKE BLACK HOLE TO THE REGULAR
KERR-LIKE BLACK HOLE

As was mentioned in the Introduction, the Newman-
Janis algorithm provides the derivation of the rotating
solutions from the static ones. This approach is based on
introducing a vierbein of null vectors e, = (I, n, m, m) and
a series of complex conjugation transformations; here and
in the following, the bar marks complex conjugation. In
this section, we apply it to the seed regular geometry
obtained above.

As the NJA’s first step, we switch to a null coordinate
system, replacing in (1) the time coordinate x° with the null
time coordinate 7 via dx° — dr = dx” — du/A(u). This
provides the metric form in the so-called Eddington-
Finkelstein type coordinates,

Au)

" =&, nt =8 —

s

2
L) (1)

sin x

mt =

\/ii(u) <‘5§ *

with /# and »* being real null vectors, and m* and its
complex conjugate m* being complex null vectors. They
are required to satisfy the orthogonality conditions,
the essentials for the null vectors, and the normalization
conditions; i.e., all products of these four vectors vanish,
with two exceptions: [,n¥ = —m,m* = 1.

Next, according to the Newman-Janis algorithm, we
need to complexify the seed metric functions, i.e., replace
the redshift function A(u) by a new one A(u, it), as

_ Ug _
A(u, ) :1+2—bz(u+u)

_ U 2 W=l % | o2 21 U
553 ((u + b*)cot i (@* 4 b*)cot b)’
(12)

the area function r(u) in the pair of complex null vectors
m* and m* as

r(u) = Vu? + b2, Fu) =Vt +0b* (13)

requiring at ¥ = i the recovery of initial vierbein (11), and
apply complex transformation coordinates

X — X" = x* —iacosx*(& — &), (14)

treating the primed coordinates as real. Through the null
complex tetrad transform, e, — el = el ox’ /ox”, and the
use of the ensuing new lightlike vectors

/! 21
= 5/;,’ M = 5/;/ _A(M s X )5ﬁ/’
ds* = A(u)dv® + 2drdu — r*(u)dQ3, 9) 2
o dasinx®(&, —8,) + 8y + Gln Yy
which can be expressed in terms of the null Newman- me = Y ’
: ﬁr(u ,x*)
Penrose tetrad formalism as i w _—
o _ Ciasinx (& =8,) + 8y — =8 (1)
ds* = (L,n, — m,m,)dx"dx", (10) V2r(u, x¥') ’
with | it yields the new ¢ = 2I'Wn™) — 2m'“m™) expression,
e 1 RES 0 ~ 7
a’sin’x* 120\ _ a’sin’x? a
d’w _ 1+ (' x*') A(M X ) r(u’ x*) 01 r(u’ x*") ’ (16)
0 0 r(u’ x*') 0
— a 0 1
ri(u’ x*) ri(u’ x*") 7(u’ x*')sin®x?’
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and the inverse metric in the ingoing Eddington-Finkelstein coordinates being written via a line element is

ds’”? = A(u', x*)(d7 — asin®>x*'dx")? 4 2(d7’ — asin®x* dx*") (du’ + asin®x*'dx*")

— (', x*") ((dx?)? + sin’x¥ (dx')?), (17)

where

ugu' _ u' B u
A(I/l )C )*14—7—'—2[)3 (Mz—a20052x2/+b2) <tan ]m—l—tan 1m—7[>
aug'  ,, u*+(b—acosx*)?
| 18
Ty oSN (b+acosx*)? (18)
and

rr(u, x*') = \/(u 2 — a’cos’x? + b*)? + 4a’ucos?x¥. (19)

The obtained geometry (17) does not contain Kerr’s usual ring coordinate singularity at ' = 0 and x>’ = z/2, and it turns
into the Kerr original one [41] at the b — 0 limit,

_ Qugu’ 1 0 2augu'sin?x?'
3(u?+a’cos?x*") 3w +alcosi?)
| 1 0 0 —asin’x?' 20)
wwlp=0 =
g 0 0 —u? — a*cos’x* 0
Raugu'sin?x? 0202 (2 2 2dugu'sinia? ) .o 2
3(u+a*cos’x*) asm-x 0 us+a+ 307+ aPcostA) SIm-x

and, as expected, the Schwarzschild one in the Eddington-

Finkelstein null coordinates for a = 0. g u? +a® = 2ugu' /3
The curvature invariants for the obtained rotated solution

(17) are finite in the entire range of the u’ coordinate. The B, x¥) = g o

only potentially dangerous denominator of curvature invar- ’ g u? + a* = 2ug' /3

iants can arise at the value u’ = 0. Fortunately, due to the

structure of r7(u’, x*'), see (19), the Ricci scalar, the Ricci provide the well-known Boyer-Lindquist transform [59],

+ 0(b?), (22)

tensor squared, and the Kretschmann scalar, and spacetime (17), being algebraically general, degener-
ates to an algebraically special and of Petrov type D up to
R~ (rF)73, RyyRY ~ (rF)~0, O(b?); and in the slow rotation approximation,
- aprs ., (7)~6
and IC = RaﬂyﬁR (rr) s (21) . 1 az(] _ A(u/))
a(u' , x*) o ——r — - + O(a*),
are globally regular if a # b, and at the b — O limit the AQ) (u)r(u’)
standard features of the Kerr spacetime are observed. s, x2’) ~ % + 0(113), (23)
As the final step of the NJA, one reverts the metric to the A(u')r*(u')

Boyer-Lindquist coordinates, which furnish only a single

off-diagonal component, g,,3. Nevertheless, it is not always  metric (17) can also be reduced to the Boyer-Lindquist
possible to find such integrable coordinate transformation,  representation,

dv —»dr=d7r —a(u')du' and dx” — dx*=dx"” - p(u')du’,

/ AW 2/ :
that preserve a(u') and ﬂ(u ) independent of xlasinour g2 o (A(u)+O0(a?))dr?
nonempty case here. This is guaranteed only if spacetime 5 ) ) s s
can be thrown into the Kerr-Schild form that corresponds to + (2asin’x* (1 -A(u')) + O(a*))drdx

algebraically special classes belonging to the Petrov clas- — (AN (') + O(a?))du”
sification [71]. Though we note that for a small regularizing 5 o 2 20( 32
parameter b, these functions —(r*(u)+ 0(“ ) ((dx*')? +sin"x*'(dx”)?), (24)
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coinciding at ' — +oo with the slow rotation limit of the
standard Kerr solution in these coordinates.

IV. SCALAR FIELD

In this section, we consider the matter content that
sustains the static seed geometry. For the simplest option
mentioned in Sec. II, for a phantom scalar field, everything
can be explicitly expressed via geometry. Hereafter, we
apply a series of complex conjugation transformations to
the scalar field in the Newman-Janis spirit.

The scalar field’s stress-energy tensor is

5
TUp) = ety — S ed b+ V(). (25)

where € = 41 corresponds to a canonical scalar field ¢,
and € = —1 to a phantom one ¢,

As for the nonrotation case, assuming ¢ = ¢(u), the
difference between® GZ(= GY) and GY for metric (9), or G,
itself, being matched with the stress-energy tensor of the
scalar field (25), yields

The sum of G% and G components leads to an expression
for potential in terms of the quasiglobal radial coordinate u,

uo((3u? + b?)cot™! 4 —
b*(u* + b?)

3ub)

V(u) = (27)

Further, one can reconstruct the exact expression for the
potential via the phantom scalar field,

“o¢ph <3 i

(¢ph) \/_b3

¢ 3u .
n’ \/p; 2b(3) sin V2, (28)
¢ph

which comes from (27) after inverting (26), u = b cot—== NGt

As for the rotating case, we intend to complexify the
scalar field (26), the potential (27), or the Lagrangian
density itself, i.e., replace it, as in the previous section, with
new ones ¢y (u,it), V(u,it), and L(u, i) and apply the
complex transformation coordinates x* — x'#, see (14).
Then, for the scalar field (26), dropping coordinate prime
indices, we have

u

2 T L
) =——-——t )
Ppn10.7) V2 V2 M acosy

/!
25 = e = on(u) = £v2tan™! % + . (26) 1
r u
——tan ' ——— 29
. ' \/ian b — acos x> 29)
Without loss of generality, we chose the minus sign
and ¢ = z/+/2, resulting in dpn(u) = v2cot™!(u/b).  and the stress-energy tensor (25) appears to be
|
~L(u.2?) —(1+ 225 ()2 (14205 i d)e O
) 0 (A >g%ﬂ@w L) (A3 + 5580 (y)(dp)e 0 |
T, = , (30
0 ((/p:;f:‘ig];)‘z (424))9) — L(u,x?) 0
0 _aE{/)ph)%2 (d)ph) ((/;ph) —L(u,x2)
rr(u.x?) ri(ux?)
where
1
L(u,x*) = ((u® + b*)?Buou® + 4ugh®u + b*) + (ugu(9u* + 4b*u? — b*) — 2b*(3u® + b?))a’cos’x?

b*(rr(u, x*))*
+ (Yugu® — 6ugh*u + b*)a*cos*x

T (O T 20 07

u
x [ tan™! ——+ tan~!
b+ acosx

4G8 and GY are to be taken from (2) and (3), and 872G = ¢ = 1.

2 + Buguadcos®x?) +

(6u® — 5b%)a’*cos’x

u
—— =T |.
b — acos x?

2 u*+ (b—acosx?)?

u?> + (b + acosx?)?

UyUa COS X N
2b(ri(u, x*))?

2 + 3a*cos*x?)

(31)
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The nontrivial components of the obtained stress-energy
tensor (30) are asymptotically trivial, see (29) at u — +o0,
behave as T% [¢,,] ~ O(b?) at the b — 0 limit, and turn out
coinciding with the exact nonrotation ones if a = 0.

However, the mixed Einstein tensor’s components Gy,
which correspond to the metric (17), are all nontrivial.” The
Einstein equations, G = T7[¢,], ensuing from the made
coordinate transformations are satisfied asymptotically,
being noticeably violated only at distances on the order
of the regularization parameter b. Regarding the Newman-
Janis algorithm in the scalar background, a similar obser-
vation was recently made in [72]. We do not present here
quite cumbersome expressions for the Einstein tensor’s
components, but one can verify that Gy ~ O(b?) at the
b — 0 limit via Maple, etc. Since our constructed geometry
(17) is the standard Kerr spacetime up to O(b?), see (20)
and (22), this is guaranteed. The null energy condition for a
null vector k*, e.g., k* = (1/A(u,x*),—1/2,0,0), suited
to (17),

TR = (B (02)),
b*(u? + b* — a*cos’x?)?
2(u?+ (b—acosx?)?)*(u® + (b + acosx?)?)?’
(32)

is distinctly violated near an arbitrarily small region and
slightly violated, ~O(b?), at u — +o0, as expected.
Thereby, the discrepancy in the Einstein equations and a
violation of the energy dominance conditions are forced into
this fairly small domain, for which parameter b is respon-
sible. Among the known literature examples, only the so-
called “eye of the storm” regular rotating black hole [8],
being strictly a model, is similar in a sense of satisfying (or
slightly violating, as in our case) the classical energy
dominance conditions at infinity for external observers.

Howbeit, in the slow rotation limit G ~Gi~Gi~
G? ~G%~G?~0(a), while other nontrivial components
~0(a?).

V. DISCUSSION

In spite of the regular black hole models’ extreme
popularity, only a few exact solutions are still known.
To model realistic physical objects, i.e., to impose axial
symmetry, one will face the fact that there has not been
elaborated a universal technique to generate a rotating
solution from a static one. Most of these approaches are
applicable either to vacuum cases, to linearized Einstein’s
equations (which is the same as representing a metric in the
Kerr-Schild form), or to exact static solutions with a known
physical source (of which almost all models of static
regular black holes cannot boast).

We have applied the mainstream approach, the Newman-
Janis algorithm, to a regular static spacetime sustained by a
minimally coupled phantom scalar field. This completely
solvable example affords the opportunity to show that, at
distances of the regularization parameter’s order, we can
predict or even conclude nothing due to the Einstein
equations’ discrepancies. Although coordinate complex-
ification in the Newman-Janis spirit leads to a regular Kerr-
like black hole, to an external observer, this will be nothing
more than standard Kerr’s spacetime.

Commonly, the models of regular black holes ad hoc are
motivated mainly by phenomenology, with possible obser-
vational verification. However, many of them, or even
perturbatively slowly rotating solutions in alternative the-
ories, are almost indistinguishable(’ from the GR solutions
from an observational point of view [74—77]. Moreover, the
cost of simplicity and phenomenological “appealing,” e.g.,
of the Simpson-Visser spacetime, are nontrivial physical
sources. Is it worth enforcing an exotic matter description
for the static regular spacetimes, hereafter imposing axial
symmetry approaches to regular rotating black hole mod-
els? Or is the search for alternative GR singularity treat-
ments more perspective?

®Let us point out a recent stationary analytical solution to the
semiclassical Einstein equations sourced by the trace anomaly,
which can be potentially distinguished from Kerr’s solution [73].
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