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Abstract
Infusing structured semantic representations into language models is a rising research trend underpinning many natural 
language processing tasks that require understanding and reasoning capabilities. Decoupling factual non-ambiguous concept 
units from the lexical surface holds great potential in abstractive summarization, especially in the biomedical domain, where 
fact selection and rephrasing are made more difficult by specialized jargon and hard factuality constraints. Nevertheless, 
current graph-augmented contributions rely on extractive binary relations, failing to model real-world n-ary and nested bio-
medical interactions mentioned in the text. To alleviate this issue, we present EASumm, the first framework for biomedical 
abstractive summarization empowered by event extraction, namely graph-based representations of relevant medical evidence 
derived from the source scientific document. By relying on dual text-graph encoders, we prove the promising role of explicit 
event structures, achieving better or comparable performance than previous state-of-the-art models on the CDSR dataset. We 
conduct extensive ablation studies, including a wide experimentation of graph representation learning techniques. Finally, 
we offer some hints to guide future research in the field.

Keywords Abstractive document summarization · Event extraction · Semantic parsing · Biomedical text mining · 
Knowledge-driven natural language processing · Natural language understanding

Introduction

International experts argue that language is the highest 
manifestation of human intelligence [1]. This makes learn-
ing knowledge from text one of the greatest challenges of 
modern artificial intelligence. Language is ambiguous, con-
sisting of several expressions that allude to the same fact 
and often lacking background knowledge for the mentioned 
entities. Despite capturing a massive amount of knowledge, 
current state-of-the-art language models—even with 1011 
parameters—struggle to separate high-level semantics from 
language structure [2, 3], acting as memories rather than 
intelligent networks. Consequently, they notoriously suffer 

from hallucinations, biases, low robustness, and fragility 
(vulnerability to adversary attacks) [4, 5] that severely limit 
their real-world application. Semantics is central to summa-
rization, where humans are asked to grasp the relevant parts 
of the input document, link them, and rephrase the selected 
entangled facts to create an original short text conveying 
as much information content as possible. These challenges 
are further emphasized by the biomedical literature, charac-
terized by documents having domain-specific terminology, 
elaborated links among entities, no space for interpretation, 
and no tolerance for factual mistakes. However, automatic 
summarization systems can substantially help healthcare 
professionals have a quick and reasonably close overview 
of the knowledge encapsulated in large scientific corpora, 
outlining a prerogative toolbox for efficient knowledge dis-
covery [6–9]. Standing on the shoulders of AI is even more 
important when we consider the accelerated speed of pub-
lication, which since 2020 has exceeded the threshold of 1 
million new papers on PubMed per year (3 per minute) [10].

Researchers together have cast doubt about whether pure 
data-driven methods based on deep neural architectures 
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would be sufficient to achieve understanding. The interpret-
ability requirement and the lack of grounding to the core 
interactions expressed in the document beg the question 
of whether symbolic representations may come to the res-
cue. Following this intuition, the community has recently 
investigated the integration of structured knowledge into 
neural language models [11], reckoning on external knowl-
edge graphs [12] or structured representations obtained 
via semantic parsing [13] and latent semantic correlations 
[14–16]. Depending on the graph’s nature, neuro-symbolic 
methods may thus target amplified understanding or knowl-
edge acquisition capabilities. Reaching the latter goal only 
with traditional pretraining approaches can be inefficient 
and expensive. For example, acquiring a fact like “Paraceta-
mol can treat cold” requires having a large number of co-
occurrences of “paracetamol” and “cold” concepts in the 
pretraining corpus. While the combination of language mod-
els and knowledge graphs is a research path already widely 
explored, the same does not apply to semantic graphs. Exist-
ing contributions merely extract flat, open-domain, and 
binary relations, which can result in inferring incomplete or 
incorrect facts non-useful for biomedicine [10, 17]. In this 
scenario, event extraction [10] appears as the most prom-
ising option for obtaining task-driven meaning representa-
tions. Under the umbrella of structured prediction, it aims 
to derive n-ary and potentially nested interactions between 
participants having a specific semantic role. We point out 
to the reader that events are released from the presence of a 
temporal element, and for clarity, we consider the following 
definition of event proposed in [10]:

“An event is a specific occurrence of something that 
happens and involves an arbitrary number of attrib-
utes and participants covering a specific semantic 
role, depending on the event type. The interaction (i.e., 
dynamic relation) modeled by an event represents or 
leads to some state change”

In this paper, the keyword “event” therefore stays for medi-
cal evidence mentioned in the scientific literature, in accord-
ance with previous works. Still, we are aware that this term 
may be misleading and requires revision [10].

We propose EASumm, the first model leveraging event 
extraction for abstractive single-document biomedical sum-
marization, adopting a tandem architecture combining text 
and graph representations. We test our solution on the CDSR 
dataset [18], and we prove how biomedical event extrac-
tion contributes to reserving the essential global context 
and keeping the connection between the most relevant enti-
ties, thus generating a higher quality summary (see Fig. 1). 
Extensive ablation studies prove the contribution of each 
module and quantify the impact of multiple graph represen-
tation learning techniques.

This is an extension of [19], where we test multiple rela-
tion-aware graph representation learning modules, dissect 
event extraction in more details, clarify our methodology 
with details and algorithms, and openly release all code and 
data.

The rest of the paper is organized as follows. The fol-
lowing section examines related work. “Event extraction” 
provides a more extensive discussion on event extraction. 
Then, “Graph construction” presents our event-based strat-
egy for deriving structured medical evidence from the source 
text. Next, “Model” details our model, from the architecture 
design to the training objectives. “Experimental setup” illus-
trates our experimental setup, while “Results” showcases the 
results obtained. Finally, “Conclusion” reports the conclu-
sions and points out future directions.

Fig. 1  Qualitative example of event-driven biomedical abstractive summarization. The event graph localizes relevant information for entities and 
triggers, providing a global context pivotal for generating a better-quality summary. Figure taken from [19]
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Related Work

Abstractive Document Summarization

Summarizing text demands generating a concise summary 
discarding unnecessary attributes, and preserving the salient 
notions of the source document. Notably, abstractive sum-
marization does not imply simply copying phrases from the 
source text but also coming up with new content, echoing 
a human-like interpretation and paraphrasis. Transformer-
based language models have achieved astonishing results in 
recent years, mainly thanks to deep encoder-decoder archi-
tectures and self-supervised pretraining. In a nutshell, the 
encoder maps the source tokens into a sequence of continu-
ous representations while the decoder reads them and autore-
gressively generates the summary one token at a time. Their 
ability to learn universal representations from large volumes 
of unlabeled text data and then transfer such knowledge to 
downstream tasks has revolutionized the abstractive sum-
marization research sphere [20–25]—even in low-resource 
[26, 27] and multi-document settings [28]. Nevertheless, 
quantitative studies and large-scale human evaluations [29] 
have confirmed that current text generators are still heavily 
victims of hallucinations and prone to produce summaries 
that are unfaithful to the input documents. For this reason, 
the latest solutions are mostly knowledge-driven or tend to 
complement training with reinforcement learning modules 
to improve informativeness and consistency [30–32].

Graph‑Enhanced Summarization

Human language is highly ambiguous, with multiple ways to 
express the same concept unit, where the underlying mean-
ing is oftentimes altered by high-level linguistic constructs. 
Additionally, a single sentence may incorporate various 
predicate-argument structures. Despite these observations, 
current language models only consider the superficial organ-
ization of the text document, which is almost irrelevant to 
identifying its real and deeper semantic content [13]. Climb-
ing towards natural language understanding, an increasing 
number of researchers argue that a model trained purely on 
the form will never learn the meaning, lacking signals to 
learn non-linguistic relations [33].

To this end, structured representations allow different 
quality improvements (e.g., coherence, factuality, low redun-
dancy, long-range dependencies, informativeness, consist-
ency) depending on how they are constructed. In particular, 
semantic parsing graphs normalize lexical and syntactic 
variations, providing formal meaning representations capa-
ble of decoupling concept units (what to say) from language 
competencies (how to say it).

Graph structures have long been used for extractive sum-
marization. In this sense, early approaches, such as Tex-
tRank [34], propose unsupervised keyword and sentence 
extraction methods exploiting graph-based ranking algo-
rithms to determine each vertex’s importance. Extensions 
have been devised to incorporate document-level informa-
tion [35] or introduce graph-based attention into encoder-
decoder architectures [36]. As for abstractive summaries, 
results are mostly built on the cross-cutting success of graph 
neural networks (GNNs), a famed class of deep learning 
methods designed to process graph-represented data without 
imposing linearization or hierarchical constraints. Fernandes 
et al. [37] combine sequence encoders with GNNs feed with 
weakly-structured data inferred by the text through off-the-
shell NLP tools, including named entity recognition and 
coreference resolution; the final model compares favorably 
with baselines using only the sequential or graphical struc-
ture. Structured summarization also relates to the graph ver-
balization trend [38–40], where inputs may originate from 
knowledge graphs, information extraction or semantic pars-
ing techniques. Instead of tackling a graph-to-text approach, 
An et al. [41] redefines the task of scientific papers sum-
marization by utilizing a graph-enhanced encoder on top 
of a citation network. To concretize a text-graph comple-
mentary view—where GNN channels are used in addition 
to traditional document encoding—many researchers have 
tried different ways of automatically building a machine-
readable knowledge representation linked to the underly-
ing text [42–44], also considering different level of granu-
larities, like entities and sentences [45]. OpenIE [46] and 
Stanford CoreNLP [47] are undoubtedly the two most popu-
lar libraries, targeting triplets and coreference resolution, 
respectively.

Importantly, graph-LSTMs appear as one of the most 
effective ways for constructing graph-guided summariz-
ers [32, 37, 39, 41, 44, 45], being competitive with large 
pretrained language models at a lower computational and 
environmental cost.

Event Extraction

Relation extraction (RE) systems primarily focus on 
highly-extractive binary relations, giving rise to a list 
of < subject, predicate, object > triplets connecting only 
entity-mention pairs. Despite their simplicity, flat triplets 
in biomedical science are notoriously inadequate to cap-
ture the source document’s complete biological meaning 
(see “Comparison with Relation Extraction”). Per contra, 
event extraction (EE) systems can handle n-ary complex 
relations with nested and overlapping definitions. Remark-
ably, the EE history is very intertwined with biomedicine. 
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According to the BioNLP-ST competitions [48–50], events 
are composed of a trigger (a text span which testifies their 
occurrence, e.g., “interacts”, “regulates”), a type (e.g., 
“binding”, “regularization”), and a set of arguments with 
a specific role (e.g., “cause”, which can be typed entities 
or events themselves. Please note that the event schemas 
(i.e., target event, entity, and role types) are pre-estab-
lished, conforming to a reference ontology. Hence, differ-
ently from linguistically grounded semantic parsing tech-
niques like abstract meaning representation (AMR), EE is 
domain-specific and—given an input sentence—outputs a 
graph only in case of evidence of interest.

Comparison with Relation Extraction

EE and RE have a lot of common ground. They both aim 
to detect relations from raw text and build structured, 
machine-readable representations. In RE settings, a rela-
tion can be defined as R = r(a1, a2, .., an) where r is a rela-
tion type and ai ∀i = 1,… n is typically an entity. When 
n > 2 , we say that R is a complex relation. Most of the 
RE systems, such as Open-IE, are not capable of extract-
ing complex relations, they usually detect general-domain 
directed or undirected binary relations ( n = 2 ). The set of 
triples r(a1, a2) might not be sufficient to represent under-
lying knowledge correctly, especially in biomedicine. 
This simplification of the original ground-truth complex 
structure may lead to the extraction of incomplete, unin-
formative, or erroneous facts [10, 17]. Events have been 
precisely designed to solve these limitations, targeting a 
set of sophisticated closed-domain interactions. Figure 2 
illustrates a real-world biomedical example recapping the 
crucial expressiveness divergences between RE and EE 
outputs.

Biomedical Event Extraction

A series of datasets have been proposed to improve EE 
research. Among these, we highlight the series of BioNLP 
shared tasks (BioNLP-STs) [10]. The labeling process is 
curated by domain experts, resulting in gold standards that 
can be used for training or benchmarks. The availability and 
coverage of biomedical EE corpora are still retained by the 
extremely expensive annotating process. For instance, anno-
tating the GENIA corpus—one of the most popular biomedi-
cal EE datasets —took 1.5 years with five part-time annota-
tors and two coordinators [51]. Such complexity-motivated 
cost hinders the number of examples, with training sets that 
typically consist of < 300 instances. Another known problem 
is related to class imbalance, meaning that a large portion of 
event types might be under-represented.

Annotations for a certain text document (.txt) are saved 
in standoff .a* files, where a distinction is made between 
.a1 and .a2. Pointedly, an .a1 file encodes information about 
gold entities; instead, an .a2 file encodes information about 
triggers and the events rooted in them (i.e., reference multi-
relational interconnections between entities and triggers). 
Figure 3 shows an example. Each line in an .a* file refers 
to a single annotation. In turn, each annotation is made of 
multiple attributes separated by a single TAB character, 
always including an identifier. Entity and trigger annotations 
are accompanied by their type (e.g., “Gene” for an entity, 
“Localization” for an event), the (start, end) character off-
set of their mention, and the marked text. Instead, an event 
annotation consists of a SPACE-separated set comprising 
the trigger and the related arguments (entities or other trig-
gers in case of sub-events). The event trigger is specified as 
TYPE:ID, thus identifying the event type and its trigger 
through the identifier. The event arguments are indicated as 
ROLE:ID pairs, thereby listing the semantic role and the 
argument identifier filling that role. So, by convention, the 
event type is stated both in the trigger and event annotation. 
Note that several events can share the same trigger and that, 
while the event trigger should be specified first, the event 
arguments can appear in any order.

Graph Construction

We construct graphs from raw documents applying Deep-
EventMine (shortened as DEM) [52], a sentence-level EE 
discriminative neural network with state-of-the-art results on 
seven biomedical tasks. DEM does not depend on gold enti-
ties but carries out named entity recognition in end-to-end 
without losing too much performance. Starting from SciB-
ERT contextual representations [53], DEM enumerates all 
the possible text spans in a sentence up to a certain window 
length, then executes a joint detection and classification flow 
of (1) entities and triggers, (2) roles, (3) events and modi-
fiers, through custom layers.

Following Frisoni et al. [54], we shape events as multi-
relational graphs. Ergo, an event graph G = (V ,E) consists 
of a finite set of nodes V = v1,… vV—triggers or entities—
and a set of edges E ⊆ V × V modeling entity-trigger or trig-
ger–trigger relations, with the seconds applying for nested 
events. Edges are directed, labeled, and unweighted, with no 
cycles. Both nodes and edges in G are associated with type 
information; hence, the graph is heterogeneous and multi-
relational. An edge ei,j connects node vi to node vj . Entities 
that don’t belong to any event are ignored during graph con-
struction. Node connections are encoded in an adjacency 
matrix A ∈ ℝ

V×V , where aij = 1 if there is a directed link 
from vi to vj , and 0 otherwise. We operate graph rewiring by 
adding a master node connecting all event nodes to enhance 
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Fig. 2  Comparison between 
semantic graphs obtained with 
closed-domain event extrac-
tion and open-domain relation 
extraction on a sentence taken 
from a PubMed article. The 
prediction enclosed in the green 
box comes from DeepEvent-
Mine MLEE, while the other 
is made with OpenIE 5.1 
(https:// github. com/ dair- iitd/ 
OpenIE- stand alone). An event 
graph maps complex interac-
tions mentioned in the text to 
a linkage between the trigger 
(dark gray) and entity (light 
gray) nodes, labeling edges and 
arguments with pre-defined 
roles and types aligned with an 
ontology. On the other hand, 
an OpenIE graph collects a 
possible set of triplets consist-
ing of untyped text phrases. The 
OpenIE graph is merely extrac-
tive, error-prune, and devoid 
of additional metadata; worse, 
it does not capture semantic 
interconnections between n-ary 
participants, often ignoring 
crucial conditions for the cor-
rectness of a triplet or extract-
ing incomplete facts difficult 
to merge with post-processing  
Figure taken from [19]

Fig. 3  Example of.txt, .a1, and.
a2 files

https://github.com/dair-iitd/OpenIE-standalone
https://github.com/dair-iitd/OpenIE-standalone
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the information flow and ensure we end up with a single 
graph rather than a set of small disjoint graphs.

Model

Our model observes a biencoder-decoder architecture 
(depicted in Fig. 4), taking inspiration from [32]. It takes 
two inputs, the sequence of all tokens present in the docu-
ment x = xk and the event graph G, constructed as explicated 
in “Graph construction”.

Document Encoders

The sequence of tokens x is fed to a bidirectional trans-
former-based encoder. We take token embeddings from the 
output of the last layer and pass them to a multi-layer bidi-
rectional LSTM (BiLSTM), thus gaining the sequence of 
encoder hidden states hk . We implemented the following 
BERT [55] variants.

SciBERT

SciBERT [53] performs pretraining on a multi-domain cor-
pus of scientific publications containing 1.14 M biomedical 
and computer science papers. It uses an in-domain vocabu-
lary (SciVocab), characterized by a 42% token overlap with 
respect to the original BERT vocabulary, spotlighting a sub-
stantial difference in frequently used words between scien-
tific and general-domain texts.

RoBERTa

RoBERTa [56] provides an updated version of BERT 
by optimizing its training process. The model is pre-
trained longer, with bigger batches and over more data. 
The next sentence prediction objective is removed. 
Longer sequences are taken into account, and the mask-
ing pattern—applied to the training data—is dynamically 
changed.

Graph Encoders

Node Initialization

Each node feature vi is initialized by taking into account 
both its text span and entity/trigger type. First, we aver-
age the per-token hidden states hk corresponding to the 
matched text. Then, we concatenate the acquired repre-
sentation to the argument type embedding sa (or trigger 

type embedding st ) learned by DEM. On this point, we 
believe that type metadata can play a vital role in augment-
ing the understanding capacity of the model and resolving 
ambiguities. The master node is represented by a 0-vector.

Graph Neural Network

Subsequently, the graph G is passed to a GNN. To assess 
the impact of edge features and broadly compare all the key 
graph representation learning techniques available in the 
literature, we explore both non-relation-aware and relation-
aware architectures (sketched in Fig. 5). Indeed, the demand 
for processing edge-featured graphs is quite common in bio-
medical tasks. For example, let’s assume that the node “pan-
toprazole” is connected to “reflux”: the edge type—“treat” 
or “cause”—can utterly change the meaning of the relation. 
It is clear that, in such a situation, edge features can be at 
least as significant as those of nodes. On the other side, tradi-
tional GNNs represent structural links through binary adja-
cency matrices and cannot handle multi-relational graphs 

Fig. 4  Our event-augmented summarization framework. The sum-
mary is generated by attending both the event graph and the input 
document  Figure taken from [19]
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equipped with additional edge-type information. Ergo, our 
work evaluates the presence or absence of benefits due to the 
consideration of the edge type for summarization purposes, 
based on current GNN contributions.

Graph Attention Network

We adopt a Graph Attention Network (GAT) variant intro-
duced in [39], working with a self-attention setup where N 
independent heads are calculated and concatenated before 
a residual connection is applied. Fundamentally, each node 
embedding v̂i is obtained from a weighted average of its 
neighboring nodes N(vi):

where �n
i,j

 is the attention mechanism tied to the n-th atten-
tion head, applied to node vi and node vj . W∗ are trainable 
parameters.

(1)𝛼
n
i,j
=

exp
�
(W1,nvi)

⊤W2,nvj
�

∑
z∈N(vi)

exp
�
(W1,nvi)

⊤W2,nvz
� ,

(2)v̂i =vi + ‖N
n=1

�

j∈N(vi)

𝛼
n
i,j
W0,nvj,

Edge‑Aware Graph Attention Network

Edge-Aware Graph Attention Networks (EGATs) [57] are 
a variant of GATs with an edge-type-aware message pass-
ing. The attention weights �n

i,j
 are not only influenced by 

the features of the two nodes vi and vi , but also by the 
features of the edge connecting them ei,j . We represent the 
latter through edge-type one-hot embeddings. The node 
representation learning process is the following:

where [… ‖…] indicates a concatenation and �� a learnable 
weight vector.

(3)tn
i,j
=LeakyReLU

(
�
�T
[
�

�
vi ∥ �

�
vj ∥ �

�

�
ei,j

])
,

(4)�
n
i,j
=

exp
�
tn
i,j

�

∑
z∈N(vi)

exp
�
tn
i,z

� ,

(5)v̂i = ‖N
n=1

�

j∈N(vi)

LeakyReLU

�
�

j∈N(vi)

𝛼
n
i,j
W

n
vj

�
,

(a) (b)

Fig. 5  a Illustration of multi-head attention (with K = 3 heads) by 
node 1 on its neighborhood. Each arrow represents an independent 
attention computation. b Diagram showing the update of a single 

event-graph node (red) in the R-GCN model. GAT and R-GCN archi-
tectures used for event graph encoding
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Relational Graph Convolutional Network

Relational Graph Convolutional Networks (R-GCNs) 
[58] are an extension of graph convolutional networks 
(GCNs) capable of modeling multi-relational data. Intui-
tively, relation-specific transformations are introduced, 
depending on the type and direction of an edge:

where N(vi)
r denotes the set of neighbor indices of node i 

under relation r ∈ R . A central issue with applying Eq. (6) is 
the exponential growth in parameters as the number of rela-
tion types increases. This easily brings to large-size models 
and overfitting on rare relations. Centrally, R-GCNs treat 
edge types as class labels, which indicates that edges cannot 
include continuous attributes.

Levi Graph Transformation and Graph Attention 
Network

To ponder edge features, instead of modifying the model 
architecture by replacing the GAT module with an R-GCN 
or EGAT, we can transform the input graph into its equiva-
lent Levi graph [59]. Similarly to [32, 60, 61], each edge 
ei,j is turned into an additional node directly connected to 
its original linking nodes vi and vj (Fig. 6). The new edge 
set contains an edge for every < node, edge > pair in the 
original graph. We end up with an unlabeled directed graph 
(bipartite by definition) without the risk of parameter explo-
sion. Edges are represented and initialized in the same way 
as nodes, with features given by their type description. Using 
this strategy, the GNN naturally generates hidden states even 
for edges.

(6)v̂i = ReLU

(
∑

r∈R

∑

j∈N(vi)
r

1

|N(vi)
r|
Wrvj +W0vi

)
,

Decoder

The decoder uses a multi-layer unidirectional LSTM that 
generates summary tokens recurrently, exploiting at each 
time step t the graph and the document context vectors cv

t
 

(Eq. 7) and ct (Eq. 9).

Attending to the Graph

The graph context vector is computed based on the decoder 
hidden state st:

where av
i,t

 denotes the attention mechanism from [62] cor-
responding to the ith node at time step t:

u∗ are also trainable parameters.

Attending to the Document

Similarly, the document context vector is calculated over 
input tokens by considering cv

t
 and encoder hidden states hk:

where ak,t denotes the attention corresponding to the k-th 
input document token at time step t:

(7)cv
t
=
∑

i

av
i,t
v̂i,

(8)av
i,t
= softmax

(
uT
0
tanh

(
W3st +W4v̂i

))
.

(9)ct =
∑

k

ak,thk,

(10)ak,t = softmax
(
uT
1
tanh

(
W5st +W6hk +W7c

v
t

))
.

Fig. 6  Example of Levi trans-
formation on an event-graph. 
Red nodes and edges are added 
as a kind of graph rewiring
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Token Prediction

The decoder hidden state st is concatenated to the graph 
and document context vectors, expressing the salient content 
coming from both sources. This final representation is used 
to determine the probability distribution of the vocabulary 
vocab at time step t:

We also include a copy mechanism as in [32] to check out 
the embedding of the token generated at the previous time 
step yt−1:

Pcopy,t ∈ [0, 1] is used as a soft switch to decide between 
generating a token from the vocabulary by sampling from 
Pvocab,t , or copying a token from the input sequence by sam-
pling from the attention distribution ak,t . The probability of 
generating the token w at time t is given by:

Training Objective

We employ a negative log-likelihood loss function between 
the generated summary ŷ and the ground-truth y:

where x are the source documents and y and are the target 
summaries from training set D, G is the graph constructed 
from x, and � = {W∗, u∗} is the set of the model trainable 
parameters.

Pseudocode

Algorithm 1 provides a concise explanation of the autore-
gressive generation of summary tokens y, starting from input 
document x.

(11)Pvocab,t = softmax(W out [st‖ct‖cvt ]).

(12)Pcopy,t = �(Wcopy[st‖ct‖cvt ‖yt−1]).

(13)Pt(w) = Pcopy,tPvocab,t(w) +
(
1 − Pcopy,t

) ∑

k∶wk=w

ak,t.

(14)L = −
1

|D|
∑

(y,x)∈D

log p�(y ∣ x,G),

Experimental Setup

Dataset

We evaluate EASumm on the CDSR dataset [18], a publicly 
available corpus designed for assessing the automated gener-
ation of lay language summaries from biomedical scientific 
reviews. Besides creating accurate and factual summaries, 
this benchmark also requires a joint style transition from the 
original language of healthcare professionals to that of the 
general public. By imposing high abstraction and biomedi-
cal explanation constraints, CDSR is an ideal testbed. The 
training, validation, and test sets contain 5178, 500, and 999 
samples. The documents can be downloaded directly from 
the Cochrane Database of Systematic Review1 As for EE, 
each source document was split into a set of sentences and 
passed to DEM; the results were saved in standoff .a ∗ files. 
Statistics about the total numbers of events, entities, and 
triggers extracted by DEM are detailed in Table 9.

Training Details and Parameters

All experiments were run using a single NVIDIA GeForce 
RTX 3090. We used the cased version of SciBERT to extract 

1 https:// www. cochr aneli brary. com/ cdsr/ revie ws (accessed Nov. 4, 
2022). We point out to the reader that the authors claim a slightly 
higher number of examples (5195, 500, and 1000), then removed 
from the official repository.

https://www.cochranelibrary.com/cdsr/reviews
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token embeddings. Hyperparameters are listed in Table 1. 
We implemented RGCN and EGAT with Pytorch Geo-
metric [63], while GAT is drawn on [43]. We used the ver-
sion of DEM pretrained on the MLEE task2 [64]—the EE 
benchmark linked to the biomedical domain most aligned 
to CDSR based on empirical tests (see “Event extraction 
dataset selection”).

Material

For replication purposes, the code and the dataset are pub-
licly available at https:// github. com/ disi- unibo- nlp/ easumm.

Baseline Methods and Comparisons

We conduct comprehensive ablation studies by testing differ-
ent EASumm variants (hereinafter shortened as EAS), which 

we denote through the suffix, with “−” symbolizing a mod-
ule exclusion and “ + ” an addition/substitution:

• −G stands for the graph encoder exclusion;
• + RB indicates the adoption of RoBERTa [56] instead of 

SciBERT to generate source document tokens embed-
dings;

• −TypE refers to the node type exclusion during the ini-
tialization;

• + EGAT  + RGCN specify the adoption of EGAT and 
RGAT, respectively, in replacement of GAT;

• + BIp suggests the employment of the Levi transforma-
tion on GAT-processed event graphs to treat nodes and 
edges equally.

For a comparative analysis, we experiment with two extrac-
tive methods:

• Oracle extractive: it creates an oracle summary by select-
ing the set of sentences in the document that generates 
the highest ROUGE-2 score with the ground-truth sum-
mary (i.e., syntactic match upper bound);

• BERT [55]: inter-sentence encoder with classification 
head, supervised through an Oracle extractive signal;

and two abstractive methods:

• Pointer generator [65]: standard seq2seq model with a 
pointer network that allows both copying words from the 
source and generating new words from a fixed vocabu-
lary;

• BART  [25]: full-transformer pretrained on large corpora 
by reconstructing text after a corruption phase with an 
arbitrary noising function. We also take into account a 
variant with additional pretraining steps on PubMed to 
compensate for the limited training data. Specifically, we 
use the PMC articles dataset,3 containing 300K PubMed 
abstracts.

Evaluation

Quantitative Analysis

As done in [18], we use ROUGE [66] to evaluate the sum-
marization performance. ROUGE-n quantifies the overlap 
of n-grams between the model-generated summary and 
the human-generated reference summary, and ROUGE-
L measures the longest matching sequence of words 
using the longest common subsequence. We report the 

Table 1  Final picked values for model hyperparameters

Hyperparameters

LSTM input word embedding size 128
LSTM hidden embedding size 256
LSTM number of layers 2
Dropout rate 0.1
Learning rate 1×10−3

Optimizer AdamW (0.9 
�
1
 , 0.999 

�
2
 , 0.5 w. 

decay)
Decoding strategy Beam Search
Number of beams 5
GAT 
Number of self-attention heads 4
Hidden size 556
Node size 556
EGAT 
Hidden size 556
Node size 556
Edge size 10
Number of layers 2
R-GCN
Hidden size 556
Node size 556
Number of relations 10
Regularization Block-diago-

nal-decom-
position (4 
blocks)

Aggregation scheme Mean

2 http:// nactem. ac. uk/ MLEE. 3 https:// www. kaggle. com/ cvltm ao/ pmc- artic les.

https://github.com/disi-unibo-nlp/easumm
http://nactem.ac.uk/MLEE
https://www.kaggle.com/cvltmao/pmc-articles
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ROUGE-1, ROUGE-2 and ROUGE-L scores computed 
using pyrouge.4

Given the supplementary scientific → public language 
translation objective of the CDSR task, other than informa-
tiveness, we are interested in measuring the ease with which 
a reader can understand a passage, defined as readability. 
We use three standard metrics for this goal: Flesch-Kincaid 
grade level [67], Gunning fog index [68], and Coleman-Liau 
index [69]. Their equations are as follows:

• Flesch-Kincaid grade level

• Gunning fog index

 where complex words are those words with three or more 
syllables.

• Coleman–Liau index

 where L and S are the average numbers of letters and 
sentences per 100 words, respectively.

All these evaluation metrics are computed using text-
stat5 and estimate the years of formal education a person 
needs to understand the text. Lower scores indicate that the 
text is easier to read; for instance, scores of 13–16 corre-
spond to college-level reading ability in the United States 
education system.

Qualitative Analysis

Automatic evaluation metrics for summarization are not able 
to grasp all the desired quality dimensions, particularly in 
highly abstractive settings grounded on semantics [70]. To 
fill this gap, we run an in-depth human evaluation study to 
analyze proper text properties and identify primary error 
sources. We randomly sample 50 CDSR test set instances 
and engage three native or fluent English speakers with bio-
medical expertise (average age: 24.6 years old; average time 
for completion: 2 h; education level: 1 PhD and 2 master 
students; no compensation). Selection criteria guarantee that 
our annotators are representative of the college-educated lay 
public. Precisely, we presented each human rater with the 
source document, the inferred summary, and the reference 

(15)

0.39
(

total words

total sentences

)
+ 11.8

(
total syllables

total words

)
− 15.59,

(16)0.4

[(
words

sentences

)
+ 100

(
complex words

words

)]
,

(17)0.0588L − 0.296S − 15.8,

summary. Then, we asked raters to judge the prediction 
along three quality criteria with a Likert scale from 1 (worst) 
to 5 (best).

• Informativeness. Does the summary supply enough nec-
essary content coverage from the input article?

• Fluency. Does the text progress naturally? Is it gram-
matically correct (e.g., no fragments and missing com-
ponents) and coherent whole?

• Understandability, CDSR-related [18]. Is the summary 
more effortless to understand than the source?

We even invite evaluators to binary label whether sum-
maries contain any of the following classes of unfaithful 
errors: (1) Hallucination, fabricated content not present in 
the input; (2) Deletion or substitution, erroneously missing 
or edited elements (e.g., entities with altered semantic role); 
(3) Repetitiveness, repeated fragments. Complete guidelines 
are in “Human evaluation guideline”.

Results

Automated Summary Evaluation

Evaluation on full dataset

Table 2 exhibits the results of our presented models com-
pared to baseline methods. Notably, EASumm gives better 
ROUGE scores than all its variants. The positive effect of the 
event graph is motivated by the performance drop associated 
with EASumm−G. Features obtained via a domain-coherent 
language model like SciBERT contribute to superior results 
than RoBERTa. Further, the graph encoder in the RoBERTa 
implementation does not furnish any progress over the solu-
tion without it. Type-augmented node initialization tech-
niques show clear advantages, confirming our hypotheses on 
the usefulness of domain-specific and semantic text augmen-
tations pulled by DEM. EASumm significantly outperforms 
BERT, pointer generator, and plain Bi-LSTM architectures 
but does not beat BART (quality gap of ≈ 6 ROUGE points), 
despite greater readability on average. This behavior sug-
gests a future direction of developing event-driven models 
on top of a large pretrained encoder-decoder model such as 
BioBART [71]. By contra, we emphasize the lightness of 
our final model compared to BARTBASE∕LARGE , which counts 
8 M trainable parameters instead of 139 M/406 M (up to 
50x fewer weights). Finally, we mention the importance of 
expanding training data with more biomedical corpora.

4 https:// github. com/ bhein zerli ng/ pyrou ge.
5 https:// pypi. org/ proje ct/ texts tat/, version 0.72.

https://github.com/bheinzerling/pyrouge
https://pypi.org/project/textstat/
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Evaluation on Subsets

As documented in “Event extraction dataset selection”, 
the number of events extracted in each document may be 
contained, leading to sparse graphs with few nodes. Thus, 
we suspect that the graph encoder contribution could be 
capped, expecting a more noticeable performance gap 

regarding EASumm−G for those documents containing a 
larger number of events extracted per sentence (abbrevi-
ated as EEpS). Following this line of thought, we assem-
bled four subsets where source documents have an EEpS 
greater than 0.1, 0.2, 0.3, and 0.4. Table 3 reveals the 
ROUGE scores on each of the four subsets for the differ-
ent model variants and BARTBASE . As EEpS increases, the 
performance gap between the solutions with and without 
graph encoder widens, proving our speculation. We can 
also notice how the EASumm performance gets closer to 
BARTBASE . Given the linear relationship between EEpS 
and the ROUGE gap—emerged from our empirical exper-
iments, we conjecture that the deficit can be wiped out 
entirely with event extraction models pretrained on sen-
tences conveying topics more aligned to the CDSR ones 
(Table 4).

The Impact of Relations During Graph 
Representation Learning

As pointed out in Tables 5 and 6 from the point of view 
of ROUGE scores, the solutions adopting EGAT and Levi 
transformation yield the best results, underlining the major 
limit of RGCNs, which is not being able to process custom 
representations for edge features. Distinctly, EGAT is the 
graph modeling technique that most benefits from higher 
EEpS; by contra, the other two methods are characterized by 
fluctuating ROUGE scores with respect to EEpS. In terms of 
readability, EGAT dominates all three metrics, followed by 
RGCN and Levi transformation. Surprisingly, we couldn’t 
improve the original solution that ignores relation types 
when encoding the graph. However, by looking at the dis-
tribution of relation types (see Table 4), we notice that it is 
extremely uneven. In particular, almost all nodes are linked 
by either an Instrument or Theme edge. The other 8 relation 

Table 2  Automated evaluation 
on the full test set of CDSR 
with ROUGE and readability 
metrics

Top: extractive models. Middle: abstractive models. Bottom: our event-augmented abstractive models. The 
best scores for each model type are boldened

Model ROUGE-1 ROUGE-2 ROUGE-L Flesch-Kincaid Gunning Coleman-Liau

ORAClE ExTRACTIvE 53.56 25.54 49.56 14.85 13.45 16.13
BERT 26.60 11.11 24.59 13.44 13.26 14.40
pOINTER GENERATOR 38.33 14.11 35.81 16.36 15.86 15.90
BARTBASE 51.39 20.81 48.56 14.31 18.13 14.00
BARTLARGE 52.53 21.83 49.75 13.59 14.16 14.45
BARTLARGE+puBmEd 52.66 21.73 49.97 13.30 13.80 14.28
Ours
EAS-G+RB 44.23 18.03 41.68 14.05 17.86 14.05
EAS+RB 44.12 17.82 41.60 13.57 17.29 13.77
EAS-G 44.68 17.95 42.25 12.41 16.76 12.82
EAS-TypE 45.41 18.36 42.99 12.14 16.40 12.91
EAS 46.30 18.73 43.78 12.42 16.68 13.06

Table 3  ROUGE performance on four testset subsets, depending on 
the minimum number of extracted events per sentence (EEpS)

↑ and ↓ symbols denote the score increase and decrease w.r.t. the pre-
vious subset, respectively

EEpS Model R-1 R-2 R-L

> 0.4 BARTBASE 49.55 18.89 46.60
EAS-G+RB 44.45 17.65 41.13
EAS+RB 45.97 17.88 42.95
EAS-G 45.41 17.60 42.38
EAS 47.29 ↑ 18.50 ↑ 44.60 ↑

> 0.3 BARTBASE 49.75 19.12 46.70
EAS-G+RB 44.53 17.09 41.54
EAS+RB 44.97 16.96 42.09
EAS-G 43.87 16.77 41.14
EAS 46.77 ↑ 17.95 ↓ 44.14 ↑

> 0.2 BARTBASE 49.81 19.31 46.84
EAS-G+RB 44.15 16.92 41.34
EAS+RB 44.16 16.86 41.44
EAS-G 43.78 16.79 41.07
EAS 46.10 ↓ 18.19 ↓ 43.42 ↓

> 0.1 BARTBASE 50.77 20.23 47.81
EAS-G+RB 44.45 17.55 41.73
EAS+RB 44.48 17.41 41.82
EAS-G 44.67 17.50 42.06
EAS 46.18 18.39 43.51
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types don’t seem to have a relevant impact; therefore, we can 
easily understand why this negatively affects the potential 
contribution of edge-aware solutions (Fig. 7).  

Fig. 7  Performance gap—
measured as R̃ (average of 
ROUGE-1, ROUGE-2, and 
ROUGE-L)—between event-
augmented models and the 
number of extracted events per 
sentence (EEpS). With EAS and 
EAS+RB, the gap is measured 
w.r.t. variants without the graph 
encoder. BART:EAS tracks 
the gap between the fine-tuned 
BARTBASE and EAS

Table 4  Absolute frequencies of 
event extraction relation types 
identified in the whole dataset

Instrument Theme Cause ToLoc Participant FromLoc AtLoc

11,387 10,812 152 20 8 2 5

Table 5  Automated evaluation 
on the full test set of CDSR 
with ROUGE and readability 
metrics for EASumm models 
with relation-aware graph 
representation learning

The best scores for each model type are boldened

Model ROUGE-1 ROUGE-2 ROUGE-L Flesch-Kincaid Gunning Coleman-Liau

EAS+ EGAT 45.14 18.16 42.73 12.21 16.32 12.71
EAS+ RGCN 44.79 17.74 42.36 12.40 16.59 13.02
EAS+ BIp 45.35 17.96 42.90 12.26 16.51 12.98
EAS 46.30 18.73 43.78 12.42 16.68 13.06

Table 6  Link between ROUGE performance and minimum number 
of extracted events per sentence (EEpS) in the case of relation-aware 
graph representation learning

EEpS Model R-1 R-2 R-L

> 0.4 EAS+EGAT 46.35 18.35 43.62
EAS+RGCN 45.28 18.11 42.25
EAS+BIP 45.94 17.16 42.91

> 0.3 EAS+EGAT 45.33 17.33 42.77
EAS+RGCN 44.49 17.04 41.78
EAS+BIP 44.71 16.78 41.76

> 0.2 EAS+EGAT 45.71 17.90 43.14
EAS+RGCN 44.73 17.10 42.05
EAS+BIP 45.17 17.14 42.42

> 0.1 EAS+EGAT 45.29 18.03 42.76
EAS+RGCN 45.20 17.48 42.57
EAS+BIP 45.54 17.62 42.89

Fig. 8  Comparison between EAS with BiLSTMs (ours) and 
BART

BASE
 in terms of inference time and carbon footprint on the 

CDSR test set
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Inference Time and CO
2
 Impact

As motivated by the latest graph-enhanced summarizers [41, 
44, 45], we do not utilize an encoder-decoder architecture 
based on pretrained language models due to their environ-
mental cost and computational requirements. Although 
our model only uses BiLSTM and GNN structures (graph-
LSTM), experimental results prove that it still achieves 
competitive performance. Furthermore, compared to SOTA 
generators like BART, BiLSTM is a lightweight architecture 
in terms of size, inference time, and CO2 impact—tracked 
with CodeCarbon [72] (Fig. 8). Indeed generating a single 
summary with BARTBASE requires 2.65 seconds and pro-
duces 7.9 × 10−2 grams of  CO2, while EASumm needs just 
0.75 s and consumes 7.9 × 2−2 grams of  CO2. The adoption 
of Green NLP technology can revolutionize the way we use 
AI to understand and address environmental issues [73].

Human Evaluation

Table 7 portrays the results of human evaluations. The aver-
age inter-rater agreement is 0.61 (Kendall’s coefficient ∈ 
[ − 1, 1] indicating low to high association), a good score 
considering the subjectivity of the rating task. For full trans-
parency, we publicly release the results of our human evalu-
ation.6 Besides the need for larger-scale studies, this work 
delivers helpful preliminary evidence. EASumm obtains suit-
able scores in fluency and understandability. Deletion and 
substitution in verbalized facts appear to be the most fre-
quent error type, together with repetitiveness. After inspec-
tion, we find several utterances with swapped entities not 
belonging to event mentions, thus not attributable to a non-
effectiveness of event injection. Low hallucinations testify 
to the advantage of leveraging event graph representations. 
With a closer look, we observe that human-written sum-
maries also include a non-trivial amount of commonsense 
and world knowledge not mentioned by the input article. 
For example, for a source document discussing “spironolac-
tone”, the human writer may add “used since the 1960s” in 
the summary. Consequently, we invite the reader to reflect 

on attributing low factuality scores to generative models, 
weighting them against the dataset’s properties.

Conclusion

We introduced EASumm, the first abstractive summariza-
tion model augmenting source documents with explicit, 
structured medical evidence extracted from them, thereby 
concretizing a tandem text-graph architecture. We demon-
strated the significant positive influence of biomedical event 
extraction for summarization, allowing a model to better dis-
tinguish semantics and lexical surface. Indeed, we showed 
improvements in ROUGE and readability scores, observing 
a strong connection between the summer quality and (1) 
the number of events extracted from the input document, 
(2) the enhanced node features initialization considering 
both domain-specific pretrained language models and entity 
types. Contrary to expectations, event-graph representation 
learning does not benefit from the awareness of the rela-
tion type. The motivation is to be found in the task-driven 
nature of event extraction and in the poor capacity of current 
graph neural networks in managing multi-relational graphs. 
Although the numerous newly introduced graph-LSTM 
models combined with structured knowledge, we establish 
that these architectures are far from being competitive with 
generative transformer-based solutions like BART.

Future Directions

Based on our findings, we suggest nine promising future 
research directions: 

 1. using large pretrained encoder-decoder transformers to 
replace graph-LSTMs architectures [74];

 2. increasing the number of the events by merging avail-
able biomedical benchmarks thanks to generative event 
extraction approaches and non-discriminative architec-
tures [75];

 3. increasing the size of the document-level graphs by 
combining events with linguistically-grounded abstract 
meaning representations [74];

 4. exploiting multimodal text-graph alignments with met-
ric learning techniques as in [76–78];

 5. exploring end-to-end event extraction and document 
summarization;

 6. discovering new connections between nodes useful for 
increasing summarization performance (i.e., dynamic 
event graph construction), conveying techniques like 
random perturbation [79, 80] and iterative deep graph 
learning [81];

 7. performing node relevance scoring supported by term 
weighting [82] and/or perplexity metrics [12];

Table 7  Average human evaluation scores on informativeness (Inf.), 
fluency (Flu.), and understandability (Und.) (1-to-5), with error per-
centages for hallucination (Hal.), deletion or substitution (Del./Sub.), 
and repetitiveness (Rep.)

Inf. Flu. Und. Hal. Del./Sub. Rep.

3.16 3.4 3.44 18% 35% 34%

6 https:// github. com/ disi- unibo- nlp/ easumm/ blob/ master/ sn_ human_ 
evalu ations. xlsx.

https://github.com/disi-unibo-nlp/easumm/blob/master/sn_human_evaluations.xlsx
https://github.com/disi-unibo-nlp/easumm/blob/master/sn_human_evaluations.xlsx
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 8. devising transfer-learning methods [75, 83, 84] across 
multiple biomedical fields;

 9. utilizing continuous (semantic) edge features within 
the graph neural network;

 10. introducing additional loss functions based on rein-
forcement learning and semantic-driven rewards [74];

 11. pushing the interaction and mutual influence between 
graph and text encoders;

 12. injecting subgraphs fetched from external structured 
memories using dense representations [85], devising 
retrieval-enhanced language models [86].

Appendix A: Section Title of First Appendix

Dataset Statistics

We report additional statistics for each source and target 
document in CDSR (Table 8). Note: a readability score is 

calculated by averaging the results of the metrics described 
in “Evaluation”.

Event Extraction Dataset Selection

Table 9 provides statistics on the effectiveness of the three 
DEM models trained on the available biomedical datasets 
with the largest number of annotations and ontological tar-
gets [10]. MLEE stands out as the EE task most related to 
CDSR topics.

Table 8  CDSR average number of words (N. words), sentences (N. 
sents), and readability

Document Set N. words N. sents Readability

Source Train 644 26 16.43
Val 643 26 16.60
Test 653 27 16.45

Target Train 349 16 15.15
Val 348 16 15.20
Test 353 16 15.22

Table 9  CDSR event extraction results using distinct versions of 
DeepEventMine pretrained on MLEE [64], CG13 [87] and GE13 [88] 
tasks

We report the average number of events (N. evs.), triggers (N.trigs.) 
and arguments (N. args.) extracted from training, validation and test 
samples in each source document

Task Set N. evs. N. trigs. N. args.

MLEE Train 2.63 2.31 2.78
Val 2.54 2.20 2.73
Test 2.70 2.42 2.84

CG13 Train 2.13 1.95 2.30
Val 2.02 1.85 2.19
Test 2.12 1.95 2.30

GE13 Train 0.05 0.05 0.05
Val 0.06 0.06 0.07
Test 0.07 0.06 0.06

Table 10  Quality aspect scales and value-level explanations

Informativeness:

1 Not relevant to the article
2 Partially relevant and misses the main point of the article
3 Relevant, but misses the main point of the article
4 Successfully captures the main point of the article but some relevant content is missing
5 Successfully captures the main point of the article

Fluency:
1 Summary is full of garbage fragments and is hard to understand
2 Summary contains fragments, missing components but has some fluent segments
3 Summary contains some grammar errors but is in general fluent
4 Summary has relatively minor grammatical errors
5 Fluent summary

Understandability:
1 Source is easier to understand than the summary
2 Summary is as understandable as the source
3 Summary is easier to understand than the source but it is partially written in the language of healthcare professionals
4 Summary is easier to understand than the source but contains some terms from the language of healthcare professionals
5 Summary is easier to understand than the source and is written in the language of the general public
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Human Evaluation Guideline

Table 10 explains each Likert scale score meaning for the 
assessed quality criteria, so as to minimize annotation ambi-
guity and subjectivity. We believe this is important to obtain 
comparable results and work towards an objective and repli-
cable human evaluation.
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