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We describe the ground state for a gravitationally collapsed ball of dust as the direct product of 
wavefunctions for dust particles distributed over an arbitrary number of nested layers. This allows us to 
estimate the expectation value of the global radius as well as the effective energy density and pressures 
for the dust core of quantum black holes. In particular, the size of the quantum core does not depend on 
the number of layers and the mass function is shown to grow linearly with the areal radius up to the 
outermost layer.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The singularities of known black hole solutions of the Einstein 
equations [1] can be removed by imposing regularity conditions 
on the (effective) energy density and scalar invariants inspired by 
classical physics [2]. This procedure usually induces the appear-
ance (or fails to remove) an inner Cauchy horizon. A different 
framework, invoked for example in Ref. [3], can be implemented 
based on the possibility that black hole interiors and the collapsed 
matter therein are described more accurately by quantum physics. 
One can then consider an effective energy density ρ ∼ |ψ |2, where 
ψ = ψ(r) is the wavefunction of the fully collapsed matter source, 
such that the Misner-Sharp-Hernandez mass function [4,5] satisfies

m(r) ≡ 4π

r∫
0

ρ(x) x2 dx ∼ 4π

r∫
0

|ψ(x)|2 x2 dx < ∞

for r > 0 . (1.1)

This accommodates for ρ ∼ r−2 and m ∼ r, which ensures that 
m(0) = 0 and replaces the central singularity with an integrable 
one [6,7], that is a region where the curvature invariants and the 
effective energy-momentum tensor diverge but their volume inte-
grals remain finite [8].

An explicit realisation for the inner core of a quantum black 
hole based on the Oppenheimer-Snyder model of dust collapse [9]
was analysed in Refs. [10–12], where only the outermost layer of 
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dust was explicitly considered in an effective one-body approach. 
This does not allow to estimate uniquely the size of the core or to 
obtain an effective energy density inside the completely collapsed 
core itself, which are the main objectives of the present work. To 
this end, we will here describe the ball as a sequence of layers [13]
containing dust particles, whose trajectories are individually quan-
tised as in Ref. [10]. A condition is then imposed to ensure that the 
fuzzy quantum layers defined by the positions of these particles 
remain orderly nested in the global quantum ground state. This 
approach will confirm the expected quantum behaviour in Eq. (1.1)
for the effective energy density and mass function.

It is important to stress that the above procedure differs from 
the canonical quantisation of the Oppenheimer-Snyder model em-
ployed, for example, in Refs. [14–18], in which one starts from a 
reduced Einstein-Hilbert action for the areal radius of the ball. In-
stead, we here quantise the trajectories of dust particles, which 
of course follow geodesics in the classical theory, as more physi-
cally relevant degrees of freedom of the system, similarly to what 
is done in the quantum mechanical description of the hydrogen 
atom. We will then find that there exist ground states for the 
dust particles in each layer, and a collective ground state for the 
whole core will be built self-consistently, starting from the quan-
tum ground states of single dust particles. We remark that no 
dynamical process will be analysed here which could possibly lead 
to the formation of such a collective ground state, or of other quan-
tum effects, like the Hawking evaporation.

We will introduce the dynamical equation for dust particles in 
layers of the dust ball and derive the single layer quantum states 
in the next Section; the global ground state is then constructed in 
Section 3, where its main features are also analysed; concluding 
remarks and outlook will be given in Section 4.
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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2. Quantum dust in a ball

Let us consider a perfectly isotropic ball of dust with total 
ADM [19] mass M and areal radius R = R(τ ), where τ is the 
proper time measured by a clock comoving with the dust. Dust 
particles, which we assume have the same proper mass μ � M , 
inside this collapsing ball will follow radial geodesics r = r(τ ) in 
the Schwarzschild spacetime metric1

ds2 = −
(

1 − 2 GN m

r

)
dt2

+
(

1 − 2 GN m

r

)−1

dr2 + r2 d�2 , (2.1)

where m = m(r) is the (constant Misner-Sharp-Hernandez) frac-
tion of ADM mass inside the sphere of radius r = r(τ ) and d�2 =
dθ2 + sin2 θ dφ2. Irrespectively of the mass profile m = m(r), the 
classical dynamics predicts that an event horizon forms when the 
surface areal radius R(τ ) = 2 GN M ≡ RH and the collapse will fur-
ther proceed towards a singularity in a finite proper time.

We can discretise this ball by considering a spherical core of 
mass μ0 = ν0 μ = ε0 M and radius r = R1(τ ) surrounded by N co-
moving layers of inner radius r = Ri(τ ), thickness �Ri = Ri+1 − Ri , 
and mass μi = εi M , where εi is the fraction of ADM mass carried 
by the νi = μi/μ dust particles in the ith layer. The gravitational 
mass in the ball r < Ri will be denoted by

Mi =
i−1∑
j=0

μ j = M
i−1∑
j=0

ε j = μ

i−1∑
i=0

ν j , (2.2)

with M1 = μ0 and MN+1 = M . We also note that the radius R1
and mass M1 = μ0 of the innermost core,2 as well as the thickness 
�Ri of each layer, can be made arbitrarily small by increasing the 
number N of layers in the classical picture.

The evolution of each layer can be derived by noting that dust 
particles located on the sphere of radius r = Ri(τ ) will follow the 
radial geodesic equation

Hi ≡ P 2
i

2μ
− GN μ Mi

Ri
= μ

2

(
E2

i

μ2
− 1

)
≡ Ei , (2.3)

where Pi = μ dRi/dτ is the radial momentum conjugated to R =
Ri(τ ), Ei the conserved momentum conjugated to t = ti(τ ) and 
the angular momentum conjugated to φ = φi(τ ) was of course set 
to zero for dust particles in a non-spinning ball [12]. Notice that 
Eq. (2.3) depends on the (classically arbitrary) distribution of dust 
among the layers of mass μi≥1 = Mi+1 − Mi and the innermost 
spherical core of mass μ0 = M1. This is the kind of improvement 
over previous works that we need in order to estimate the core 
profile in the quantum ground state.3

With the canonical quantization prescription Pi �→ P̂ i = −i ̄h ∂Ri , 
Eq. (2.3) becomes the time-independent Schrödinger equation

Ĥi ψni =
[
− h̄2

2μ

(
d2

dR2
i

+ 2

Ri

d

dRi

)
− GN μ Mi

Ri

]
ψni

= Eni ψni . (2.4)

1 We shall always use units with c = 1 and often write the Planck constant h̄ =

p mp and the Newton constant GN = 
p/mp, where 
p and mp are the Planck length 
and mass, respectively.

2 The radius R1 can be interpreted as the size of the innermost core or the inner 
radius of the first layer around it.

3 The effective one-body approach in Ref. [10] is obtained by assuming μ ∼ M , 
which introduces undetermined numerical coefficients [11] but leaves the final re-
sults qualitatively unaltered, as we shall duly comment in the following.
2

The above is formally the same as the equation for s-states of the 
hydrogen atom, so that one can read out a Bohr radius

ai = 
p m2
p

μ Mi
(2.5)

and the solutions are given by the Hamiltonian eigenfunctions

ψni (Ri)

=
√√√√ μ6 M3

i

π 
3
p m9

p n5
i

exp

(
−μ2 Mi Ri

ni m3
p 
p

)
L1

ni−1

(
2μ2 Mi Ri

ni m3
p 
p

)
, (2.6)

where L1
n−1 are Laguerre polynomials and ni = 1, 2 . . ., correspond-

ing to the eigenvalues

Eni = − μ3 M2
i

2 m4
p n2

i

. (2.7)

The wavefunctions (2.6) are normalised in the scalar product 
which makes Ĥi Hermitian, that is

〈ni | n′
i 〉 = 4π

∞∫
0

R2
i ψ∗

ni
(Ri)ψn′

i
(Ri)dRi = δnin

′
i
. (2.8)

The expectation value of the areal radius on these eigenstates is 
given by

R̄ni ≡ 〈ni | R̂ i |ni〉 = 3 m3
p 
p n2

i

2μ2 Mi
, (2.9)

with relative uncertainty

�Rni

R̄ni

≡
√

〈ni | R̂2
i |ni〉 − R̄2

ni

R̄ni

=
√

n2
i + 2

3 ni
, (2.10)

which approaches the minimum �Rni 
 R̄ni /3 for ni � 1.
By assuming that the conserved quantity Ei remains well-

defined for all the dust particles in the allowed quantum states, 
we obtain the fundamental condition [10]

0 ≤ E2
i

μ2
= 1 + 2Ei

μ
= 1 − μ2 M2

i

m4
p n2

i

, (2.11)

which yields the lower bound for the single particle principal 
quantum numbers

ni ≥ Ni ≡ μ Mi

m2
p

. (2.12)

Upon saturating the above bound, one then finds

R̄ Ni = 3

2
GN Mi , (2.13)

and the wavefunction for the νi particles in each layer is given by 
the same ground state

ψNi (Ri) =
√

μmp

π 
3
p M2

i

exp

(
− μ Ri

mp 
p

)
L1

μ Mi
m2

p
−1

(
2μ Ri

mp 
p

)
, (2.14)

where the values of Mi , hence Ni in Eq. (2.12), must be such that 
R̄ i � R̄ i+1.

From the above wavefunction, one can in principle determine 
the effective energy density inside each layer as

ρi = μνi |ψN (r)|2 
 μνi |ψN (3 GN Mi/2)|2 , (2.15)
i i
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in which we approximated r 
 R̄ Ni and used Eq. (2.13). Clearly, the 
above expression depends on the number νi of dust particles in 
the ith layer and the number 

∑i
j=0 ν j of dust particles in the mass 

Mi (and Ni ), which are yet to be determined. We shall see in the 
next Section how to estimate the distribution of particles νi and 
the corresponding energy density self-consistently.

3. Multilayered ground state

Since dust only interacts gravitationally, we can assume that the 
Hilbert space for the complete ball of mass M is given by the direct 
product H = ⊗N

i=1

(⊗νi
k=1Hi

)
of bound eigenstates (2.6) for the νi

dust particles in each layer with 
∑N

i=0 νi = M/μ.
We are here interested in the global ground state given by the 

product4

|{ν1, N1}, . . . , {νN , NN}〉 =
N⊗

i=1

|Ni〉νi (3.1)

of single layer ground states, each one containing νi dust particles 
in the state |Ni〉, and which further satisfy R̄ i � R̄ i+1. Given the 
uncertainty (2.10), the minimum thickness of the ith layer of inner 
radius R̄ i must be of the order of �Ri and the finest layering of 
the dust ball compatible with this quantum description is given by 
R̄ i+1 
 R̄ i + �Ri � 4 R̄ i/3. On assuming Ni � 1 for all i = 1, . . . , N , 
one finds

2 GN Mi = 4

3
R̄ Ni 
 R̄ Ni + �RNi 
 R̄ Ni+1 = 3

2
GN Mi+1 , (3.2)

or Mi+1 
 4 Mi/3, which implies that the mass of each layer 
μi 
 Mi/3. The quantum numbers for the relevant single particle 
ground states in Eq. (3.1) are therefore given by

Ni 

(

3

4

)N−i+1 μ M

m2
p

. (3.3)

In particular, the quantum number for dust particles in the 
ground state of the outermost layer (with i = N) is given by

Ns ≡ NN 
 3μ M

4 m2
p

, (3.4)

which yields the global ball radius

Rs ≡ R̄ Ns + �RNs 
 3

2
GN M . (3.5)

Since Rs < RH, the ground state of the dust ball can indeed be 
the core of a black hole, like it was found in Refs. [10–12]. It is 
remarkable that the radius (3.5) does not depend on the number 
N of layers, or any other quantity, except M . In fact, N only de-
termines how finely we describe the central region of the ball. In 
particular, the innermost core has radius R̄1 
 (3/4)N Rs and mass 
μ0 = M1 
 (3/4)N+1 M . Furthermore, it is interesting to note that 
multiplying Ns by the total number of particles M/μ recovers the 
black hole area quantisation5

M

μ
Ns ≡ NG ∼ M2

m2
p

∼ R2
H


2
p

, (3.6)

4 For our purpose, we do not assume any specific statistics for the dust particles. 
We expect that Pauli’s exclusion principle will affect the analysis for fermions.

5 For a solar mass ball made of neutrons, the quantum number Ns 
 1019 (corre-
sponding to NG 
 1076), which makes it practically impossible to study the wave-
functions (2.14) for realistic cases.
3

Fig. 1. Mass function Mi (dots) for N = 100 layers and its continuous approxima-
tion (3.7) (thin solid line). The innermost core has radius R1 
 3 · 10−13 Rs and 
mass M1 
 2 · 10−13 M .

which again agrees with the results for the dust ball described as 
a single quantum object [10–12] and with the coherent state de-
scription of the effective metric [6]. We remark that the numerical 
prefactor in Eq. (3.6) is not the same of the Bekenstein-Hawking 
entropy [20], but NG is an integer nonetheless, which suggests 
that mass and horizon area are quantised.6 It is certainly intriguing 
that this scaling of the black hole mass M appears in several dif-
ferent approaches to quantum collapse and black holes (see also, 
e.g. Refs. [22–24]).

The crucial result for our present purpose is that the discrete 
mass function Mi grows linearly with the areal radius Ri = R̄ Ni in 
the collective ground state, irrespectively of the number of layers 
N we employ to describe it. One can therefore introduce a contin-
uous effective energy density

ρ 
 M

4π Rs r2

 mp

6π 
p r2
, (3.7)

such that the Misner-Sharp-Hernandez mass function

m(r) = 4π

r∫
0

r2 ρ(r)dr = 2 mp r

3
p
(3.8)

equals the total ADM mass M for r = Rs (see Fig. 1).
Since dust particles in the ground state cannot collapse any fur-

ther, the quantum core is necessarily in equilibrium and one can 
determine the corresponding effective pressures from the isotropic 
metric

ds2 = −
(

1 − 2 GN m

r

)
dt2 +

(
1 − 2 GN m

r

)−1

dr2 + r2 d�2


 dt2

3
− 3 dr2 + r2 d�2 , (3.9)

for 0 ≤ r ≤ Rs. From Eq. (3.9), it is clear that there is no inner hori-
zon inside the ground state core, in agreement with the general 
results for spherical symmetry presented in Ref. [3]. We should 
further remark that the effective metric (3.9) cannot be used to de-
scribe any meaningful motion inside the core, since matter is fully 
collapsed and cannot further evolve (except for the Hawking evap-
oration which we neglect here). The usual analysis of geodesics 
and geometric invariants therefore remains of purely formal value, 
as is perhaps the notion of Lorentzian signature inside the quan-
tum core [21]. Nonetheless, the Ricci and Kretschmann scalars are 

6 The connection of Eq. (3.6) with the configurational entropy of the single dust 
core was investigated in Ref. [11] and the present case is work in progress.
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Fig. 2. Probability density (3.13) for N = 3, μ = mp/10, M3 = 1100 μ, corresponding 
to a black hole with M 
 150 mp and RH 
 300 
p.

given by R2 
 Rαβγ δ R
αβγ δ 
 64/9 r4, whose square roots are in-

tegrable as anticipated in the Introduction.
From the Einstein tensor of the metric (3.9), one readily obtains 

the effective radial pressure

pr 
 − m′

4π r2

 −ρ , (3.10)

similar to other constructions for the black hole interior (see [2,25–
28] and references therein), and the tangential pressure (or ten-
sion)

p⊥ 
 − m′′

8π r

 0 , (3.11)

where primes denote derivatives with respect to r. The vanishing 
of the tension inside each layer suggests that the system should 
be made to (differentially) rotate easily [12] and is therefore likely 
unstable under perturbations of the angular momentum.

Note that the outermost layer has an estimated thickness 
�R N 
 Rs/4 
 3 GN M/8 and contains μN/M 
 1/4 of the total 
mass. A more accurate description near the surface of the core 
that matches smoothly with the outer Schwarzschild geometry of 
ADM mass M can then be obtained from the effective energy den-
sity

ρ 
 M

4
|ψNs(r)|2 . (3.12)

The mass function is therefore not expected to remain linear for 
r � R̄ N and the tension will not vanish near the surface of the 
core. To clarify this point, we plot the probability densities

Pi = 4π r2 |ψNi (r)|2 = 4π μ−1
i ρi(r) (3.13)

for an example with N = 3 layers in Fig. 2, from which it appears 
that the probability of finding a particle of the ith layer inside 
both narrower and broader layers with j �= i is not zero. In par-
ticular, the wavefunction of dust particles in the ith layer overlaps 
with those in all the layers j < i. Since this fact was neglected 
in the derivation of the continuous approximation (3.7) from the 
discrete mass function Mi , we expect that the actual density de-
creases somewhat faster from the centre, which could particularly 
affect the amount of dust in the outermost layer. A more accurate 
description of the effective energy density of the outermost layer 
is left for future investigations.

4. Conclusions and outlook

We have improved on the quantum (one-body) description of 
the ball of dust introduced in Ref. [10] by dividing the ball into 
4

N layers, each of which contains dust particles described by quan-
tum states of the same general relativistic dynamics. By requiring 
that the thickness of each layer be given by the quantum uncer-
tainty in the location of the particles therein, we have obtained a 
unique collective ground state whereby the radius of the ball is 
determined by the total ADM mass M , irrespectively of N , and 
the horizon area is quantised according to Eq. (3.6), in qualita-
tive agreement with Bekenstein’s conjecture of the black hole area 
quantisation [20]. We should remark that these features follow 
from assuming that the number of dust particles in each layer is 
large and departures are expected to occur when this condition is 
violated (that is, for small black holes).

A continuous effective energy density was also estimated to 
match the discrete mass distribution found for N layers, which 
turns out to be precisely of the form in Eq. (1.1) almost every-
where inside the core. This latter result lends further support to 
the picture of quantum black holes described in Ref. [3]. An effec-
tive radial pressure of quantum origin exactly opposite the energy 
density sustains the ground state, whereas the tangential pressure 
is found to vanish, again almost everywhere inside the core, thus 
suggesting that the nature of dust is unaffected by quantum grav-
ity in a perfectly spherical configuration.

Of course, the present work is not free from shortcomings and 
limiting assumptions. As we mentioned in the Introduction, we a 
priori considered static configurations for the dust particles and did 
not even attempt at analysing the time evolution that could lead to 
the formation of the collective ground state. In principle, such an 
evolution should occur as dust particles progressively jump from 
higher excited states to lower levels [11], a clearly very complex 
process given the huge number of particles in an astrophysical ob-
ject. Furthermore, we considered dust particles when one would 
eventually like to describe matter by means of quantum excita-
tions of standard model fields and all of their interactions. The 
necessary existence of other interactions will give rise to addi-
tional pressure terms and could very significantly influence both 
the global size of the core and the effective energy density. Even 
without the inclusion of pressure terms, we argued that the energy 
density ρ ∼ |ψNs |2 in the outermost layer implies a different be-
haviour for the mass function and a non-vanishing tension at the 
surface of the core. A more accurate description of the core surface 
will become particularly relevant to understanding what happens 
when more matter accretes or the Hawking effect evaporates the 
core. We leave all of these complex issues for future investigations.
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