
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

DNN Is Not All You Need: Parallelizing Non-neural ML Algorithms on Ultra-low-power IoT Processors /
Tabanelli, Enrico; Tagliavini, Giuseppe; Benini, Luca. - In: ACM TRANSACTIONS ON EMBEDDED COMPUTING
SYSTEMS. - ISSN 1539-9087. - ELETTRONICO. - 22:3(2023), pp. 1-33. [10.1145/3571133]

Published Version:

DNN Is Not All You Need: Parallelizing Non-neural ML Algorithms on Ultra-low-power IoT Processors

Published:
DOI: http://doi.org/10.1145/3571133

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/933433 since: 2023-07-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1145/3571133
https://hdl.handle.net/11585/933433

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

DNN Is Not All You Need: Parallelizing Non-neural ML Algorithms on Ultra-low-power
IoT Processors

ACM Transactions on Embedded Computing Systems - Volume 22 - Issue 31
9 April 2023 - Article No.: 56, pp 1–33

The final published version is available online at: https://doi.org/10.1145/3571133

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1145/3571133

1

DNN is not all you need: Parallelizing Non-Neural ML
Algorithms on Ultra-Low-Power IoT Processors

ENRICO TABANELLI, DEI, University of Bologna, Italy
GIUSEPPE TAGLIAVINI, DISI, University of Bologna, Italy
LUCA BENINI, DEI, University of Bologna, Italy

Machine Learning (ML) functions are becoming ubiquitous in latency- and privacy-sensitive IoT applications,
prompting a shift toward near-sensor processing at the extreme edge and the consequent increasing adoption
of Parallel Ultra-Low Power (PULP) IoT processors. These compute- and memory-constrained parallel archi-
tectures need to run efficiently a wide range of algorithms, including key Non-Neural ML kernels that compete
favorably with Deep Neural Networks (DNNs) in terms of accuracy under severe resource constraints. In this
paper, we focus on enabling efficient parallel execution of Non-Neural ML algorithms on two RISCV-based
PULP platforms, namely GAP8, a commercial chip, and PULP-OPEN, a research platform running on an FPGA
emulator. We optimized the parallel algorithms through a fine-grained analysis and intensive optimization to
maximize the speedup, considering two alternative Floating-Point (FP) emulation libraries on GAP8 and the
native FPU support on PULP-OPEN. Experimental results show that a target-optimized emulation library can
lead to an average 1.61× runtime improvement and 37% energy reduction compared to a standard emulation
library, while the native FPU support reaches up to 32.09× and 99%, respectively. In terms of parallel speedup,
our design improves the sequential execution by 7.04× on average on the targeted octa-core platforms leading
to energy and latency decrease up to 87%. Lastly, we present a comparison with the ARM Cortex-M4 micro-
controller (MCU), a widely adopted commercial solution for edge deployments, which is 12.87× slower and
98% less energy-efficient than PULP-OPEN.

CCS Concepts: • Machine Learning; • Parallel Ultra-Low-Power Platforms; • Edge-Computing;

Additional Key Words and Phrases: Machine Learning, Parallel Ultra-Low-Power Platforms, MCUs, Edge

ACM Reference Format:
Enrico Tabanelli, Giuseppe Tagliavini, and Luca Benini. 2022. DNN is not all you need: Parallelizing Non-
Neural ML Algorithms on Ultra-Low-Power IoT Processors. ACM Trans. Embedd. Comput. Syst. 123, 1, Article 1
(January 2022), 33 pages. https://doi.org/XXX

1 INTRODUCTION
Leading by the recent progress in machine computing power, communication technologies, and big
data, Machine Learning (ML) has unveiled cutting-edge breakthroughs in a broad range of domain-
specific applications. As a crucial factor for the widespread use of ML systems, Internet-of-Things
(IoT) devices have recently experienced explosive growth, reaching 50B of connected devices in
2020 [1]. Spanning from Autonomous Driving [2] to Non-Intrusive Load Monitoring [3], ML has
become ubiquitous, witnessing a booming of Artificial Intelligence (AI) services and applications [4].
This work was partially supported by the H2020 "The European PILOT" project (under grant ID 101034126).
Authors’ addresses: Enrico Tabanelli, DEI, University of Bologna, viale del Risorgimento 2, Bologna, Italy, enrico.tabanelli3@
unibo.it; Giuseppe Tagliavini, DISI, University of Bologna, viale del Risorgimento 2, Bologna, Italy, giuseppe.tagliavini@
unibo.it; Luca Benini, DEI, University of Bologna, viale del Risorgimento 2, Bologna, Italy, luca.benini@unibo.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1539-9087/2022/1-ART1 $15.00
https://doi.org/XXX

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://doi.org/XXX
https://doi.org/XXX

1:2 Tabanelli et al.

Table 1. Computational capabilities of ML inference platforms from cloud to edge deployment

Cloud ML
(NVIDIA A100 - Ampere) → Mobile ML

(iPhone - Apple A13) → Edge ML
(STM32F401 - ARM Cortex-M4)

Compute Power (FLOPS/s) 38.7T
250000×−−−−−−→ 155G

1845×−−−−→ 84M

Due to the proliferation of edge devices, the amount of data generated at the network edge has
increased dramatically, reaching 850 ZB of data by 2025 [5]. So far, the limited computational
capabilities of resource-constrained MCU-based systems have favored offloading data to the cloud
for analytics, where computational resources are flexible and virtually unbounded. However, the
cloud-computing paradigm suffers from scalability issues concerning communication latency,
bandwidth, and privacy [6, 7].

Latency- (e.g., Autonomous Vehicles) and privacy-sensitive IoT applications (e.g., Health Moni-
toring Wearable Devices) are prompting a paradigm shift [8–10] toward near-sensor processing
at the extreme edge to unleash the potential of ML. Such applications demand fast and accurate
automated decision-making capabilities while handling highly confidential and sensitive customer
data. Pushing the ML frontiers closer to the information sources promises several benefits, including
energy efficiency, data privacy protection, reduced bandwidth costs, and low-latency response [11].

Unfortunately, moving the intelligence to the edge is non-trivial due to the limited computational
capabilities and energy efficiency of resource-constrained IoT devices. As shown in Table 1, modern
ML inference tasks run on cloud servers and mobile platforms featuring a peak processing power
of up to 38.7 TFLOPS and 155 GFLOPS, respectively. Instead, the ARM Cortex-M4 MCU represents
a widely used platform for edge deployments leveraging a 461000× lower computational capability.
Off-the-shelf Deep Neural Networks (DNNs) inference demands hundreds of GFLOPs, largely
exceeding typical timing requirements for most applications when executing on state-of-the-art
(SoA) single-core MCUs. With 3.8 GFLOPS per inference, ResNet [12] demands 44.19s running on
the ARM Cortex-M4 platform while executing EfficientNet-B0 [13] and MobileNet-V2 [14] requires
8.45s and 2.33s per inference, respectively.
Emerging Parallel Ultra-Low-Power (PULP) processors [15, 16] represent an appealing target

for TinyML applications since they enable to meet the ML computational constraints in a power
envelope of a few milliWatts. The PULP paradigm builds upon near-threshold computing while
leveraging data- and thread-level parallelism to overcome the performance reduction at low operat-
ing voltages [17]. By integrating an I/O-dedicated core with a multi-core Cluster (CL) of processors,
this platform offers a flexible software-oriented acceleration for ML and Digital Signal Processing
(DSP) tasks. In this work, we leverage two RISCV-based PULP MCUs to provide proper comput-
ing capabilities for ML at the edge. GAP8 [18] is a commercial off-the-shelf chip delivering up
to 10 GMAC/s (90 MHz, 1.0 V) at the energy efficiency of 600 GMAC/s/W within a worst-case
power envelope of 75 milliWatts. Instead, PULP-OPEN is a research platform running on an FPGA
emulator, whose most recent silicon embodiment features a 32.2 GOPS peak performance with a
maximum power envelope of 49.4 milliWatts [19].

Standard edge-classMCUs usually trade off silicon area and energy efficiency for programmability,
limiting the HW resources to the bare minimum to improve the power envelope [20]. At the same
time, ML applications demand processing FP workloads since FP support enables satisfying the
requirements of dynamic range and precision without intensive numerical tuning. Due to such

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:3

tight design and power constraints, small, low-cost IoT cores cannot always afford the cost of a full-
fledged HW Floating-Point Unit (FPU). Several industry-standard STM1 and NXP2 System-on-Chips
(SoCs) integrate FPU-less ARMCortex-M family cores3 to enable low-power operation. Furthermore,
commercial devices such as 16-bit PIC and MSP4304 MCUs, along with Xtensa L106 core embedded
into ESP8266 SoCs5, follow this trend. These FPU-less devices implement FP computation with SW
FP emulation. Deriving the fixed-point variant of FP algorithms is highly time-consuming [21] and
requires additional analysis that takes up 30% of the overall development time [22]. In addition,
fixed-point computations are deeply susceptible to quantization effects, thus making FP conversion
error-prone and challenging [23–25]. Edge applications constrained by tight resource budgets and
short time-to-market would be negatively impacted by adopting fixed-point arithmetic. In this
scenario, using fast FP SW emulation libraries brings several benefits by decreasing development
time and enabling fast time-to-market. Parallelizing emulated FP workloads on multi-core ULP
devices can dramatically reduce the runtime overhead introduced by FP SW emulation while still
meeting the power budget of TinyML applications. In this paper, we consider two alternative FP
emulation libraries on GAP8 since this target does not offer FPU-native support. libgcc provides a
set of standard low-level routines to handle arithmetic operations not natively supported by the
target platform. We also deploy RVfplib, which consists of a library optimized for FP arithmetic
emulation on 32-bit RISCV processors [26].
In recent years, academic and industrial researchers have focused their interest on DNNs, in-

troducing novel topologies to improve accuracy and efficiency, customizing hardware designs
and instruction set architectures (ISA) to DNN execution [27]. At the same time, Non-Neural ML
kernels have been partially neglected by the TinyML research community. Nevertheless, for a wide
range of applications, these algorithms lead to an accuracy comparable with SoA DNNs while
demanding lower computing capabilities. Greeshma et al. [28] achieve near-SoA accuracies on
the Fashion-MNIST dataset [29] deploying a set of Non-Neural ML algorithms: linear Support
Vector Machine (SVM) and Random Forest (RF) attain up to 97.3% accuracy. At the same time,
Logistic Regression (LR) and k Nearest-Neighbor (kNN) reach 91.7% and 95.9%, respectively. Thus,
Non-Neural ML algorithms represent an important target for optimized deployment on PULP-class
devices for TinyML. In this scenario, the primary goal of our work is to optimize the parallel design
of a set of Non-Neural MLoptimize the parallel design of a set of Non-Neural ML algorithms to run
efficiently on two RISCV-based PULP MCUs.

The main contributions of this paper are:
• We optimize the sequential and parallel design of six widely utilized Non-Neural ML algo-
rithms, maximizing the Cycles per Instructions (CPI) metric on two RISCV-based PULPMCUs.
We provide a detailed experimental assessment that explains the architectural factors limiting
the performances at the core- and system-level. We compute the floating-point operations
(FLOP) intensity for each kernel to describe in-depth the achieved performance with alterna-
tive FP emulation supports and FPU-native system. We also report the theoretical speedup
following Amdahl’s law to motivate the structural limitations on parallel performance.

• We compare the kernel execution time when running on a single-core configuration, leverag-
ing alternative floating-point (FP) emulation libraries on GAP8 and the FPU-native support on
PULP-OPEN. We also report code size, energy consumption, and latency for each algorithm
and platform configuration. The experimental evaluation shows that the target-optimized

1www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
2www.nxp.com/products/processors-and-microcontrollers/arm-processors:ARM-PROCESSORS
3developer.arm.com/Processors/Cortex-M0
4www.ti.com/microcontrollers-mcus-processors/microcontrollers/msp430-microcontrollers/products.html
5www.espressif.com/en/products/socs/esp8266

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
www.nxp.com/products/processors-and-microcontrollers/arm-processors:ARM-PROCESSORS
developer.arm.com/Processors/Cortex-M0
www.ti.com/microcontrollers-mcus-processors/microcontrollers/msp430-microcontrollers/products.html
www.espressif.com/en/products/socs/esp8266

1:4 Tabanelli et al.

RVfplib library achieves an average 1.61× speedup and 6.24% code size reduction compared to
the standard libgcc emulation support. Adopting the fast SW emulation library also enables
a 37% energy reduction. The FPU-native support reaches up to 32.09× speedup and 41.71%
code size decrease compared to libgcc emulation.

• We examine the 1-vs-8 cores parallel speedup achieved on the targeted PULP platforms,
considering FP emulation on GAP8 and FPU-native support on PULP-OPEN. The results
reveal that our optimized parallel design allows achieving near-ideal speedups for Non-Neural
ML kernels, ranging from 6.56× to 7.64× compared to a single-core execution. We also report
an energy and latency reduction of up to 87%.

• We compare the Non-Neural ML algorithms execution time running on PULP-OPEN and
the ARM Cortex-M4 MCU. The experimental results demonstrate that a single-core PULP-
OPEN configuration leads to speedups ranging from 1.36× to 2.39× compared to Cortex-
M4 deployment, along with 85%-89% average energy and latency reductions. While fully
leveraging the PULP-OPEN 8-core CL diminishes the computing time by more than one order
of magnitude, between 9.27× and 15.85×. We also provide parallel design energy and latency
improvements, which reach up to 98% decreases compared to Cortex-M4.

2 RELATEDWORK
2.1 NN Tools And Libraries
The current generation of SW frameworks and tools for TinyML mainly focuses on neural ML
algorithms deployment on SoA single-core MCUs. A significant representative of this trend is
CMSIS-NN [30], a software library including a set of kernels developed to maximize the perfor-
mance and minimize the memory footprint of NNs on ARM Cortex-M family cores. X-CUBE-AI
[31] from STMicroelectronics6 converts pre-trained NNs exported from common DL frameworks
into a pre-compiled library optimized on computation and memory targeting STM32 MCUs. By
addressing optimal memory tiling and efficient data transfers, the AutoTiler tool from GreenWaves
Technologies7 generates code from pre-trained DNNs supporting the execution on the RISCV-based
multi-core MCU GAP8.

2.2 Non-Neural ML Libraries
While the aforementioned solutions enable deploying NN workloads on several MCUs, they do not
support generating code for pre-trained Non-Neural ML algorithms. Consequently, several works
have been proposed recently from the industry and open-source domain to support Non-Neural
kernels inference at the edge. CMSIS-DSP is a software library including a comprehensive set of DSP
functions optimized by ARM for various Cortex-M processors with FP support. Recent versions of
CMSIS-DSP add new functions support for Non-Neural ML algorithms, including alternative SVM
kernels, a Naive Bayes estimator, and distance functions for clustering algorithms. The TinyML
paradigm includes a set of techniques to integrate ML algorithms within resource-constrained
MCUs [8]. Yazici et al. [32] implement SVM and RF models on a Raspberry Pi platform, reporting
accuracy between 82% and 96% and an execution time of around 5 seconds to perform inference
on 100 instances. However, the Raspberry Pi platform has a power envelope of 2-5 Watts [33],
which far exceeds the few milliWatts power budget of TinyML applications. Furthermore, [32] does
not provide any insight into the algorithm design. Edge Machine Learning (ELM) [34] consists of
an open-source ML framework targeting STM32 edge devices, implementing linear kernel SVM,
RF, Decision Tree (DT), and k-NN. Instead, MicroML [35] and emlearn [36] are Python modules

6https://www.st.com/content/st_com/en.html
7https://greenwaves-technologies.com/

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://www.st.com/content/st_com/en.html
https://greenwaves-technologies.com/

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:5

that extend the Scikit-learn library to generate Non-Neural ML algorithms targeting edge MCUs,
including SVM, RF, DT, and naïve Gaussian Bayes algorithms. These libraries provide platform-
independent C implementations for a wide range of target MCUs, without dependencies with
external libraries and with integer/FP arithmetic support. However, these solutions do not provide
platform-specific optimizations necessary to achieve peak performance at the edge and do not
support parallel execution on multi-core Ultra-Low-Power (ULP) processors.

2.3 Non-Neural ML Parallelization
In the last years, several works have been proposed to tackle the efficient parallelization of Non-
Neural ML algorithms on many- and multi-core architectures [37–39]. However, such approaches
target high-end platforms leveraging resources unavailable on MCU-class devices and fail to meet
the limited TinyML budget. They also primarily focus on accelerating the algorithms training
phase by deploying multi-level parallelism with complex memory hierarchies provided by these
architectures. In [40], the authors designed a highly efficient parallel SVM training on x86-based
many-core architectures, achieving up to 84× and 47× speedups w.r.t. LIBSVM on the Intel Xeon
Phi co-processor and Ivy Bridge CPU. Unfortunately, the design utilizes task- and data-level
parallelism by leveraging multiple threads and a Vector Processing Unit (VPU) to reach satisfactory
performances. Parallel Ultra-Low-Power platforms usually limit the HW resources to meet a power
envelope of a few milliWatts, thus not supporting standard Multi-Threading programming models
and large vector units. Zhu et al. [41] compared an OpenMP- and OpenCL-based parallel learning
to Rank SVM for multi-core CPUs and GPUs, proving that OpenCL reaches 7.8× and 19.3× speedup
on such platforms. However, OpenCL parallel programming model leverages features not supported
by MCU-class devices, such as shared virtual memory and dynamic parallelism. By conducting a
comprehensive study of parallel LR training, Ma et al. [42] reduced the computing time by 200× and
500× on an Intel multi-core CPU and NVIDIA GPU. The approach relies on techniques generally
not supported by our edge devices, such as multi-threading, load balancing to allocate virtual
threads, and minimization of thread creation/destruction events.

2.4 HW/SW Optimizations
In the last decade, researchers have proposed specialized designs to reduce the inference costs of
ML algorithms. Microsoft released the EdgeML8 library, which consists of novel Non-Neural ML
algorithms suitable for severely resource-constrained edge and IoT devices. For example, ProtoNN
[43] is a kNN-based algorithm designed to reduce model size and execution time on IoT devices with
less than 32 kB memory and a frequency of 16 MHz. While ProtoNN efficiently handles extensive
datasets obtaining SoA accuracy, its related optimization problem is non-convex, requiring the
adoption of stochastic gradient descent (SGD) with iterative hard thresholding to perform training.
Bonsai [44] is a tree-based algorithm designed to guarantee efficient prediction on IoT devices
such as the Arduino Uno board, operating at 16 MHz with no FPU-native support, 2 KB RAM,
and 32 KB read-only flash. Bonsai learns a single, shallow, sparse tree in which both internal
and leaf nodes make non-linear predictions: the overall prediction is computed as the sum of the
individual predictions along the path traversed by an input sample. This approach reduces the
model size compared to the solution that employs independent classifiers in the leaf nodes. Since
MCU-based devices for IoT applications often do not integrate an FPU, Gopinath et al. [45] proposed
a framework that generates efficient fixed-point code for ML inference at the edge. Moreover, this
approach requires expressing the ML algorithm in a domain-specific language and using a custom
compiler. Mahajan et al. [46] describe a template-based framework to accelerate a set of learning

8https://github.com/microsoft/EdgeML

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://github.com/microsoft/EdgeML

1:6 Tabanelli et al.

algorithms (including LR and SVM) on FPGA. FPGA acceleration is a viable approach in many
domains, but its power budget is too high for ULP processing at the edge of the IoT.
In this paper, we optimize the parallel design of six very common Non-Neural ML kernels

[47, 48] achieving peak performance on two RISCV-based multi-core PULP MCUs. We designed
the algorithms using the C programming language standard while integrating low-level platform-
dependent optimizations into the runtime. Following, we deeply detail the design through a
fine-grained analysis describing the parallelization patterns and memory access optimizations
adopted.

3 BACKGROUND
This Section briefly describes the target MCUs and the software ecosystem deployed in this work,
along with a motivations discussion presented in Section 3.1. The PULP platform will be presented
in Section 3.2, while GAP8 and PULP-OPEN in Sections 3.3 and 3.4, respectively. Along with this,
we report in Section 3.5 the two FP emulation libraries deployed to enable FP computations on
architectures with no FPU-native support. Finally, in Section 3.6, we introduce the software stack
and parallel programming model used to achieve fine-grained data- and thread-level parallelism.

3.1 Motivations
SoA DNNs achieve the highest accuracy in many application fields, including Keyword Spotting,
Computer Vision, and Anomaly Detection. However, their higher performance comes with a
price of computational complexity, hampering their applications in many resource-constrained
platforms, such as MCU-based IoT devices. Moreover, DNN performs only marginally better
than tree-based models in some application fields (e.g., energy prediction models [49]). For these
reasons, non-neural ML techniques remain widely used for ultra-low-power and tightly resource-
constrained near-sensor processing applications. In fact, a few commercial smart sensors, such
as the LSM6DSOX system-in-package by STMicroelectronics, feature an embedded hardware
processing engine accelerating DTs for "in-sensor" processing and classification.

To quantitatively assess the complexity vs. accuracy tradeoff on open benchmarks, we analyzed
the accuracy achieved by Non-Neural ML algorithms and SoA DNNs while comparing the compu-
tational complexity at inference time in terms of Multiply-and-Accumulate (MAC) operations. The
study has been conducted on three widespread industrial and commercial use cases: Keyword Spot-
ting, Image Classification, and Anomaly Detection. Using the well-known MLPerf Tiny benchmark
suite [50], we considered Speech Commands, CIFAR-10, and ToyADMOS datasets, and DS-CNN,
ResNet-8, and FC-Autoencoder (FC-AE) as SoA DNN references.

0

20

40

60

80

100

SVM LR DS-CNN

A
cc

u
ra

cy
 (

%
)

Keyword Spotting

9
0

%

7
7

%

7
7

.2
5

%

9
8

%

9
6

%

0

20

40

60

80

100

RF NB ResNet

A
cc

u
ra

cy
 (

%
)

Image Classification

8
5

%

4
9

%

2
9

%

8
7

%

8
7

%

N
o

n
-N

eu
ral M

L
So

A
D

N
N

N
o

n
-N

eu
ral M

L + So
A

FE

0.0

0.2

0.4

0.6

0.8

1.0

kNN kMeans FC-AE

A
U

C

Anomaly Detection

0
.8

5

0
.7

5
0

.9
4

0
.9

5
0

.6
3

Fig. 1. Non-Neural ML vs SoA DNNs Top-1 accuracy. Abbreviations: Feature Extractor (FE).

As shown in Figure 1, we executed GEMM-based Non-Neural ML algorithms on the Speech
Commands dataset for the Keyword Spotting task. The DS-CNN architecture reaches 90% accuracy

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:7

but at a higher cost of 2.9 MMACs per inference, as depicted in Figure 2. Leveraging Non-Neural
ML models enables lowering the computational complexity to only 6 kMACs with a 490× speedup,
still reaching an acceptable 77% accuracy. It is important to notice that the accuracy of DNNs on
these tasks keeps increasing, but at the same time non-neural ML approaches are also getting better.
In recent years, academic researchers have also focused on leveraging custom feature extractors
on top of SVM and LR. On the Speech Commands dataset, Huh et al. [51] reached 98% accuracy by
changing the loss functions from the classification loss to a range of metric learning objectives and
then training a one-vs-one SVM kernel. On the NOSS benchmark suite, Shor et al. [52] trained an
LR classifier on time-averaged representations achieving 96%.

1

10

100

1k

10k

100k

1M

10M

100M

RF NB ResNet

M
A

C

318× 68×

1
2

.8
M

4
0

.3
k

1
8

8
k

1

10

100

1K

10K

100K

1M

10M

SVM LR DS-CNN

M
A

C

490× 469×

2
.9

M

5
.9

k

6
.2

k

Keyword Spotting Image Classification

0

50K

100K

150K

200K

250K

300K

kNN kMeans FC-AE

M
A

C 6.2× 8.4×

2
7

0
k

4
3

k

3
2

k

Anomaly Detection

N
o

n
-N

eu
ral M

L
So

A
D

N
N

0

20

40

60

80

100

SVM LR DS-CNN

A
cc

u
ra

cy
 (

%
)

Keyword Spotting

9
0

%

7
7

%

7
7

.2
5

%

9
8

%

9
6

%

0

20

40

60

80

100

RF NB ResNet

A
cc

u
ra

cy
 (

%
)

Image Classification

8
5

%

4
9

%

2
9

%

8
7

%

8
9

%

Non-Neural ML SoA DNNNon-Neural ML + SoA FE

0.0

0.2

0.4

0.6

0.8

1.0

kNN kMeans FC-AE

A
U

C

Anomaly Detection

0
.8

5

0
.7

5
0

.9
4

0
.9

5
0

.6
3

Fig. 2. Non-Neural ML vs SoA DNNs computational complexity.

To assess Non-Neural ML algorithms performance in image classification, we trained RF and
NB models on CIFAR-10 achieving up to 50% accuracy, while ResNet-8 architecture leads to 85%.
However, adopting Non-Neural ML kernels decreases the computational complexity by up to
318x, requiring only 40.3 kMACs per inference against the 12.8 MMAC demanded by ResNet-8.
Furthermore, many works have investigated the use of CNN-based feature extractors to pre-process
image pixels leading to astonishing performances when coupled with Non-Neural ML kernels.
Liu et al. [53] reached 87.2% accuracy on CIFAR-10 training a set of DTs with the feature extracted
from the last fully-connected layer of a ResNet; using NB, they achieved 86.6% accuracy.
Lastly, we evaluated performances in the Anomaly Detection scenario by comparing kNN and

kMeans kernels against the FC-Autoencoder architecture on the ToyADMOS dataset. The SoA DNN
achieves a 0.85 AUC score requiring 270 kMACs to detect abnormal input data. At the same time,
Non-Neural ML algorithms reduce computing time by 6.2x with merely 43 kMACs per inference
and still lead to an acceptable 0.75 AUC. Several works also studied alternative feature extractors
to improve the performance of Non-Neural ML kernels in Anomaly Detection. Durkota et al. [54]
reach up to 0.94 AUC by deploying a Siamese Network to extract features on top of the kNN model
while using the Mutual Information technique enables reaching 0.95 AUC with k-Means [55].

To summarize the discussion, SoA works on alternative feature extractors have proved that Non-
Neural ML algorithms can still compete with SoA DNNs in terms of accuracy in several industrial
scenarios, often achieving significant reductions in computational and memory footprints. Since
low-cost IoT devices are subject to tight memory and compute constraints, the efficient acceleration
of these kernels is practically a relevant target and will remain so in the near future. This paper
focuses on enabling efficient parallel execution of Non-Neural ML algorithms on two RISCV-based
PULP platforms.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:8 Tabanelli et al.

3.2 PULP Platform
PULP is a RISCV-based open-source platform9 built on the near-threshold computing paradigm [17].
The ultra-low-power design allows outstanding energy efficiency while data- and thread-level
parallelism overcome the performance reduction at low operating voltages.
Figure 3 depicts the PULP System-on-Chip (SoC) top-level design. The microarchitecture is

divided into two isolated voltage and frequency domains, managed by DC/DC and Frequency-
Locked Loops (FLLs): the Fabric Controller (FC) and the Cluster (CL). The PULP CL consists
of a configurable number of RI5CY cores, a RISCV-based processor featuring a 4-stage in-order
single-issue pipeline, and supporting the RV32IMCXpulpV2 Instruction Set Architecture (ISA). The
standard RV32IMC ISA provides support for integer, compressed, and multiply/divide instructions.
Instead, the XpulpV2 extension enables highly energy-efficient computations with custom ML- and
DSP-centric instructions. For that purpose, XpulpV2 includes hardware loops, post-incrementing
load/store, multiply-add instructions, fixed-point, bit-manipulation, and single instruction multiple
data (SIMD) support down to 8bit packed data.

The PULP CL replaces traditional data caches with a Tightly Coupled Data Memory (TCDM) to
reduce energy and area consumption while leveraging DSP data access pattern predictability. The
memory acts as a size-configurable multi-banked scratchpad memory (SPM) with a banking factor
of two (i.e., 8 banks for the 4-cores configuration), enabling shared-memory parallel programming
models such as OpenMP [56]. A single-cycle latencyword-level interleaved logarithmic interconnect
allows data sharing between TCDM and cores with a low average contention rate. The CL features
a hierarchical instruction cache (I$) consisting of a first private level and a second shared one. This
design provides optimal performances and energy efficiency in fetching data-parallel code, reducing
instruction misses, and leveraging the SIMD nature of most near-sensor processing applications.
A custom Hardware Synchronization Unit (Event Unit) implements low-overhead support for

fine-grained parallelism, providing fast event management, parallel thread dispatching, and syn-
chronization. The Event Unit also provides high-energy efficiency by utilizing power-saving policies
when cores are in the idle state. The cores waiting for a synchronization barrier or an event are
taken to a fully clock-gated state, thus zeroing the dynamic energy consumption.
On the SoC level, PULP features a RI5CY core and a multi-channel I/O `DMA to manage data

transfers and minimize the core workload when performing I/O. A 15-cycle latency multi-banked
SPM memory acts as an L2 hierarchy level that serves the CL data bus, the I$ refills, and the CL
DMA unit. The SoC also features a comprehensive set of peripherals enabling parallel capture of
images, sounds, and vibrations, for use in smart applications such as speech recognition and object
detection.

3.3 GAP8
GAP8 [18] is a commercial SoC for IoT applications, embedding a RISC-V multi-core processor
derived from the PULP open-source computing platform. The SoC leverages a single-core FC
coupled with an octa-core CL, enabling AI workload at the edge.

The single-core system acts as an advanced MCU in charge of controlling all the SoC operations
while fetching instructions from a 4 kBytes I$. Featuring a 512 kB L2 memory reachable by each core
and a private 16 kB L1 memory, the FC domain includes a ROM memory to store the primary boot
code. An 800 Mbit/s Double-Data Rate (DDR) Hyperbus interface enables extending the on-chip
memory, while a multi-channel `DMA permits hiding L3 data transfer cost. A set of peripherals
(i.e., QuadSPI, I2C, 4I2S, CAM, UART, PWM, GPIOs, JTAG) enables the acquisition of several signals
featuring high bandwidth and efficiency.

9https://github.com/pulp-platform

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://github.com/pulp-platform

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:9

SoC Domain
Cluster Domain

μDMA Unit

Peripherals

So
C

 In
te

rc
o

n
n

ec
t

C
lu

st
er

 In
te

rc
o

n
n

ec
t

Logarithmic Interconnect
L2 Memory

SRAM

Shared FPU Interconnect

Event Unit

DMA Unit
TCDM
Bank

0

TCDM
Bank

1

TCDM
Bank

2

TCDM
Bank

3

TCDM
Bank
m-1

….

FPU
0

FPU
1

FPU
K-1

DIV
SQRT

….

RI5CY

Fabric
Controller

RI5CY

Core
0

I$

RI5CY

Core
1

I$

RI5CY

Core
2

I$

RI5CY

Core
n-1

I$

….

Hierachical Instruction Cache
Hyperbus

UART

Camera

QSPI

I2C

Fig. 3. Top-level view of the PULP platform System-on-Chip.

On the CL side, the SoC integrates 8 identical RI5CY cores with a 16 kB 2-level shared I$ and a
64 kB multi-banked TCDM. Offloading highly compute-intensive kernels allows up to 10 GMAC/s
(90 MHz, 1.0 V) at the energy efficiency of 600 GMAC/s/W within a worst-case power envelope of
75 mW. Furthermore, the extremely energy-efficient design enables 3.6 `𝑊 power consumption
when in deep-sleep mode.

3.4 PULP-OPEN
PULP-OPEN is a research-oriented platform based on the PULP project, tailored for applications in
the domain of near-sensors computing. The platform reflects the GAP8 architecture and microar-
chitecture, with the addition of FPU native support.
The PULP-OPEN CL integrates FPnew [57], a parametric open-source FPU leveraging the

insertion of any number of pipeline stages and supporting a wide variety of standard and custom FP
formats. In this work, we deploy four FPnew instances shared among the eight cores of the CL, each
presenting one pipeline stage. The shared FPU provides support for IEEE 754 single- (FP32) and
half-precision floats (FP16), along with custom 16-bit bfloats (FP16alt). Moreover, the architecture
implements SIMD vectorization, vectorial conversions, and data packing/unpacking.

Figure 4 depicts the top-level design of the shared FPU exploited in this work. A logarithmic tree
interconnect links individual FPU instances with two cores, enabling sharing FPUs among different
cores with total transparency at the software level. The static mapping of FPUs allows cores to
always access the same physical FPU instance. At the core side, the interconnect interface overrides
the FPU during the execution stage, simulating a core-private block. An Auxiliary Processing Unit
(APU) interface connects the FPU instances to the cores, leveraging ready/valid protocol with a
round-robin policy and communicating with the processor execute pipeline stage. In the case of
simultaneous access to the FPU, the system propagates the ready signals to only one processor and
stalls the pipeline of the competing core. The FPU utilizes a connection scheme with interleaved
allocation to decrease access contentions in unbalanced workloads.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:10 Tabanelli et al.

SoC Domain
Cluster Domain

DMA Unit

Peripherals

So
C

 In
te

rc
o

n
n

ec
t

C
lu

st
er

 In
te

rc
o

n
n

ec
t

Logarithmic Interconnect
L2 Memory

SRAM

Shared FPU Interconnect

Event Unit

DMA Unit
TCDM
Bank

0

TCDM
Bank

1

TCDM
Bank

2

TCDM
Bank

3

TCDM
Bank
m-1

….

FPU
0

FPU
1

FPU
K-1

DIV
SQRT

….

RI5CY

Fabric
Controller

RI5CY

Core
0

I$

RI5CY

Core
1

I$

RI5CY

Core
2

I$

RI5CY

Core
n-1

I$

….

Hierachical Instruction Cache
Hyperbus

UART

Camera

QSPI

I2C

Core
2

Core
1

Core
3

Core
6

Core
0

Core
5

Core
7

Core
0

Fair
Arbitration

Tag

FPU 0

Fair
Arbitration

Tag

FPU 1

Fair
Arbitration

Tag

FPU 2

Core
0

Core
4

Core
1

Core
5

Core
2

Core
6

Core
3

Core
7

Fair
Arbitration

Tag

FPU 3

C
lu

st
e

r
In

te
rc

o
n

n
e

ct
Sh

ar
e

d
 F

P
U

s

Fig. 4. Top-level design of the PULP FPU sub-system

3.5 FP Emulation Libraries
In this work, we deploy FP32 as the standard data format for computations. To enable the execution
of FP32-based algorithms on GAP8, we perform FP computations employing a standard and a
custom FP emulation library.
The GNU Compiler Collection (GCC) provides a low-level runtime library called libgcc. The

routines integrated into the library handle arithmetic operations not natively supported by the target
processor. The GCC compiler automatically creates calls to libgcc routines or inlines the code when
the target benchmark includes operations with no HW-native support. In particular, libgcc includes
a set of FP IEEE-754 compliant routines supporting single- and double-precision data formats, with
a wide variety of arithmetic, conversion, comparison, and advanced software-emulated operations.
To reduce the overhead when executing FP-based kernels on GAP8, we also use RVfplib [26],

a custom RISCV-based IEEE-754 compliant library optimized for FP arithmetic on 32-bit integer
processors. The library provides two versions targetting code size and performance optimization
compatible with RV32IMC processors. In this work, we use the RVfplib version optimized for
faster code execution. With the support for standard FP32 and FP64 data formats, RVfplib provides
target-optimized software routines for conversion, arithmetic, and comparison operations.

3.6 Programming Model and Compilation Toolchain
An efficient and low-overhead software stack is mandatory to fully leverage the CL compute
power. In this work, we use the PULP open-source software ecosystem10, which provides a parallel
programming model and compiler support for both targets.

The PULP toolchain provides compiler support for GAP8 and PULP-OPEN platforms. It includes
an extended version of GCC 7.1 supporting the XpulpV2 extension along with a set of custom
relocation schemes supported by the linker. After loading the code program into L2 memory, the
FC executes the application from the entry point and offloads compute-intensive kernels to the CL.

AHardware Abstraction Layer (HAL) provides access to low-level resources to explicit the parallel
computing paradigm. The core identifier allows scheduling the parallel workload among theworkers
leveraging data- and thread-level parallelism. An inter-core synchronization is mandatory to ensure
correct results in the shared-memory programming model. Thus, the CL architecture provides
specialized HW support for optimized synchronization primitives, such as barriers and critical
sections, to orchestrate the execution flow. The OpenMP programming model is also available
10https://github.com/pulp-platform/pulp-sdk

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://github.com/pulp-platform/pulp-sdk

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:11

GAP8 w/
LibGCC

GAP8 w/
RVfplib

PULP-OPEN w/
FPU-Native

0

1

2

3

4

5

6

7

8

SVM LR gNB kNN kMEANS RF

1
-v

s-
8

 C
o

re
s

Sp
e

e
d

u
p

….

CORES

Core 0 Core 1 Core 7

Fig. 5. Cores coloring used to mark related processing data.

but implies higher overhead costs than HAL primitives. In this work, we focused on maximizing
Non-Neural ML algorithms execution performance; hence, we used the lower-level HAL for our
experimental assessment.

4 ALGORITHM DESIGN
In this section, we present the design of six key Non-Neural ML algorithms optimized for parallel
execution on the two RISCV-based PULP platforms. After giving an introductory description of
the mathematical fundamentals, we thoroughly detail the parallelization strategy used to dispatch
the CL workload efficiently. We also report the fine-grained analysis and intensive optimization
to maximize the speedup. For simplicity, we grouped the algorithms based on their mathematical
formulation and parallelization nature:

• General Matrix Multiply based (GEMM-based): LR and SVM.
• Gaussian Naive Bayes (GNB).
• Metric Space based (MS-based): kNN and K-Means.
• Independent Tasks based (IT-based): RF.

To break the TinyML memory bottleneck on resource-constrained devices, the research commu-
nity usually leverages novel techniques such as optimal double-buffering and memory tiling [58, 59].
We optimized the algorithms as stand-alone kernels fine-grained tuned to process in parallel data
placed in L1 memory. An external double-buffering wrapper enables using L2 memory when data
do not fit L1, overlapping L1-L2 memory transfer operations, and kernel processing with almost
zero cycles overhead. Lastly, we find an optimal tiling strategy for each algorithm fine-tuning the
memory accesses to maximize data reuse and performance.
In this section, we detail the design of the stand-alone kernels optimized to run efficiently

in parallel onto the octa-core CL. The colors used in the following figures depend on the data
associated with each core, as depicted in Figure 5. We use a specific color for the memory data read
by a particular core. Since sequential operations imply executing with a single core, we arbitrarily
selected core 0 to execute sequential operations and colored the read memory data in red. For each
algorithm, we consider a training dataset 𝐴 consisting of 𝑁𝑡𝑟𝑎𝑖𝑛 𝑑-dimensional samples and 𝑁𝑐𝑙𝑎𝑠𝑠
classes. To describe the parallelization schemes, we utilize bold capital and lowercase letters to
represent matrices and vectors, while lowercase symbols depict scalar variables.

4.1 Parallelization Approach
The OpenMP [60, 61] paradigm is a widely-adopted parallel programmingmodel for shared-memory
multi-core MCU platforms, and it has already been demonstrated in the context of embedded sys-
tems [62–64] and TinyML applications [65–67]. However, this programmingmodel leads to unavoid-
able overheads in distributing the workload and orchestrating communication/synchronization
among the workers [68]. Minimizing such runtime overheads is crucial to enabling fine-grained

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:12 Tabanelli et al.

parallelism on ULP multi-core platforms. Furthermore, TinyML applications have small workloads
implying relatively short parallel regions (just a few tens of cycles), making it challenging to
amortize overheads. The SPMD parallel paradigm [69] is an alternative approach requiring more
programmer effort than OpenMP since it requires modifying the source code and dealing with
low-level details (e.g., inter-core synchronization, critical sections, and shared/private variables
allocation). Nevertheless, the SPMD paradigm enables fine-grained parallelism due to a higher
runtime control, leading to less overhead than a traditional OpenMP. Montagna et al. [70] com-
pared the two paradigms and proved that a bare-metal SPMD runtime achieves a 178% runtime
improvement compared to a baseline OpenMP on multi-core ULP MCUs. Based on this evidence,
our work focuses on providing an optimized SPMD version of the code.

To further improve the parallel runtime approaching ideal performances, we leverageHW-specific
optimizations for core idling and synchronization. GAP8 and PULP-OPEN Clusters integrate a
multi-core Event Unit (EU) optimized to accelerate key data-parallel patterns execution, such as
barriers and locks, while supporting power-saving policies to put cores in idle state. The EU is a
lightweight HW block designed to enable fine-grained parallelism that aims to achieve minimum
synchronization overhead in terms of cycles and energy. Due to its efficient HW design, executing
barriers and critical sections with the 8-core Cluster configuration requires 6 and 50 Cycles, respec-
tively. The barrier and mutex extensions correspond to the parallel and critical section constructs
fundamental in most parallel programming models. Thus, leveraging EU HW-specialized support
is key to drastically reducing the synchronization overhead in parallel programming primitives. In
our work, we access low-level resources leveraging a Hardware Abstraction Layer (HAL).

4.2 Horizontal and Vertical Workload Distribution
We introduce two data partitioning schemes adopted in the rest of this section to achieve optimal
performance on multi-core platforms, namely horizontal and vertical workload distribution.
As a common pattern, ML workloads include an operation between a 𝑟 × 𝑐 matrix 𝑀 and a

𝑐-dimensional input vector 𝑥 , leading to a scalar value𝑦. In this scenario, programs can conveniently
exploit data-level parallelism: a workload distribution strategy splits data into chunks, and each
core executes the same code on a different chunk. This method has an associated overhead since it
implies the computation of core-dependent loop bounds. Since this overhead is constant, its impact
decreases as the chunk size increases.
Depending on 𝑟 and 𝑐 dimensions, selecting a partitioning strategy mapped onto horizontal or

vertical stripes of the matrix operand could significantly improve CL utilization. Having 𝑟 >> 𝑐

favours a vertical decomposition. The strategy involves partitioning 𝑟 rows into 𝑛𝑐𝑜𝑟𝑒𝑠 chunks
consisting of 𝑟/𝑛𝑐𝑜𝑟𝑒𝑠 elements. Instead, 𝑐 >> 𝑟 promotes a horizontal decomposition. Following
the approach, each core computes on 𝑟 vectors of dimension 𝑐/𝑛𝑐𝑜𝑟𝑒𝑠 .

4.3 GEMM-based Algorithms
Below, we describe the algorithms based on the GEMM function, a Basic Linear Algebra Subpro-
grams (BLAS) routine largely deployed in statistics and ML. As reported in Eq. (1), GEMM-based
algorithms leverage the product between two input matrices 𝐴 and 𝐵, while 𝐶 represents a pre-
existing matrix overwritten by the output.

𝐶𝑚 ×𝑛 = 𝛼 · 𝐴𝑚 ×𝑘 × 𝐵𝑘 ×𝑛 + 𝛽 ·𝐶𝑚 ×𝑛 (1)

𝛼 and 𝛽 are scalar inputs that enable the plain product 𝐴×𝐵 and the output matrix𝐶 accumulation.
LR and SVM present an analogous inference scheme consisting of a GEMM computation per-

formed between the input vector 𝑥 and the matrix𝑊 while alternative activation functions process
the output.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:13

4.3.1 Logistic Regression (LR). LR is a supervised ML algorithm for binary classification, which
leverages a logistic function to model output probabilities [71]. While Linear Regression applies an
interpolation between points by avoiding distinguishing classes, LR deploys the logistic function
to squeeze the linear output between 0 and 1, thus returning the class probability. Due to its high
classification performance and straightforward interpretability, the model has been widely adopted
across several real-world scenarios, such as intrusion detection [72] and anomaly detection [73].
As reported in Eq. (2), LR binary decision function leverages the weighted sum between 𝑥 and

the real-valued 𝑑-dimensional weights vector𝑤 , with the addition of a bias term 𝑏. Each weight
𝑤𝑖 directly relates to the input feature 𝑥𝑖 and characterizes how relevant the 𝑖-th dimension is for
discriminating the classes. As a further contribution, 𝑏 spatially shifts the position of the decision
boundary away from the origin. Lastly, LR employs the sigmoid function 𝑆 (𝑥) = 1/(1 − 𝑒𝑥𝑝 (−𝑥))
to map real-valued numbers into the range [0, 1], thus retrieving the class probability.
To support multi-class classification, we leverage the one-vs-all approach, which consists of

training 𝑁𝑐𝑙𝑎𝑠𝑠 distinct binary classifiers, each designed to recognize a specific class against the
others. Thus, the learned vector𝑊 becomes amatrix of size𝑁𝑐𝑙𝑎𝑠𝑠 ×𝑑 , while𝑏 is a𝑁𝑐𝑙𝑎𝑠𝑠 dimensional
vector. Each classifier output is a real value representing the predicted score of the target class.
The Softmax function shown in Eq. (3) normalizes the result to a probability distribution over
the output classes. Lastly, the ArgMax operator (4) selects the class characterized by the largest
predicted probability.

𝑓 (𝑥) = 𝑆 (𝑤𝑥 + 𝑏) (2)

𝜎 (𝑥𝑖) =
exp(𝑥𝑖)∑
𝑗 exp(𝑥 𝑗)

, 𝑖 ∈ [0, 𝑁𝑐𝑙𝑎𝑠𝑠 − 1] (3)

𝑦 = ArgMax [𝜎 (𝑊𝑥 + 𝑏)] (4)

4.3.2 Support Vector Machine (SVM). SVM is a linear ML model that provides a robust theoretical
foundation and generalization performance [74]. Several domain-specific applications rely on
SVM due to its ability to handle high-dimensional data and solve non-linear tasks. Yi-Hung et al.
[75] proposed an SVM-based face recognition system, while Siddharth et al. [76] introduced an
EEG-based focal seizure detection algorithm that deploys SVM with 100% accuracy.

In the binary classification setting, SVM consists of an optimal (𝑑 − 1) dimensional hyperplane
determined by the 𝑑-dimensional normal vector𝑤 and the offset 𝑏 that separates the training set 𝐴
into classes by the largest margin. The nearest data points to the hyperplane represent the Support
Vectors (SVs), while their distance corresponds to the margin. Although the general formulation of
the algorithm enables classifying non-linearly separable data via high-dimensional mapping, we
only focus on a linear kernel in this work.

SVM inference involves processing 𝑥 deploying the decision function described in Eq. (5), where
𝑠𝑖𝑔𝑛 refers to the function extracting the argument sign. Thus, 𝑤𝑥 + 𝑏 indicates on which side
of the generated hyperplane the testing input 𝑥 resides, while the 𝑠𝑖𝑔𝑛 function extrapolates the
information providing the output class. Moving towards multi-class configuration, we leverage the
one-vs-all approach again, learning a hyperplane per class.

𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑥 + 𝑏) (5)

4.3.3 GEMM-based algorithms parallelization scheme. In Figure 6, we present the parallel design of
GEMM-based algorithms optimized to maximize the speedup running onmulti-core shared-memory
platforms. To offload the compute-intensive matrix-vector multiplication between x andW onto
the CL, we assign to the cores the processing of 𝑐ℎ𝑢𝑛𝑘0 elements for each W row following the
horizontal decomposition scheme. By using the offline determined 𝑐ℎ𝑢𝑛𝑘0 size and the 𝑐𝑜𝑟𝑒𝑖𝑑 , the

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:14 Tabanelli et al.

𝒃𝑁𝑐𝑙𝑎𝑠𝑠

𝑏𝑙𝑏1
…
𝑏𝑢𝑏1𝑏𝑙𝑏1
…
𝑏𝑢𝑏1

𝑏𝑙𝑏1
…
𝑏𝑢𝑏1

…

S
y
n
c

B
a
r
r
i
e
r

S
y
n
c

B
a
r
r
i
e
r

𝑦

…

𝒚𝑁𝑐𝑙𝑎𝑠𝑠

…

𝑂𝑃2

𝑂𝑃2

𝑂𝑃2

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

……

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

𝑹𝑁𝑐𝑙𝑎𝑠𝑠 × 𝑛𝑐𝑜𝑟𝑒𝑠

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

…

𝑾𝑐 × 𝑑
𝑂𝑃1 𝑂𝑃1

𝒙𝑑

Cluster Fork

𝑤0,𝑙𝑏0 , … , 𝑤0,𝑢𝑏0

𝑤1,𝑙𝑏0 , … , 𝑤1,𝑢𝑏0
…

𝑤𝑐,𝑙𝑏0 , … , 𝑤𝑐,𝑢𝑏0

…

𝑤0,𝑙𝑏0 , … , 𝑤0,𝑢𝑏0

𝑤1,𝑙𝑏0 , … , 𝑤1,𝑢𝑏0
…

𝑤𝑐,𝑙𝑏0 , … , 𝑤𝑐,𝑢𝑏0

𝑤0,𝑙𝑏0 , … , 𝑤0,𝑢𝑏0

𝑤1,𝑙𝑏0 , … , 𝑤1,𝑢𝑏0
…

𝑤𝑐,𝑙𝑏0 , … , 𝑤𝑐,𝑢𝑏0

𝑂𝑃1

𝒃𝑁𝑐𝑙𝑎𝑠𝑠

𝑏𝑙𝑏1
…
𝑏𝑢𝑏1

𝑏𝑙𝑏1
…
𝑏𝑢𝑏1

𝑏𝑙𝑏1
…
𝑏𝑢𝑏1

…

𝒚𝑁𝑐𝑙𝑎𝑠𝑠

B

a

r

r

i

e

r

…

𝑂𝑃3 𝑦

𝑂𝑃2

𝑂𝑃2

𝑂𝑃2

…

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

…

𝑹𝑁𝑐𝑙𝑎𝑠𝑠 × 𝑛𝑐𝑜𝑟𝑒𝑠

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

…

B

a

r

r

i

e

r

…

Fig. 6. GEMM-based Algorithms Parallelization Scheme
𝑂𝑃1: Partial matrix-vector multiplication, 𝑂𝑃2: Intermediate results and bias combination,

𝑂𝑃3: Activation function + ArgMax, b: Bias vector, R: Matrix-vector multiplication intermediate result matrix
𝑑 : Dimension, 𝑐 = 𝑁𝑐𝑙𝑎𝑠𝑠 − 1, 𝑛 = 𝑛𝑐𝑜𝑟𝑒𝑠 − 1,

𝑐ℎ𝑢𝑛𝑘0 = 𝑑/𝑛𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑏0 = 𝑐𝑜𝑟𝑒𝑖𝑑 × 𝑐ℎ𝑢𝑛𝑘0, 𝑢𝑏0 = 𝑙𝑏0 + 𝑐ℎ𝑢𝑛𝑘0,
𝑐ℎ𝑢𝑛𝑘1 = 𝑁𝑐𝑙𝑎𝑠𝑠/𝑛𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑏1 = 𝑐𝑜𝑟𝑒𝑖𝑑 × 𝑐ℎ𝑢𝑛𝑘1, 𝑢𝑏1 = 𝑙𝑏1 + 𝑐ℎ𝑢𝑛𝑘1,

cores compute at runtime lower (𝑙𝑏0) and upper bounds (𝑢𝑏0) data indexes for the first computation.
𝑂𝑃1 consists of a partial matrix-vector multiplication where each core processes aW row chunk
multiplying and accumulating with the chunked input x. Iterating the processing onW rows, we
store core-dependant intermediate results in a 𝑁𝑐𝑙𝑎𝑠𝑠 × 𝑛𝑐𝑜𝑟𝑒𝑠 sized shared global array R. After
getting through a synchronization barrier, we obtain the effective matrix-vector multiplication
result by combining intermediate results R with vector b and switching to a vertical parallel
scheme in 𝑂𝑃2. Namely, the computation consists of accumulating R elements by row with the
corresponding b value. By leveraging a fresh 𝑐ℎ𝑢𝑛𝑘1, we calculate core-dependent 𝑙𝑏1 and 𝑢𝑏1
bounds which defines b elements and R rows assigned to each core. Thus, each core iterates on
the 𝑐ℎ𝑢𝑛𝑘1 size accumulating R rows with b elements and leading to the 𝑁𝑐𝑙𝑎𝑠𝑠 sized result vector
y. A CL synchronization barrier forces cores to wait until all CL cores finish 𝑂𝑃2 computation to
avoid L1 data coherency issues. Consequently, the core master executes a sequential activation
function 𝑂𝑃3 depending on the specific GEMM-based algorithm. LR requires the Softmax function
to normalize the result, while SVM includes the 𝑠𝑖𝑔𝑛 routines to retrieve the argument sign. Lastly,
𝑂𝑃3 ends with the ArgMax to return the class with the highest score.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:15

4.4 Gaussian Naive Bayes (GNB)
Naive Bayes (NB) consists of a family of simple probabilistic classifiers based on Bayes’ theorem
along with the strong assumption of conditional independence among features given the class [77].
The model simplicity and high accuracy levels make the method attractive in several tasks, such as
anomaly detection in industrial IoT [78] and vehicle accident detection [79].

Considering a multi-class problem while attempting to classify an input 𝑥 , the minimum classi-
fication error is ensured by picking the class 𝑐𝑖 with the largest posterior probability 𝑃 (𝑐𝑖 |𝑥). As
shown in Eq. (6), Bayes’ theorem enables to calculate posterior probabilities 𝑃 (𝑐𝑖 |𝑥) by leveraging
prior probabilities 𝑃 (𝑐𝑖) and class-conditional likelihood 𝑃 (𝑥 |𝑐𝑖). Since the marginal probability
𝑃 (𝑥) does not depend on the class 𝑐𝑖 and 𝑥 is constant, NB ignores 𝑃 (𝑥) calculation only keeping
the joint probability 𝑃 (𝑥, 𝑐𝑖) in the numerator. By using the chain rule to expand the definition of
𝑃 (𝑥, 𝑐𝑖) along with the strong conditional independence assumption, the joint probability model
can be expressed as reported in Eq. (7).

𝑃 (𝑐𝑖 |𝑥) =
𝑃 (𝑥 |𝑐𝑖)𝑃 (𝑐𝑖)

𝑃 (𝑥) ∝ 𝑃 (𝑥 |𝑐𝑖)𝑃 (𝑐𝑖) = 𝑃 (𝑥, 𝑐𝑖), 𝑖 ∈ [0, 𝑁𝑐𝑙𝑎𝑠𝑠 − 1] (6)

𝑃 (𝑐𝑖 |𝑥) ∝ 𝑃 (𝑐𝑖)
𝑑−1∏
𝑘=1

𝑃 (𝑥𝑘 |𝑐𝑖), 𝑖 ∈ [0, 𝑁𝑐𝑙𝑎𝑠𝑠 − 1] (7)

We derive the NB classifier by combining the model mentioned above and the Argmax decision
rule (8).

𝑦 = ArgMax
𝑖 ∈𝑁𝑐𝑙𝑎𝑠𝑠

𝑃 (𝑐𝑖)
𝑑−1∏
𝑘=1

𝑃 (𝑥𝑘 |𝑐𝑖) (8)

NB classifiers differ mainly by the assumptions made regarding the distribution of the class-
conditional likelihood 𝑃 (𝑥 |𝑐𝑖). In this work, we leverage a normal Gaussian distribution (9) to
estimate statistical parameters for features. By performing a Maximum-Likelihood training, we
learn the 𝑁𝑐𝑙𝑎𝑠𝑠 × 𝑑 sized mean (`) and variance (𝜎) matrices, while the 𝑁𝑐𝑙𝑎𝑠𝑠 dimensional prior
probability 𝑃 (𝑐𝑖) vector is estimated directly on the dataset.

𝑃 (𝑥 |𝑐𝑖) =
1√
2𝜋𝜎2

𝑖

exp
(
− (𝑥 − `𝑖)2

2𝜎2
𝑖

)
, 𝑖 ∈ [0, 𝑁𝑐𝑙𝑎𝑠𝑠 − 1] (9)

4.4.1 GNB parallelization scheme. To perform NB decision function (8) while fully leveraging
CL compute power, we designed the parallelization scheme shown in Figure 7. GNB per-class
key operation consists of computing feature-dependant class-conditional likelihoods 𝑃 (𝑥𝑘 |𝑐𝑖) and
combining them in a sequence product with the prior probability 𝑃 (𝑐𝑖). In 𝑂𝑃1, we vertically split
this compute-intensive workload, assigning each CL core a partial sequence product by leveraging
an optimal 𝑐ℎ𝑢𝑛𝑘0 data size computed offline. At runtime, each core calculates core-dependent 𝑙𝑏0
and 𝑢𝑏0 data index boundaries to retrieve 𝑐ℎ𝑢𝑛𝑘0 per-row 𝝁 and 𝝈 elements necessary to compute
𝑃 (𝑥𝑘 |𝑐𝑖). By applying the Gaussian distribution formula (9) for each `−𝜎 pair in the core-dependent
𝑐ℎ𝑢𝑛𝑘0 and multiplying them, we place𝑂𝑃1 results in an intermediate 𝑁𝑐𝑙𝑎𝑠𝑠 × 𝑛𝑐𝑜𝑟𝑒𝑠 sized shared
array R. To bring together intermediate results and achieve the actual result, we combine R with p
vector in 𝑂𝑃2 by leveraging a vertical decomposition scheme. Thus, we define at compile time a
fresh 𝑐ℎ𝑢𝑛𝑘1 data size, determining the number of p elements and R rows assigned to each core.
By calculating 𝑙𝑏1 and 𝑢𝑏1 bounds, the cores iterate vertically on 𝑐ℎ𝑢𝑛𝑘1 rows multiplying p with
core-related partial sequence product and resulting in the 𝑁𝑐𝑙𝑎𝑠𝑠 sized result vector y. Since 𝑂𝑃3
consists of a sequential computation on y, we deploy a CL synchronization barrier to force waiting

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:16 Tabanelli et al.

𝝁𝑐 × 𝑑

𝝈𝑐 × 𝑑

Cluster Fork

𝜇0,𝑙𝑏0 , … , 𝜇0,𝑢𝑏0
𝜇1,𝑙𝑏0 , … , 𝜇1,𝑢𝑏0

…
𝜇𝑐,𝑙𝑏0 , … , 𝜇𝑐,𝑢𝑏0

𝜇0,𝑙𝑏0 , … , 𝜇0,𝑢𝑏0
𝜇1,𝑙𝑏0 , … , 𝜇1,𝑢𝑏0

…
𝜇𝑐,𝑙𝑏0 , … , 𝜇𝑐,𝑢𝑏0

𝜇0,𝑙𝑏0 , … , 𝜇0,𝑢𝑏0
𝜇1,𝑙𝑏0 , … , 𝜇1,𝑢𝑏0

…
𝜇𝑐,𝑙𝑏0 , … , 𝜇𝑐,𝑢𝑏0

…

𝜎0,𝑙𝑏0 , … , 𝜎0,𝑢𝑏0
𝜎1,𝑙𝑏0 , … , 𝜎1,𝑢𝑏0

…
𝜎𝑐,𝑙𝑏0 , … , 𝜎𝑐,𝑢𝑏0

𝜎0,𝑙𝑏0 , … , 𝜎0,𝑢𝑏0
𝜎1,𝑙𝑏0 , … , 𝜎1,𝑢𝑏0

…
𝜎𝑐,𝑙𝑏0 , … , 𝜎𝑐,𝑢𝑏0

𝜎0,𝑙𝑏0 , … , 𝜎0,𝑢𝑏0
𝜎1,𝑙𝑏0 , … , 𝜎1,𝑢𝑏0

…
𝜎𝑐,𝑙𝑏0 , … , 𝜎𝑐,𝑢𝑏0

…

+ + +

𝒙𝑑

𝑂𝑃1 𝑂𝑃1𝑂𝑃1 … 𝒑𝑁𝑐𝑙𝑎𝑠𝑠

𝑝𝑙𝑏1
…

𝑝𝑢𝑏1

𝑝𝑙𝑏1
…

𝑝𝑢𝑏1

𝑝𝑙𝑏1
…

𝑝𝑢𝑏1

…

S

y

n

c

B

a

r

r

i

e

r

…

𝒚𝑁𝑐𝑙𝑎𝑠𝑠

𝑂𝑃2

𝑂𝑃2

𝑂𝑃2

…

𝑂𝑃3 𝑦

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

𝑦𝑙𝑏1
…

𝑦𝑢𝑏1

…

𝑹𝑁𝑐𝑙𝑎𝑠𝑠 × 𝑛𝑐𝑜𝑟𝑒𝑠

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

𝑟𝑙𝑏1,0, 𝑟𝑙𝑏1,1 , … , 𝑟𝑙𝑏1,𝑛
…

𝑟𝑢𝑏1,0, 𝑟𝑢𝑏1,1, … , 𝑟𝑢𝑏1,𝑛

…

+

+

𝑂𝑃1𝑂𝑃1 𝑂𝑃1…

Fig. 7. GNB Parallelization Scheme
𝑂𝑃1: Partial 𝑃 (𝑥 |𝑐) sequence product, 𝑂𝑃2: Intermediate results and p combination,

𝑂𝑃3: ArgMax, p: Prior probabilities vector, R: Sequence product intermediate result matrix
𝑑 : Dimension, 𝑐 = 𝑁𝑐𝑙𝑎𝑠𝑠 − 1, 𝑛 = 𝑛𝑐𝑜𝑟𝑒𝑠 − 1

𝑐ℎ𝑢𝑛𝑘0 = 𝑑/𝑛𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑏0 = 𝑐𝑜𝑟𝑒𝑖𝑑 × 𝑐ℎ𝑢𝑛𝑘0, 𝑢𝑏0 = 𝑙𝑏0 + 𝑐ℎ𝑢𝑛𝑘0
𝑐ℎ𝑢𝑛𝑘1 = 𝑁𝑐𝑙𝑎𝑠𝑠/𝑛𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑏1 = 𝑐𝑜𝑟𝑒𝑖𝑑 × 𝑐ℎ𝑢𝑛𝑘1, 𝑢𝑏1 = 𝑙𝑏1 + 𝑐ℎ𝑢𝑛𝑘1

until all CL cores finish𝑂𝑃2 operation. Lastly, the core master retrieves the class 𝑦 with the highest
score by performing the ArgMax function.

4.5 Metric Space based Algorithms
MS-based algorithms involve arranging data points by proximity order leveraging the computed
distances. In this work, we consider the Euclidean metric shown in Eq. 10. In addition, we provide
a time complexity analysis on alternative sorting algorithms when running on a sequential and
parallel platform, respectively.

∥𝑝 − 𝑞∥ =

√√√
𝑑−1∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2 (10)

4.5.1 k-Nearest Neighbor (kNN). kNN is a non-parametric instance-based supervised learning
algorithm widely used in classification problems [80]. Due to its simplicity and classification
performance, the model has been adopted in gesture recognition ML systems [81] and bone cancer
detection approaches [82].
Without learning a discriminative function from the training set 𝐴, kNN stores the whole set

and delays computations until inference. Given a testing input 𝑥 and a distance function, kNN
computes the distance between 𝑥 and 𝐴. The model orders 𝐴 instances in descending order of
proximity through the retrieved distances. Finally, kNN classifies 𝑥 as the most prevalent class
among the 𝑘 nearest neighbors to the query point.

4.5.2 𝑘-Means. 𝑘-Means [83] is a well-known unsupervised learning algorithm widely deployed
in several domains, such as data mining [84] and pattern recognition [85]. Without requiring a
training phase, the clustering method relies on an iterative pass that partitions the training set
𝐴 space into disjointed regions covering the original input space. Considering dividing 𝐴 into 𝑘
clusters 𝑈 𝑗 ∈[0, 𝑘−1] , each represented by arbitrarily initialized 𝑑-dimensional centroids 𝑢 𝑗 ∈[0, 𝑘−1] ,
the iterative procedure consists of the following steps:

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:17

• Distance calculation: compute the Euclidean distance ∥𝑝−𝑞∥ between𝐴 and clusters centroids
𝑢 𝑗 , as indicated in Eq. (11).

𝑑 𝑗 +𝑘 × 𝑖 = ∥𝑥𝑖 − 𝑢 𝑗 ∥ 𝑗 ∈ [0, 𝑘 − 1], 𝑖 ∈ [0, 𝑁𝑡𝑟𝑎𝑖𝑛 − 1] (11)

• Clusters allocation: assign data instances to the nearest centroid 𝑢 𝑗 according to Eq. (12),
where 𝑖 represents the 𝑖-th 𝐴 instance and 𝑖𝑑𝑖 the assigned cluster.

𝑖𝑑𝑖 = argmin𝑑 𝑗 +𝑘 × 𝑖 𝑗 ∈ [0, 𝑘 − 1], 𝑖 ∈ [0, 𝑁𝑡𝑟𝑎𝑖𝑛 − 1] (12)

• Centroids update: compute new centroid 𝑢𝑛𝑒𝑤
𝑗

coordinates by averaging the instances be-
longing to the corresponding cluster 𝑢𝑜𝑙𝑑𝑗 , as reported in Eq. (13).

𝑢𝑛𝑒𝑤𝑗 =

∑𝑁−1
𝑖=0 𝐼 {𝑖𝑑𝑖 = 𝑗} 𝑥𝑖∑𝑁−1
𝑖=0 𝐼 {𝑖𝑑𝑖 = 𝑗}

𝑗 ∈ [0, 𝑘 − 1] (13)

𝑘-Means continues iterating the three steps until the distance between previous 𝑢𝑜𝑙𝑑𝑗 and current
centroids 𝑢𝑛𝑒𝑤

𝑗
is lower than a pre-fixed threshold. When the centroids do not move significantly

between iterations, the algorithm reaches the final centroids. In this work, we pick the first 𝑘
elements of the training set 𝐴 as initial centroids for 𝑘-Means clusters.

4.5.3 Sorting Algorithms. MS-based algorithms require arranging data points based on the com-
puted distances. Traditional efficient sorting routines feature a favorable time complexity when
dealing with complete sorting problems. By the way, kNN and k-Means demand a partial sort
returning the 𝑘 smallest elements and the smallest one, respectively. Considering a 𝑛-sized input
array, retrieving the lowest 𝑘 elements without sorting the remaining 𝑛 − 𝑘 elements could lead to
a significant speedup improvement. For that purpose, we present a brief time-complexity analysis
of two well-known sorting routines, highlighting the advantages and drawbacks when running on
a sequential and parallel platform.
Quick Sort (QS) is a highly efficient in-place sorting algorithm based on a divide-and-conquer

procedure. By selecting a pivot element, the routine partitions the input array into two sub-arrays
and reorders them, relying on the pivot comparison. The procedure is then re-iterated recursively
on the sub-arrays until obtaining the reordered input array. QS routine has a time complexity of
𝑂 (𝑛 log2 𝑛) on average when executing on a single-core platform. Due to the divide-and-conquer
algorithm nature, QS complexity does not scale when dealing with a partial sorting task. Thus, the
routine requires ordering the whole input array making its adoption highly inefficient for MS-based
algorithms.
Selection Sort (SS) is a simple in-place comparison-based sorting algorithm that separates the

input array into two sub-arrays. Initially, the sorted sub-array is empty, while the unsorted sub-
array consists of the whole input array. By finding the smaller element in the unsorted sub-array,
the algorithm swaps it with the leftmost unsorted element and moves the sub-array boundaries.
Although the SS procedure offers the worst time complexity on average (𝑂 (𝑛2)), it enables saving
computations when tackling partial sorting problems. Considering returning the 𝑘 smallest element,
SS demands𝑂 (𝑛𝑘) comparisons, making its adoption inMS-based algorithms favorable compared to
QS when 𝑘 < log2 𝑛. Deploying SS with k-Means is highly efficient since the algorithm determines
the closest centroid for each data instance, corresponding to 𝑘 = 1. Regarding kNN, the most
efficient sorting algorithm strictly depends on the dataset dimension 𝑛 and the hyperparameter
𝑘 . In this work, we deploy for kNN and k-Means a dataset consisting of 1k instances, favoring SS
deployment when 𝑘 < 10.
When moving to a multi-core CL composed of 𝑐 cores, the operating array is divided into 𝑐

sub-arrays. Each core performs the sorting routine on the corresponding local sub-array requiring

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:18 Tabanelli et al.

𝒂𝒍𝒃
…
𝒂𝒖𝒃

𝒂𝒍𝒃
…
𝒂𝒖𝒃

𝒂𝒍𝒃
…
𝒂𝒖𝒃

…

𝑨𝑵 × 𝒅

𝑒𝑙𝑏
…
𝑒𝑢𝑏

𝑒𝑙𝑏
…
𝑒𝑢𝑏

𝑒𝑙𝑏
…
𝑒𝑢𝑏

…

𝒆𝑵

𝑙0
…
𝑙𝑘−1

𝑙0
…
𝑙𝑘−1

𝑙0
…
𝑙𝑘−1

…

𝒍𝑵

𝑂𝑃1

𝑂𝑃1

𝑂𝑃1

…

𝑂𝑃2

𝑂𝑃2

𝑂𝑃2

…

𝑂𝑃3
𝑦

S
y
n
c

B
a
r
r
i
e
r

…

C
l
u
s
t
e
r

F
o
r
k

𝒙𝒅

Fig. 8. kNN Parallelization Approach
𝑂𝑃1: Euclidean Distance, 𝑂𝑃2: k-elements Local Selection Sort,

𝑂𝑃3: k-elements Selection Global Sort + ArgMax, A: Training set, e: Euclidean distance vector,
l: Local k-nearest neighbors vector, 𝑑 : Dimension, 𝑘 : Nearest neighbors hyperparameter

𝑁 = 𝑁𝑡𝑟𝑎𝑖𝑛, 𝑐ℎ𝑢𝑛𝑘 = 𝑁 /𝑛𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑏 = 𝑐𝑜𝑟𝑒𝑖𝑑 × 𝑐ℎ𝑢𝑛𝑘, 𝑢𝑏 = 𝑙𝑏 + 𝑐ℎ𝑢𝑛𝑘

𝑂 (𝑛
𝑐
log2 (𝑛𝑐)) and 𝑂 (𝑛

𝑐
𝑘) comparisons for QS and SS, respectively. To bring together local results,

an additional set of comparisons between the local smaller 𝑘 elements is mandatory, requiring𝑂 (𝑐𝑘)
comparisons. In Eq. 11, we report the time complexity of the two sorting algorithms, noting that
the parallelization introduces an equal overhead on both routines. Thus, running on a multi-core
platform makes SS adoption favorable compared to QS when 𝑘 < log2 (𝑛𝑐). As in the sequential
execution, SS is still highly efficient in k-Means, while in kNN, the hyperparameter 𝑘 determines the
most efficient sorting algorithm. Considering the 1k instances dataset used for kNN and k-Means,
SS is favorable when 𝑘 < 7.

𝑄𝑆 = 𝑂 (𝑛
𝑐
log2 (

𝑛

𝑐
)) +𝑂 (𝑐𝑘) 𝑆𝑆 = 𝑂 (𝑛

𝑐
𝑘) +𝑂 (𝑐𝑘) (14)

4.5.4 MS-based algorithms parallelization. Figure 8 shows the parallelization approach designed
to dispatch kNN inference onto the 8-core CL. The first operation (𝑂𝑃1) consists of computing
the Euclidean distance between the query point x and A, thus 𝑁𝑡𝑟𝑎𝑖𝑛 distance operations. To fully
leverage the CL compute power, we use a vertical decomposition scheme to split the workload
and determine offline the 𝑐ℎ𝑢𝑛𝑘 size on which each core works. At run-time, the cores calculate
individual lower (𝑙𝑏) and upper bounds (𝑢𝑏) based on the 𝑐𝑜𝑟𝑒𝑖𝑑 and perform the Euclidean distance
computation on the corresponding 𝑐ℎ𝑢𝑛𝑘 ofA rows. After filling with results an intermediate 𝑁𝑡𝑟𝑎𝑖𝑛
sized global array e, the cores execute a 𝑘-elements Local Selection Sort (𝑂𝑃2) on the related 𝑐ℎ𝑢𝑛𝑘 ,
saving the local 𝑘 neighbors in a 𝑁𝑡𝑟𝑎𝑖𝑛-dimensional global buffer l. A CL synchronization barrier
forces cores to wait until all CL cores finish 𝑂𝑃2 computation. To bring together intermediate
results, the master core performs a 𝑘-elements Global Selection Sort (𝑂𝑃3) and returns the most
voted class among the 𝑘 neighbors performing the ArgMax function.

While kNN inference consists of a single procedure step, k-Means iterates a set of routines until
the distance between U𝑛𝑒𝑤 and U𝑜𝑙𝑑 is smaller than a threshold. In this regard, we present the
optimized design of a k-Means iteration to achieve peak performance when running on a multi-core
platform.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:19

ෝ𝒖𝟎
…
ෝ𝒖𝒌−𝟏

ෝ𝒖𝟎
…
ෝ𝒖𝒌−𝟏

ෝ𝒖𝟎
…
ෝ𝒖𝒌−𝟏

𝒂𝒍𝒃𝟎
…
𝒂𝒖𝒃𝟎

𝒂𝒍𝒃𝟎
…
𝒂𝒖𝒃𝟎

𝒂𝒍𝒃𝟎
…
𝒂𝒖𝒃𝟎

…

𝑨𝑵 × 𝒅

𝑒𝑙𝑏1
…
𝑒𝑢𝑏1

𝑒𝑙𝑏1
…
𝑒𝑢𝑏1

𝑒𝑙𝑏1
…
𝑒𝑢𝑏1

…

𝑒𝑁𝑘

𝑂𝑃1

𝑂𝑃1

𝑂𝑃1

…

𝑂𝑃2

𝑂𝑃2

𝑂𝑃2

…

𝑖𝑑𝑙𝑏0
…
𝑖𝑑𝑢𝑏0

𝑖𝑑𝑙𝑏0
…

𝑖𝑑𝑢𝑏0

𝑖𝑑𝑙𝑏0
…
𝑖𝑑𝑢𝑏0

…

𝑖𝑑𝑁

𝑂𝑃3

𝑂𝑃3

𝑂𝑃3

… …

𝑼𝒍𝒐𝒄𝒂𝒍
𝒌 × 𝒅

S
y
n
c

B
a
r
r
i
e
r

…

𝑂𝑃4
𝒖𝟎
′

…
𝒖𝒌−𝟏
′

𝑼𝒏𝒆𝒘
𝒌 × 𝒅

𝒖𝟎
…
𝒖𝒌−𝟏

𝑼𝒐𝒍𝒅
𝒌 × 𝒅

C
l
u
s
t
e
r

F
o
r
k

Fig. 9. kmeans Parallelization Approach
𝑂𝑃1: Euclidean distance calculation, 𝑂𝑃2: Cluster ID allocation, 𝑂𝑃3: Local centroids update,

𝑂𝑃4: Global centroids update, A: Training set, e: Euclidean distance vector, id: Cluster ID vector,
U𝑜𝑙𝑑 : Initial cluster centroids, U𝑙𝑜𝑐𝑎𝑙 : Local cluster centroids, U𝑛𝑒𝑤 : New cluster centroids,

𝑁 = 𝑁𝑡𝑟𝑎𝑖𝑛 , 𝑐ℎ𝑢𝑛𝑘0 = 𝑁 /𝑛𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑏0 = 𝑐𝑜𝑟𝑒𝑖𝑑 × 𝑐ℎ𝑢𝑛𝑘0, 𝑢𝑏0 = 𝑙𝑏0 + 𝑐ℎ𝑢𝑛𝑘0
𝑐ℎ𝑢𝑛𝑘1 = (𝑁 × 𝑘)/𝑛𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑏1 = 𝑐𝑜𝑟𝑒𝑖𝑑 × 𝑐ℎ𝑢𝑛𝑘1, 𝑢𝑏1 = 𝑙𝑏1 + 𝑐ℎ𝑢𝑛𝑘1

As shown in Figure 9, the algorithm begins calculating the Euclidean distance (𝑂𝑃1) between
A elements and each centroid u𝑖 , thus demanding 𝑁 × 𝑘 distance computations. To dispatch
the workload efficiently onto the CL, we divide A horizontally by determining offline 𝑐ℎ𝑢𝑛𝑘0
which defines the number of A rows assigned to each core. At run-time, we offload the distance
computation to each core using 𝑙𝑏0 and 𝑢𝑏0 to tag core-dependent data indexes. Since a core
computes 𝑘 distances for each 𝑐ℎ𝑢𝑛𝑘0 element, 𝑂𝑃1 leads to a 𝑁 × 𝑘 dimensional result that we
store in the global shared buffer e.

In 𝑂𝑃2 the increased vertical dimension (𝑁 × 𝑘) demands expanding the data chunk to 𝑐ℎ𝑢𝑛𝑘1,
making a core working on 𝑘 distances for each 𝑐ℎ𝑢𝑛𝑘0 element. Thus, the cores find the closest
centroid u𝑖 to each 𝑐ℎ𝑢𝑛𝑘0 element and assign the cluster ID. Furthermore, the results are saved
in an 𝑁𝑡𝑟𝑎𝑖𝑛-sized array id containing the cluster ID for each A data sample. 𝑂𝑃3 consists of a
Local Centroids Update where each core accumulates and counts A instances belonging to the
same centroid u𝑖 operating on 𝑐ℎ𝑢𝑛𝑘0 elements. The operation ends with a CL synchronization
barrier to ensure each core finishes the workload before moving to the following computation step.
Lastly, we perform a Global Centrodis Update (𝑂𝑃4) to pull together local results U𝑙𝑜𝑐𝑎𝑙 . Each core
takes charge of computing the global value of a centroid u𝑖 corresponding to its 𝑐𝑜𝑟𝑒𝑖𝑑 , working on
non-contiguous elements. Thus, the core accumulates U𝑙𝑜𝑐𝑎𝑙 and count variables using the 𝑐𝑜𝑟𝑒𝑖𝑑
to retrieve data from the chunks and dividing them, finds the new global centroid U𝑛𝑒𝑤 .

4.6 Random Forest
RF is a robust ML algorithm leveraging an ensemble of low-correlated randomized Decision Trees
(DTs) to split the training set using feature space subsets [86]. Due to the low-variance nature
and the capability to handle various data types effectively, the model has been largely deployed
in several domain-specific applications such as Non-Intrusive Load Monitoring [87] and anomaly
detection [88].
Starting from the root node, DTs consist of several splitting nodes where an input feature 𝑥𝑖 is

evaluated with a test condition to determine the branch to be followed. Repeating the decision

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:20 Tabanelli et al.

A

r

g

M

a

x
…

𝑦

S

y

n

c

B

a

r

r

i

e

r

C

l

u

s

t

e

r

F

o

r

k

𝒙𝒅

…𝐷𝑇𝑙𝑏

CS Start

Vote
Update

CS End

𝐷𝑇𝑢𝑏

CS Start

Vote
Update

CS End

…𝐷𝑇𝑙𝑏

CS Start

Vote
Update

CS End

𝐷𝑇𝑢𝑏

CS Start

Vote
Update

CS End

…𝐷𝑇𝑙𝑏

CS Start

Vote
Update

CS End

𝐷𝑇𝑢𝑏

CS Start

Vote
Update

CS End

……… …

Fig. 10. RF Parallelization Approach
𝐷𝑇𝑖 : i-th Decision Tree, CS: Critical Section, 𝑑 : Dimension

𝑐ℎ𝑢𝑛𝑘 = 𝑁𝑡𝑟𝑒𝑒𝑠/𝑛𝑐𝑜𝑟𝑒𝑠 , 𝑙𝑏 = 𝑐𝑜𝑟𝑒𝑖𝑑 × 𝑐ℎ𝑢𝑛𝑘, 𝑢𝑏 = 𝑙𝑏 + 𝑐ℎ𝑢𝑛𝑘

procedure over the entire structure, the DT reaches a leaf containing the predicted class. Lastly, RF
returns the input prediction by aggregating DTs votes and picking up the class with the higher
number of votes.
To optimize the model execution on edge devices, we designed a custom DT implementation

representing the model structure with arrays. This approach save all tree structures into four
arrays: feature, threshold, left child, and right child. By using feature and threshold arrays, we
evaluate the node comparison. While leveraging the result, we pick the following node from the
left- and right-child array. Lastly, we mark leaf nodes by writing a negative integer value in the
corresponding 𝑖-th node elements of the feature array.

4.6.1 RF Parallelization Approach. The DT algorithmic structure prevents a priori knowledge of
the taken pathway toward the leaf at compile time. The model unveils the taken branches by
evaluating the input 𝑥 at runtime, and this unpredictability complicates the DT parallelization. In
this regard, we adopt a parallelization scheme consisting of assigning the whole DT execution to a
specific core. Furthermore, the strategy involves the static assignment of DTs to the available cores.

In Figure 10, we illustrate the parallel algorithm design to offload RF execution onto multi-core
platforms maximizing the compute power utilization. To efficiently dispatch the RF model onto
the CL, we determine offline a 𝑐ℎ𝑢𝑛𝑘 size representing the number of DTs assigned to each core.
By computing core-dependant 𝑙𝑏 and 𝑢𝑏, each core retrieves the assigned 𝐷𝑇𝑖𝑑 and executes the
workload computing the result for the assigned DTs. A Critical Section (CS) barrier prevents
multiple cores from accessing the Vote Update section simultaneously. Thus, we aggregate DTs
results atomically by incrementing the retrieved class in a vote array. Lastly, a CL Synchronization
Barrier ensures that each core finishes the workload before moving to the ArgMax function, which
retrieves the final prediction.

5 EXPERIMENTAL EVALUATION
This section presents the results of our design optimized for parallel execution employing a fine-
grained analysis and intensive optimization. We provide Non-Neural ML algorithms execution
time, considering two alternative FP emulation libraries and FPU-native support. By comparing the
kernel single-core execution, we point out the performance improvement obtained by switching

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:21

from a standard to a custom RISCV-based emulation support and an FPU-native platform. We also
compare achieved speedups for each target platform leveraging the 8-core CL compute power and
the optimized algorithm parallel design. To clarify the achieved results, we conducted an analysis
to determine non-ideality sources and architectural factors when performance is sub-optimal.

Section 5.1 describes the adopted experimental setup and the ML framework deployed to train the
Non-Neural ML kernels. A comparison of the sequential execution overhead between alternative
FP emulation supports and an FPU-native platform is discussed in Section 5.2. After presenting
in Section 5.3 the achieved speedups by fully exploiting the CL compute power, we illustrate an
in-depth comparison of the execution time between PULP-OPEN and ARMCortex-M4 in Section 5.4.

5.1 Setup
The experimental analysis has been conducted using two different target platforms. The GAPUINO
development board11 represents a commercial solution integrating GAP8 coupled with a rich set of
peripheral interfaces to fast prototype embedded applications. A JTAG bridge allows programming
the onboard FLASH memory and debugging GAP8 code. Instead, the hardware design includes
a set of Special-Purpose Registers (SPRs) to store the count of hardware-related events at the
core level. Using non-intrusive per-core performance counters enables fine-grained performance
analyses, measuring events related to instructions (executed instructions, total and active cycles)
and memory accesses (I$ misses, TCDM contentions, and L2/TCDM memory stalls). In this work,
we use the GAPUINO board to profile Non-Neural ML algorithms performance on GAP8 while
using a standard and a custom software FP library. Furthermore, we set the FC clock frequency to
250MHz while the CL runs at 150MHz.
We also performed experiments on the PULP-OPEN architecture, thus leveraging FPU-native

support. To emulate the microarchitecture, we used a hardware emulator running on a Xilinx
UltraScale+ VCU118 FPGA board12. The architecture emulation enables faster experiments than
RTL-equivalent simulations while providing cycle-accurate results. In addition to the performance
counters provided by GAP8, the PULP-OPEN design supports recording FPU pipeline-related events
(FPU stalls, contentions, and write-back stalls). Using Vivado Design Suite, we generate and load
the microarchitecture bitstream on the FPGA. An OpenOCD interface with GDB support mapped
on GPIO pins allows uploading the application binary code in the L2 memory and running the
program. A virtual UART mapped on a dedicated USB port enables to read results from an emulated
terminal. In this work, the FPGA clock frequency has been set to 20 MHz.
To characterize performance, we selected three datasets widely adopted among the TinyML

community and are contained in the MLPerf Tiny benchmark suite [50]. Speech Commands is an
audio dataset of spoken words designed to build Keyword Spotting systems, consisting of 105k
utterances from 2.6k different speakers. The dataset supports 35 English words and a collection
of background noises, where each speech sample is 1sec long. Following MLPerf Tiny reference
implementation, we deployed a subset of the dataset consisting of 10 words. We used the remaining
words to approximate the "unknown" label, which, along with "silence", results in 12 output classes.
As pre-processing, we used 10 Mel-frequency cepstral coefficients (MFCC) features extracted from
a 40 msec long speech frame with a stride of 20 ms, resulting in 490 features for 1sec audio. For
that purpose, we used Speech Commands to benchmark GEMM-based algorithms in this work. To
test MS-based algorithms, we deployed the ToyADMOS dataset for anomaly detection in machine
operating sounds. According to MLPerf Tiny benchmark suite, we used only the Toy-car machine
type among the other six available. For training, we deployed 7k normal sound samples from seven

11https://greenwaves-technologies.com/product/gapuino/
12https://www.xilinx.com/products/boards-and-kits/vcu118.html

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://greenwaves-technologies.com/product/gapuino/
https://www.xilinx.com/products/boards-and-kits/vcu118.html

1:22 Tabanelli et al.

Toy-cars, each delivering 1k machine sound samples mixed with environmental noise. We also
pre-processed the audio into a log-mel-spectrogram with 128 bands featuring a sliding window
of five frames, leading to a 640 input size. Regarding k-Means, we adopted two 640-dimensional
clusters to divide the training set, while four nearest neighbors for kNN. CIFAR-10 is a multi-class
labeled dataset consisting of 60k 32x32 RGB images, divided into 50k training instances and 10k
for the testing set. The dataset represents the de-facto standard for TinyML benchmarking since
the low image resolution makes CIFAR-10 the most suited data source for training tiny image
classification models. For that purpose, we used CIFAR-10 to benchmark the IT-based algorithm
and GNB in this work.

We performed the training of the algorithms entirely relying on the Scikit-Learn ML framework,
leveraging its front-end to dump model parameters and structures. Whenever model parameters
do not fit the L1 memory, we place data into the L2 level and use the double-buffering wrapper to
overlap DMA operations with kernel processing optimally. To guarantee efficient runtimes, we
initially optimized the sequential version of the Non-Neural ML algorithms on each platform. Thus,
we thoroughly investigated kernel execution using non-intrusive performance counters to optimize
the instruction-level scheduling of the 4-stage in-order single-issue pipeline adopted by both target
cores. We used the L1 load stall counter to limit hazards due to data dependencies while monitoring
branch stalls to minimize pipeline flushing. We also leveraged the I$ misses counter to investigate
cache locality issues. This in-depth analysis led to the highest attainable CPU utilization achieving
near-optimal Clock per Instruction (CPI) for most algorithms. In the parallel version, we focused
on reducing TCDM contentions to limit the wasting of cycles when multiple cores attempt to read
data from the same memory block. Furthermore, we optimized the use of parallel programming
primitives to the bare minimum reduce synchronization overheads. Lastly, we conducted extensive
benchmarking considering all FP emulation supports and platforms, measuring the execution cycles
and other statistics for each variant.

Fig. 11. Non-Neural ML algorithms cycles, latency, and energy on a single-core GAP8 and PULP-OPEN
configuration

1K

10K

100K

1M

10M

100M

1G

1
.6

9
2

5
.6

1
.7

2
2

5
.7

1
.5

8
3

0
.4

3
2

.11
.3

6

1
.9

2
8

.3
1

.3
9

2
.4

8

Cycles

1

10

100

1k

10k

100k

4
1

%
9

9
%

4
2

%
9

9
%

2
8

%
9

9
%

2
6

% 7
3

%

4
7

%
9

9
% 3

7
%

9
9

%

Energy (𝝁J)

1

10

100

1k

10k

100k

1M
Latency (𝝁s)

4
2

%
9

8
%

4
1

%
9

8
%

2
8

%
9

8
% 2
6

% 6
0

%

4
7

%
9

9
% 3

7
%

9
9

%

GAP8 libgcc
GAP8 RVfplib
PULP-OPEN

1K

10K

100K

1M

10M

2
.1

9
1

6

2
.3

9
1

6

1
.9

4
1

4

1
1

.6

1
.3

6

1
.7

5

1
1

.4
1

.7
4

9
.2

7

Cycles

0

1

10

100

1K

10K

8
8

%
9

8
%

8
9

%
9

8
%

8
5

%
9

8
%

8
0

%
9

7
%

8
5

%
9

8
%

8
6

% 9
8

%

Energy (𝝁J)

1

10

100

1K

10K

100K

9
0

%
9

9
%

9
1

%
9

9
%

8
8

%
9

8
%

8
4

%
9

8
%

8
8

%
9

8
%

8
9

%
9

8
%

Latency (𝝁s)

ARM Cortex-M4
PULP-OPEN 1
PULP-OPEN 8

5.2 Benchmarking Floating-Point Emulation Libraries vs FPU-Native Support
In Figure 11, we show the cycles, latency, and energy required by Non-Neural ML algorithms con-
sidering a sequential execution on the two RISCV-based PULP MCUs and alternative FP emulation
libraries for GAP8. We report on top of cycles columns the achieved speedup compared to the
baseline, which consists of executing the kernels on GAP8 with libgcc support for FP emulation.
Regarding the energy efficiency and latency values, we indicate the percentage decrease compared
to the baseline. Table 3 represents algorithms code size and percentage reduction when moving from

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:23

Table 2. Runtime statistics and architectural factors executing the Non-Neural ML algorithms on a single-core
GAP8 and PULP-OPEN configuration, leveraging libgcc and RVfplib for FP emulation on GAP8.

Kernel Platform FP Instr. (%) Cycles Instr. CPI Speedup Pipeline N.I. I$ Misses Ext. LD FPU N.I

SVM
GAP8 + libgcc 89.98 757k 548k 1.38 - 146k 7.6k 4.5k -
GAP8 + RVfplib 69.06 447k 335k 1.33 1.69 92.7k 16.3k 1 -
PULP-OPEN 24.89 29.6k 23.7k 1.25 25.56 5.9k 25 1 0

LR
GAP8 + libgcc 90.16 796k 570k 1.40 - 150k 24.8k 4.60k -
GAP8 + RVfplib 68.65 463k 351k 1.32 1.72 96.8k 37 1 -
PULP-OPEN 24.98 30.9k 24.6k 1.26 25.75 6.10k 5 1 184

GNB
GAP8 + libgcc 92.42 86.4M 67.4M 1.28 - 15.9M 3.38M 16.1k -
GAP8 + RVfplib 57.67 62.0M 50.1M 1.24 1.39 11M 387k 1 -
PULP-OPEN 27.25 3.05M 2.72M 1.12 28.34 279k 37.9k 1 30.7k

RF
GAP8 + libgcc 54.23 1.01M 695k 1.45 - 344k 39.9k 1 -
GAP8 + RVfplib 29.98 742k 629k 1.18 1.36 78.8k 18.5k 1 -
PULP-OPEN 6.39 405k 350k 1.16 2.48 70.5k 19.9k 1 0

kNN
GAP8 + libgcc 90.49 117M 80.7M 1.45 - 29.1M 1.57M 554k -
GAP8 + RVfplib 69.68 61.6M 46.5M 1.32 1.9 13.3M 635k 15 -
PULP-OPEN 45.5 3.64M 2.85M 1.28 32.09 735k 36.6k 15 0

kMEANS
GAP8 + libgcc 74.82 625k 466k 1.34 - 89.4k 8.39M 515 -
GAP8 + RVfplib 48.27 395k 315M 1.25 1.58 45.4k 525 1 -
PULP-OPEN 40.64 20.5k 18.3k 1.26 30.44 2.8k 41 1 44

the baseline to RVfplib emulation and then to the FPU-native system. Lastly, we present in Table 2
the execution statistics for each kernel and platform configuration, along with the architectural
non-idealities retrieved from the performance counters. Pipeline Non-Idealities (N.I.) refers to the
sum of architectural factors owed to the cores pipeline (stalls related to memory load latency and
taken branches). At the same time, FPU N.I. accounts for FPU-related events limiting the efficiency
(write-backs, contentions, and dependencies). libgcc emulation leads to the lowest CPI, ranging
from 1.28 to 1.45, due to the high usage of branching conditions and global variables placed into
L2 memory by the GCC toolchain. Moving from the baseline to the custom RISCV-based RVfplib
emulation library reduces execution times, achieving 1.36-1.9× speedups on GAP8 and a higher
1.18-1.33 CPI. Employing fast SW FP emulated routines on FPU-less processors brings several
further benefits for TinyML: latency features up to 47.34% decrease, while energy efficiency reaches
26.27%-47.34% reductions. Adopting the FPU-native PULP-OPEN platform decreases pipeline N.I.
and FPU factors to 1% execution time, reaching up to 1.12 CPI and 32.09× performance improvement
compared to the baseline. Consequently, FP support leads to higher latency and energy lowering,
ranging from 59.74% to 99.1% compared to libgcc adoption on top of GAP8.
GEMM-based algorithms demand executing a matrix-vector multiplication, which requires a

sequence of FP mul and add operations at low level. When executing the kernel on the baseline,
libgcc __mulsf3 and __addsf3 emulation routines (multiplication and addition between single-
precision FP variables, respectively) slow down the runtime requiring about 800 kcycles per
inference. Compiling GAP8 code integrating the RISCV-based emulation library decreases the
execution time to almost 450 kcycles due to the RVfplib latency obtained by leveraging the PULP ISA
extensions. Thanks to the native support for single-cycle FP arithmetic instructions, PULP-OPEN
decreases further the execution time, leading to a 25.56-25.75× speedup compared to the baseline.

In the GNB model, the normal Gaussian distribution calculation requires executing high latency
transcendental functions (i.e., expf and logf), thus making the algorithm compute-intensive. As a
result, running the kernel on the baseline setup demands an order of magnitude higher execution
time than previous algorithms, namely 86.4 Mcycles. By deploying RVfplib on GAP8, the executin

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:24 Tabanelli et al.

time decreases to 62 Mcycles with a 0.3× speedup drop compared to the performance of GEMM-
based kernels. Transcendental functions involve a high usage of the __divsf3 routine, which
slows down the execution time when passing from libgcc to RVfplib emulation support. As a
consequence, expf and logf routines present a 1.2× average speedup with respect to the baseline.
Overall, transcendental functions severely limit RVfplib speedup since they account for 20% of GNB
execution time. Furthermore, taken branches (TBs) account for 17.78% GNB computational time
and decrease by up to 5% less than GEMM-based kernels, thus limiting the runtime improvement.
Moving the execution onto PULP-OPEN further reduces the running time to 3.05 kcycles, thus
reaching a 28.34× speedup compared to the baseline. Load stalls reduction to almost 0% of the
execution time enables a 3× relative speedup increase compared to GEMM-based kernels, where
load stalls represent 19% of the computation time.
Due to limited usage of FP computations, RF presents lower performance when switching the

FP emulation support and moving to an FPU-native platform. On the baseline, RF demands about
1.01 Mcycles deploying only the __lesf2 libgcc emulation routine to compare feature values with
thresholds. By showing 54.23% FP instructions, RVfplib allows improving only a limited fraction of
the workload, thus leading to 742 kcycles with a 1.36× speedup compared to the baseline. Leveraging
the PULP-OPEN FPU reduces the execution time to about 405 kcycles with a reduced speedup of
2.38× owing to a 6.39% kernel FLOP intensity.

By running kNN on GAP8 deploying libgcc FP emulation support, the kernel requires 117 Mcycles
per inference. Since the algorithm leverages GEMM-based FP emulation routines with the addition
of __subsf3, achieving a 1.9× speedup with RVfplib is mainly due to architectural factors. While
TBs increase by 2.01% of the execution time in GEMM-based kernels, kNN presents a TBs decrease
of almost 3% of the computing time moving from libgcc to RVfplib. Previous algorithms feature
24.89-27.25% FP instructions, while kNN reaches up to 45.5% due to 21.2M FP instructions out of
a total of 46.5M instructions. As a result, the kernel gains performance from leveraging more of
the FPU compute power leading to a 32.09× speedup compared to the baseline when deploying
PULP-OPEN.
The kernel takes about 625 kcycles when performing on the baseline while leveraging RVfplib

on GAP8 reaches a 1.58× speedup reducing the runtime to 395 Mcycles. kMEANS lower FP rate
compared to kNN explains the 0.3× drop of performance when switching from libgcc to RVfplib
FP support. While kNN accounts for 90.49% instructions to emulate FP computations, kMEANS
uses only 74.82% of the overall workload, thus leading to a speedup decrease. Running the kernel
on PULP-OPEN, the execution time decreases to almost 20.5 kcycles, improving performance by
30.44× compared to the baseline. By presenting a reduced FLOP intensity of 40.64% and a higher LD
stalls increase compared to kNN, the kernel achieves a 2× lower speedup compared to the baseline.

Adopting SW-optimized FP emulation libraries on IoT FPU-less platforms leads to several advan-
tages also for latency and energy efficiency. GEMM- and MS-based algorithms are almost dominated
by FP computations, featuring 75% to 90% of FP instructions. Leveraging small optimized RBfplib
routines leads to 36.7%-47.34% energy usage reduction, demanding about 190 `J per GEMM-based
and k-Means inference and 26.4𝑚J for kNN. Consequently, such Non-Neural ML kernels present
higher latency percentage reductions, enabling running inferences on GAP8 in about 352𝑚s for
kNN and 2.5 𝑝s for the remaining. GNB transcendental routines high usage and RF reduced FP
computations ratio limit energy and latency improvements to 26.2%-28.8% compared to libgcc
deployment on GAP8. Instead, leveraging PULP-OPEN FPU-native support reduces such resources
by up to 99%, requiring down to 3.7 `J and 75 `s per GEMM-based inference.
Adopting RVfplib on GAP8 to execute RF reduces the code size by only 3.9% due to the low FP

computations ratio, while the other kernels reach a 7.9% lowering. Lastly, PULP-OPEN FPU-native
support decreases the code size up to 42%, considering libgcc support.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:25

Table 3. Non-Neural ML kernels code size on a single-core GAP8 and PULP-OPEN configuration, leveraging
libgcc and RVfplib for FP emulation on GAP8.

SVM LR GNB RF kNN k-Means
GAP8+libgcc 21.4 23.11 25.59 21.22 23.17 22.9
GAP8+RVfplib 19.9kB (↓7.3%) 21.3kB (↓7.9%) 23.7kB (↓7.3%) 20.4kB (↓3.9%) 21.5kB (↓7%) 21.3kB (↓7%)
PULP-OPEN 13kB (↓39%) 13.5kB (↓42%) 15.4kB (↓40%) 13kB (↓39%) 14.2kB (↓39%) 13.8kB (↓40%)

5.3 Parallel performance
In Figure 12, we report the cycles, latency, and energy required by Non-Neural ML kernels, com-
paring sequential and parallel execution on PULP-OPEN and GAP8. To assess the parallelization
performances, we also report the 1-vs-8 cores parallel speedup in Figure 13 and indicate the per-
centage loss between the achieved and ideal speedup on top of each column. Furthermore, Table 4
gives more profound insight into the results by providing measurements of the architectural factors
limiting the speedup retrieved from platform performance counters. The considered ML kernels
consist of a workload divided into fully parallelizable sections and inherently sequential portions.
For that purpose, the table also reports the theoretical speedup of Non-Neural ML kernels when
using multiple processors. Thus, we profiled the execution time of the sequential code sections for
each platform configuration and applied Amdahl’s law using the formula in Eq. (15).

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

(1 − 𝑝) + 𝑝

𝑁

(15)

Amdahl’s law has two parameters: 𝑝 is the percentage of parallelizable code, and 𝑁 is the total
number of available cores. This formula provides an ideal bound for the theoretical speedup since it
does not take into account the parallelization overheads. The optimized parallel design introduced
in Section 4 enables reaching near-ideal speedups ranging from 6.56× to 7.64× compared to a
single-core execution. By reducing TCDM contentions to at most 4.25% of the execution time and
improving the instruction scheduling, we achieve CPIs ranging from 1.32 to 1.72.

1K

10K

100K

1M

10M

100M

1G

1

10

100

1K

10K

100K

1M

0

1

10

100

1K

10K

100K
Latency (𝝁s)Cycles Energy (𝝁J)

GAP8 libgcc1 8
GAP8 RVfp1 8
PULP-OPEN1 8

6.0

6.5

7.0

7.5

8.0

SVM LR NB RF kNN kMeans

1
1

%
1

4
% 1
0

%

1
0

%
1

4
%

1
6

%

6
% 9
%

1
3

%

4
% 5
%

1
2

%

1
6

%
1

5
% 1
3

%

5
%

4
% 1

7
%

1
-v

s-
8

 C
o

re
 S

p
e

e
d

u
p

G
8

 lib
gcc

P
U

LP
-O

G
8

 R
V

fp

Fig. 12. 1-vs-8 core Non-Neural ML algorithms cycles, latency, and energy comparison.
Abbreviations: RVfp (RVfplib).

To retrieve the highest predicted probability, GEMM-based kernels leverage the 𝑎𝑟𝑔𝑚𝑎𝑥 sequen-
tial routine. Thus, the theoretically achievable speedup decreases to 7.83×-7.95× depending on
the deployed platform and FP emulation support. The parallel algorithm design allows achieving
speedups between 6.63× and 7.07× by switching the configuration. By emulating FP computations
on GAP8, I$ misses do not scale linearly with the number of cores while increasing from almost zero
to 5.72% of the parallel execution time in LR with RVfplib support. While other non-idealities are
negligible, I$ misses limit the speedup to 7.07× for libgcc and 6.63× for RVfplib when performing
GEMM-based kernels on GAP8. By leveraging the PULP-OPEN platform, the parallel computing

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:26 Tabanelli et al.

Table 4. Runtime statistics and architectural factors executing the Non-Neural ML algorithms on a single-core
and 8-core configuration.

Kernel Platform Cores Cycles Instr. CPI Speedup Theor.
Speedup

Pipeline
N.I.

I$
Misses TCDM Ext.

LD
FPU
N.I.

SVM

GAP8 + libgcc 1 757k 548k 1.38 - - 146k 7.6k 0 4.5k -
8 108k 62.6k 1.72 7.03 7.94 19.7k 4.86k 11 567 -

GAP8 + RVfplib 1 447k 335k 1.33 - - 92.7k 16.3k 0 1 -
8 65.5k 45.2k 1.45 6.83 7.94 12.3k 2.67k 16 2 -

PULP-OPEN 1 29.6k 23.7k 1.25 - - 5.9k 25 0 1 0
8 4.20k 3.17k 1.32 7.05 7.83 740 46 165 2 4

LR

GAP8 + libgcc 1 796k 570k 1.4 - - 150k 24.8k 0 4.60k -
8 112k 66.5k 1.69 7.07 7.88 19.9k 6.26k 16 578 -

GAP8 + RVfplib 1 463k 351k 1.32 - - 96.8k 37 0 1 -
8 67.8k 45.5k 1.49 6.83 7.95 11.6k 3.88k 12 4 -

PULP-OPEN 1 30.9k 24.6k 1.26 - - 6.10k 5 0 1 184
8 4.66k 3.34k 1.39 6.63 7.88 766 283 198 3 80

GNB

GAP8 + libgcc 1 86.4M 67.4M 1.28 - - 15.9M 3.38M 0 16.1k -
8 11.5M 8.22M 1.4 7.49 7.89 1.99M 785k 453 2.07k -

GAP8 + RVfplib 1 62.0M 50.1M 1.24 - - 11M 387k 0 1 -
8 8.09M 6.09M 1.33 7.64 7.96 1.37M 299k 507 62 -

PULP-OPEN 1 3.05M 2.72M 1.12 - - 279k 37.9k 0 1 30.7k
8 463k 345k 1.34 6.56 7.91 34.7k 16.8k 1.49k 62 44.1k

RF

GAP8 + libgcc 1 1.01M 695k 1.45 - - 344k 39.9k 0 1 -
8 151k 89.5k 1.69 6.66 7.92 43.3k 11.4k 420 60 -

GAP8 + RVfplib 1 742k 629k 1.18 - - 78.8k 18.5k 0 1 -
8 111k 81.2k 1.36 6.7 7.9 10.4k 2.46k 600 60 -

PULP-OPEN 1 405k 350k 1.16 - - 70.5k 19.9k 0 1 0
8 59.4k 44.1k 1.35 6.82 7.81 9.16k 1.32k 1.08k 60 0

kNN

GAP8 + libgcc 1 117M 80.7M 1.45 - - 29.1M 1.57M 0 554k -
8 15.4M 10.1M 1.52 7.59 7.94 3.64M 808k 1.58k 69.5k -

GAP8 + RVfplib 1 61.6M 46.5M 1.32 - - 13.3M 635k 0 15 -
8 8.2M 5.84M 1.4 7.51 7.93 1.67M 608k 1.69k 225 -

PULP-OPEN 1 3.64M 2.85M 1.28 - - 735k 36.6k 0 5 0
8 548k 377k 1.45 6.65 7.59 91.4k 7.09k 858 225 253

kMEANS

GAP8 + libgcc 1 625k 466k 1.34 - - 89.4k 8.39M 0 515 -
8 83.6k 59.3k 1.41 7.47 8 12.7k 3.66k 9 98 -

GAP8 + RVfplib 1 395k 315M 1.25 - - 45.4k 525 0 1 -
8 54.2k 39.9k 1.36 7.29 8 6.83k 2.62k 10 1 -

PULP-OPEN 1 20.5k 18.3k 1.26 - - 2.8k 41 0 1 44
8 2.94k 2.17k 1.35 6.98 8 353 41 4 1 10

time decreases to 4.20-4.66 kcycles making minor non-ideality sources affecting the performance.
Among the most significant, TCDM contentions represent 3.92-4.25% of the PULP-OPEN 8-core
execution time, highly bounding the speedup. Moreover, I$ misses increase when offloading the
kernel computation onto CL. In particular, LR shows an I$ misses rise from nearly zero to 6.08% of
the parallel runtime. Regarding the FPU non-idealities, they explain up to 1.74% of the parallel exe-
cution time, thus not limiting CL utilization. However, despite the above-mentioned architectural
factors, the optimized algorithm design allows reaching 6.63×-7.05× parallel speedup.

By emulating GNB FP computations on the GAP8 8-core CL, we improve the sequential execution
by 7.49× for libgcc FP support and 7.64× for the custom RVfplib library. The architectural factor
limiting the speedup on both emulation supports is related to I$ misses since they slowly decrease

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:27

1K

10K

100K

1M

10M

100M

1G

1

10

100

1K

10K

100K

1M

0

1

10

100

1K

10K

100K
Latency (𝝁s)Cycles Energy (𝝁J)

GAP8 libgcc1 8
GAP8 RVfp1 8
PULP-OPEN1 8

6.0

6.5

7.0

7.5

8.0

SVM LR NB RF kNN kMeans

1
1

%
1

4
% 1
0

%

1
0

%
1

4
%

1
6

%

6
% 9
%

1
3

%

4
% 5
%

1
2

%

1
6

%
1

5
% 1
3

%

5
%

4
% 1

7
%

1
-v

s-
8

 C
o

re
 S

p
e

e
d

u
p

G
8

 lib
gcc

P
U

LP
-O

G
8

 R
V

fp

Fig. 13. Non-Neural ML kernels parallel performance on GAP8 and PULP-OPEN.
Abbreviations: G8 (GAP8), RVfp (RVfplib), PULP-O (PULP-OPEN).

moving to the parallel execution. Performing the kernel on PULP-OPEN leads to not-negligible FPU
non-idealities that double up compared to the sequential execution and account for almost 10% of
the parallel runtime. Concurrently, several architecture factors contribute to limiting CL compute
efficiency, particularly I$ misses do not scale linearly while covering 3.63% of the parallel execution
time. Therefore, leveraging the 8-core PULP-OPEN CL decreases GNB inference to 463 kcycles,
thus reaching a 6.56x speedup compared to a single-core execution.
The most significant impact of architectural non-idealities involves a decrease in the CL per-

formance efficiency when dispatching the RF kernel onto the 8-core engine. By deploying libgcc
to emulate FP comparison operations, the runtime reduces down 151 kcycles with a speedup of
6.66×. Accordingly, RVfplib decreases the computing time from 742 kcycles to 111 kcycles enabling
a 6.7× performance improvement. In addition to the sequential 𝑎𝑟𝑔𝑚𝑎𝑥 routine limiting the gain
to 7.9× speedup, I$ misses, and TCDM contentions bound the performance speedup accounting
for 3%-7% of the parallel execution time. Instead, PULP-OPEN achieves a 6.82× computation time
improvement compared to a single-core execution, presenting a theoretical speedup of 6.82×. The
reduced kernel FLOP intensity (6.39%) involves a low FPU usage, thus leading to zero FPU pipeline
non-idealities. I$ misses and TCDM contentions are the main architectural factors limiting the
performance, impacting almost 4% on the parallel computation time.

Offloading kNN computations to the GAP8 8-core CL while deploying libgcc emulation support
reduces the execution time from 117 Mcycles to 15.4 Mcycles, thus reaching a 7.59× speedup.
Leveraging the optimized RVfplib library, kNN optimized parallel design improves the single-core
running time by 7.51×. In both implementations, I$ misses limits the CL compute power utilization
since they scale sub-linearly with the number of cores while accounting for 5.24%-7.41% of the
parallel execution time. By running the kernel on PULP-OPEN, we improve the runtime from
3.64 Mcycles to 548 kcycles leading to a 6.65× speedup. Due to PULP-OPEN reduced execution time,
the sequential code weighs more on the computation and strictly limits the theoretical speedup to
7.59×with 28 kcycles executed by a single-core. Furthermore, architectural factors such as I$ misses,
TCDM contentions, and Ext-LD restrict the runtime reduction when offloading kNN computations
to PULP-OPEN 8-core CL.
Considering the remaining MS-based algorithm, kMEANS features a 7.47×-7.29× runtime im-

provement compared to a sequential execution deploying libgcc and RVfplib on GAP8, respectively.
While the theoretical speedup attains almost 8×, architectural non-idealities limit the speedup
when leveraging the 8-core CL. I$ misses account for a large portion of the parallel execution
time, slowly decreasing in libgcc and growing from nearly zero to 4.83% of the parallel computing
time when deploying RVfplib emulation support. By switching to the PULP-OPEN platform, the

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:28 Tabanelli et al.

1K

10K

100K

1M

10M

2
.1

9
1

6

2
.3

9
1

6

1
.9

4
1

4

1
1

.6

1
.3

6

1
.7

5

1
1

.4
1

.7
4

9
.2

7

Cycles

ARM Cortex-M4
PULP-OPEN 1
PULP-OPEN 8

Fig. 14. ARM Cortex-M4 vs. PULP-OPEN comparison.

FPU-native system decreases the 20.5 kcycles single-core execution time to 2.94 kcycles leveraging
the 8-core CL. Along with I$ misses, several architectural factors such as TCDM contentions and
Ext-LD contributes to bounding the speedup improvement to 6.98×.
Adopting optimized parallel designs of Non-Neural ML kernels on top of PULP processors

also offers several benefits for latency and energy efficiency, which are crucial in the TinyML
domain. By fully leveraging the 8-core CL compute power, we enable performing the kernels with
an excellent latency and energy decrease ranging from 85% to 87%. Executing Parallel k-Means
and GEMM-based algorithms on the PULP-OPEN platform requires only 7.35-11 `s latency and
0.36-0.55 `J per inference. While RF demands 149 `s and 7.34 `J, dispatching NB and kNN onto the
8-core CL reduces the latency and energy usage to 1.2-1.4𝑚s and 57-67 `J.

5.4 Comparison with Cortex-M4
This section compares the execution time of the Non-Neural ML kernels between PULP-OPEN and
the ARM Cortex-M413 architecture. This comparison focuses on single-core sequential execution
because the techniques proposed for code parallelization require minimal runtime support and are,
to a large degree, orthogonal to the ISA and the core micro-architecture. We used for comparison
an STM32F414 MCU since it belongs to a widespread, commercially successful ultra-low-power
MCU family. The STM32F4 features the Adaptive Real-Time (ART) memory accelerator to speed
up instructions fetch along with DSP and FPU instructions support. To perform the experimental
evaluation, we optimized the Non-Neural ML algorithms for the Cortex-M4 target using CMSIS-
DSP routines and custom-coded functions not provided in the library. In particular, we leveraged
CMSIS-DSP GNB and linear SVM implementations while the LR design for Cortex-M4 uses the
optimized dot product included in the library. CMSIS-DSP Euclidean distance routine embeds the
square root calculation. Thus, we improved the distance metric by removing such a multi-cycle
operation in MS-based algorithms. Since there is no CMSIS-DSP support for RF, we coded the
kernel for the STM32F4 target using the same optimization strategies we devised for the sequential
implementation on PULP.
Figure 14 reports the cycles required for the sequential execution of the ML benchmarks on

Cortex-M4 and PULP-OPEN. The figure also reports the results executing on the 8-core CL as a
further reference. We report the achieved speedup w.r.t. the Cortex-M4 on top of the bars. Focusing
on the sequential execution, PULP-OPEN achieves speedups ranging from 1.36× to 2.39× compared

13https://developer.arm.com/Processors/Cortex-M4
14https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://developer.arm.com/Processors/Cortex-M4
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:29

to Cortex-M4. While RF execution on PULP-OPEN achieves a 1.36× execution time decrease,
GEMM-based kernels reach up to a 2.39× runtime improvement. Along with GNB, MS-based
algorithms attain an intermediate improvement result with a 1.74×-1.94× speedup.
Both architectures execute kernels optimized explicitly for their ISA, and execution time is

expressed in cycles (i.e., it is independent of frequency). This gap is due to three main factors:
single-cycle load operations, hardware loop support, and fused multiply-and-add FP operations.
Load operations are executed in a single cycle when programmers adopt techniques to reduce
data dependencies inside the loop body (e.g., loop unrolling). Adopting hardware loops saves one
register, removes the overhead of updating the loop counter, and avoids pipeline stalls when the
branch is taken. Finally, multiply-and-accumulate operations require two cycles on PULP-OPEN,
but they are pipelined so that the throughput is close to 1 op/cycle when the compiler avoids data
dependencies on the output register.

6 CONCLUSION
This paper presents the parallel design of six relevant Non-Neural ML algorithms to fit ML compu-
tational constraints into edge-based PULP MCUs. We developed the algorithm design targetting
efficient execution on GAP8, a commercial chip, and PULP-OPEN, a research platform running on
an FPGA emulator. We determined efficient memory access patterns and parallelization schemes
achieving peak performance by optimizing the runtime through a fine-grained analysis and exten-
sive optimization. Since IoT-class MCUs often limit the HW resources to benefit energy efficiency,
we leveraged two alternative FP emulation libraries to perform FP computations on the FPU-less
GAP8.

By comparing the Non-Neural ML kernels execution time on a single-core GAP8 configuration,
we show that the target-optimized RVfplib library achieves an average 1.61× speedup compared to
the standard libgcc emulation support. Instead, leveraging the FPU-native support on a single-core
PULP-OPEN allows up to 32.09× speedup compared to libgcc emulation. We also examined the
parallel performance on the adopted PULP platforms, comparing the single-core execution time
with the 8-core CL runtime. The parallel design enables near-ideal speedups ranging from 6.56×
to 7.64×, considering the two PULP platforms and GAP8 FP emulation supports. We support the
discussion with a comprehensive runtime analysis providing core- and SoC-level architectural
factors limiting the speedup in each platform configuration and algorithm. Lastly, we present a
comparison between PULP-OPEN and ARM Cortex-M4. By leveraging PULP-OPEN in a single-core
configuration, we achieve 1.36×-2.39× speedup compared to Cortex-M4 deployment. At the same
time, using the 8-core CL of PULP-OPEN reduces the runtime drastically, leading to a 9.27×-15.85×
performance improvement.
Future work will include the design of an automatic tool to deploy Non-Neural ML algorithms

on PULP-based MCUs targetting optimal tiling and double-buffering operations to achieve peak
performance. Furthermore, we will expand the developed parallel library by integrating further
Non-Neural ML kernels and supporting new emerging PULP architectures.

REFERENCES
[1] D. Evans. The Internet of Things: How the Next Evolution of the Internet Is Changing Everything. Technical report,

Cisco, 2011.
[2] Ürün Dogan, Johann Edelbrunner, and Ioannis Iossifidis. Autonomous driving: A comparison of machine learning

techniques by means of the prediction of lane change behavior. In 2011 IEEE International Conference on Robotics
and Biomimetics, pages 1837–1843. IEEE, 2011.

[3] Enrico Tabanelli, Davide Brunelli, Andrea Acquaviva, and Luca Benini. Trimming Feature Extraction and Inference for
MCU-based Edge NILM: a Systematic Approach. IEEE Transactions on Industrial Informatics, 18(2):943–952, 2022.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

1:30 Tabanelli et al.

[4] Pradeep Kumar, Pradeep Kumar, and Arvind Tiwari. Ubiquitous Machine Learning and Its Applications. IGI Global,
USA, 1st edition, 2017.

[5] Cisco. Global Cloud Index: Forecast and Methodology, 2016–2021. Technical report, Cisco, 2016.
[6] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. To offload or not to offload? the bandwidth and

energy costs of mobile cloud computing. In 2013 Proceedings IEEE Infocom, pages 1285–1293. IEEE, 2013.
[7] Yunchuan Sun, Junsheng Zhang, Yongping Xiong, and Guangyu Zhu. Data security and privacy in cloud computing.

International Journal of Distributed Sensor Networks, 10(7):190903, 2014.
[8] Ramon Sanchez-Iborra and Antonio F Skarmeta. TinyML-Enabled Frugal Smart Objects: Challenges and Opportunities.

IEEE Circuits and Systems Magazine, 20(3):4–18, 2020.
[9] Colby R Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy Holleman, Xinyuan Huang, Robert

Hurtado, David Kanter, Anton Lokhmotov, et al. Benchmarking TinyML systems: Challenges and direction. arXiv
preprint arXiv:2003.04821, 2020.

[10] TinyML foundation. TinyML reasearch community. https://www.tinyml.org/, last accessed on 2022-10-15.
[11] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin, and Xinyu Yang. A survey on the edge

computing for the Internet of Things. IEEE Access, 6:6900–6919, 2017.
[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
[13] Mingxing Tan andQuoc Le. EfficientNet: RethinkingModel Scaling for Convolutional Neural Networks. In International

Conference on Machine Learning, pages 6105–6114. PMLR, 2019.
[14] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4510–4520, 2018.

[15] Greenwaves Technologies. GAP Processors. https://greenwaves-technologies.com/gap8_gap9/, last accessed on
2022-10-15.

[16] Sony. Spresense development board. https://developer.sony.com/develop/spresense/, last accessed on 2022-10-15.
[17] Sparsh Mittal. A survey of architectural techniques for near-threshold computing. ACM Journal on Emerging

Technologies in Computing Systems (JETC), 12(4):1–26, 2015.
[18] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, , and L. Benini. GAP-8: A RISC-V SoC for AI at the Edge

of the IoT . In International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages
1–4. IEEE, 2018.

[19] Davide Rossi, Francesco Conti, Manuel Eggiman, Stefan Mach, Alfio Di Mauro, Marco Guermandi, Giuseppe Tagliavini,
Antonio Pullini, Igor Loi, Jie Chen, Eric Flamand, and Luca Benini. 4.4 A 1.3TOPS/W @ 32GOPS Fully Integrated
10-Core SoC for IoT End-Nodes with 1.7`W Cognitive Wake-Up From MRAM-Based State-Retentive Sleep Mode. In
2021 IEEE International Solid- State Circuits Conference (ISSCC), volume 64, pages 60–62, 2021.

[20] Mark Gottscho, Irina Alam, Clayton Schoeny, Lara Dolecek, and Puneet Gupta. Low-cost memory fault tolerance for
IoT devices. ACM Transactions on Embedded Computing Systems (TECS), 16(5s):1–25, 2017.

[21] Doris Chen and Deshanand Singh. Profile-Guided Floating- to Fixed-Point Conversion for Hybrid FPGA-Processor
Applications. ACM Transactions on Architecture and Code Optimization, 9(4), 2013.

[22] Daniel Menard, Daniel Chillet, and Olivier Sentieys. Floating-to-fixed-point conversion for digital signal processors.
EURASIP Journal on Advances in Signal Processing, 2006:1–19, 2006.

[23] Michael Christensen and Fred J Taylor. Fixed-point-IIR-filter challenges. EDN Netw, 51(23):111–122, 2006.
[24] Daniel Menard, Romain Serizel, Romuald Rocher, and Olivier Sentieys. Accuracy constraint determination in fixed-point

system design. EURASIP Journal on Embedded Systems, 2008:1–12, 2008.
[25] Wei-Hsin Chang and Truong Q. Nguyen. On the Fixed-Point Accuracy Analysis of FFT Algorithms. IEEE Transactions

on Signal Processing, 56(10):4673–4682, 2008.
[26] Matteo Perotti, Giuseppe Tagliavini, Stefan Mach, Luca Bertaccini, and Luca Benini. RVfplib: A Fast and Compact

Open-Source Floating-Point Emulation Library for Tiny RISC-V Processors. In International Conference on Embedded
Computer Systems, pages 16–32. Springer, 2022.

[27] Maurizio Capra, Beatrice Bussolino, Alberto Marchisio, Guido Masera, Maurizio Martina, and Muhammad Shafique.
Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges,
and the Road Ahead. IEEE Access, 8:225134–225180, 2020.

[28] KV Greeshma and K Sreekumar. Fashion-MNIST classification based on HOG feature descriptor using SVM.
International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(5):960–962, 2019.

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[30] Liangzhen Lai, Naveen Suda, and Vikas Chandra. CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M
CPUs. arXiv preprint arXiv:1801.06601, 2018.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://www.tinyml.org/
https://greenwaves-technologies.com/gap8_gap9/
https://developer.sony.com/develop/spresense/

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:31

[31] STMicroelectronics. X-Cube-AI: AI Expansion Pack for STM32CubeMX. https://www.st.com/en/embedded-software/x-
cube-ai.html, last accessed on 2022-10-15.

[32] Mahmut Taha Yazici, Shadi Basurra, and Mohamed Medhat Gaber. Edge Machine Learning: Enabling Smart Internet
of Things Applications. Big data and cognitive computing. MDPI, 2(3):26, 2018.

[33] Girish Bekaroo and Aditya Santokhee. Power consumption of the Raspberry Pi: A comparative analysis. In 2016
IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation
of Societies (EmergiTech), pages 361–366, 2016.

[34] Fouad Sakr, Francesco Bellotti, Riccardo Berta, and Alessandro De Gloria. Machine Learning on Mainstream Microcon-
trollers. Sensors. MDPI, 20(9):2638, 2020.

[35] Eloquent Arduino blog. MicroML. https://github.com/eloquentarduino/micromlgen, last accessed on 2022-10-15.
[36] Jon Nordby. Emlearn: Machine Learning inference engine for Microcontrollers and Embedded Devices. https:

//github.com/emlearn/emlearn, last accessed on 2022-10-15.
[37] Mohamed Almansoor, Mohamed Alaradi, and Abdulla Alqaddoumi. Parallel Programming for Classification Algorithms

Using Logistic Regression and Artificial Neural Networks: Framework and Applications. In 2020 International
Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), pages 1–6.
IEEE, 2020.

[38] Kennedy Senagi and Nicolas Jouandeau. Parallel construction of Random Forest on GPU. The Journal of
Supercomputing. Springer, pages 1–21, 2022.

[39] Peng Liu, Hui-han Zhao, Jia-yu Teng, Yan-yan Yang, Ya-feng Liu, and Zong-wei Zhu. Parallel naive Bayes algorithm
for large-scale Chinese text classification based on Spark. Journal of Central South University. Springer, 26(1):1–12,
2019.

[40] Yang You, Shuaiwen Leon Song, Haohuan Fu, Andres Marquez, MaryamMehri Dehnavi, Kevin Barker, KirkWCameron,
Amanda Peters Randles, and Guangwen Yang. Mic-svm: Designing a highly efficient support vector machine for
advanced modern multi-core and many-core architectures. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 809–818. IEEE, 2014.

[41] Huming Zhu, Pei Li, Peng Zhang, and Zheng Luo. A High Performance Parallel Ranking SVM with OpenCL on
Multi-core and Many-core Platforms. International Journal of Grid and High Performance Computing (IJGHPC). IGI
Global, 11(1):17–28, 2019.

[42] Yujing Ma, Florin Rusu, and Martin Torres. Stochastic gradient descent on modern hardware: Multi-core CPU or GPU?
Synchronous or asynchronous? In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 1063–1072. IEEE, 2019.

[43] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh
Goyal, Raghavendra Udupa, Manik Varma, and Prateek Jain. ProtoNN: Compressed and Accurate kNN for Resource-
scarce Devices. In International Conference on Machine Learning, pages 1331–1340. PMLR, 2017.

[44] Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient Machine Learning in 2 KB RAM for the Internet
of Things. In International Conference on Machine Learning, pages 1935–1944. PMLR, 2017.

[45] Sridhar Gopinath, Nikhil Ghanathe, Vivek Seshadri, and Rahul Sharma. Compiling KB-Sized Machine Learning Models
to Tiny IoT Devices. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, page 79–95. ACM, 2019.

[46] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdanbakhsh, Joon Kyung Kim, and Hadi
Esmaeilzadeh. Tabla: A unified template-based framework for accelerating statistical machine learning. In 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages 14–26. IEEE, 2016.

[47] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Mohammadamin Barekatain, Peyman Adibi, Payam Bar-
naghi, and Amit P. Sheth. Machine learning for internet of things data analysis: a survey. Digital Communications
and Networks, 4(3):161–175, 2018.

[48] Massimo Merenda, Carlo Porcaro, and Demetrio Iero. Edge machine learning for AI-enabled IoT devices: A review.
Sensors, 20(9):2533, 2020.

[49] Muhammad Waseem Ahmad, Monjur Mourshed, and Yacine Rezgui. Trees vs Neurons: Comparison between random
forest and ANN for high-resolution prediction of building energy consumption. Energy and buildings, 147:77–89,
2017.

[50] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries, Csaba Kiraly, Pietro Montino, David
Kanter, Sebastian Ahmed, Danilo Pau, et al. MLPerf Tiny Benchmark. arXiv preprint arXiv:2106.07597, 2021.

[51] Jaesung Huh, Minjae Lee, Heesoo Heo, Seongkyu Mun, and Joon Son Chung. Metric Learning for Keyword Spotting.
In 2021 IEEE Spoken Language Technology Workshop (SLT), pages 133–140. IEEE, 2021.

[52] Joel Shor, Aren Jansen, Wei Han, Daniel Park, and Yu Zhang. Universal paralinguistic speech representations using
self-supervised conformers. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3169–3173. IEEE, 2022.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://github.com/eloquentarduino/micromlgen
https://github.com/emlearn/emlearn
https://github.com/emlearn/emlearn

1:32 Tabanelli et al.

[53] Xueliang Liu, Rongjie Zhang, Zhijun Meng, Richang Hong, and Guangcan Liu. On fusing the latent deep CNN feature
for image classification. World Wide Web, 22(2):423–436, 2019.

[54] Karel Durkota, Michal Linda, M Ludvik, and Jan Tozicka. Neuron-net: Siamese network for anomaly detection.
Technical report, DCASE2020 Challenge, Tech. Rep, 2020.

[55] Minglu Zhao, Hiroyuki Takizawa, and Tomoya Soma. Spatiotemporal Anomaly Detection for Large-Scale Sensor
Data. In 2021 12th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), pages
162–168. IEEE, 2021.

[56] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory programming. IEEE Computational
Science and Engineering, 5(1):46–55, 1998.

[57] S. Mach, F. Schuiki, F. Zaruba, and L. Benini. FPnew: An Open-Source Multiformat Floating-Point Unit Architecture for
Energy-Proportional Transprecision Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
29(4):774–787, 2021.

[58] Xiaoyan Zhuo, Iman Nandi, Taha Azzaoui, and Seung Woo Son. A Neural Network-Based Optimal Tile Size Selec-
tion Model for Embedded Vision Applications. In 2020 IEEE 22nd International Conference on High Performance
Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 607–612, 2020.

[59] Alessio Burrello, Angelo Garofalo, Nazareno Bruschi, Giuseppe Tagliavini, Davide Rossi, and Francesco Conti. DORY:
Automatic End-to-End Deployment of Real-World DNNs on Low-Cost IoT MCUs. IEEE Transactions on Computers,
2021.

[60] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff McDonald.
Parallel programming in OpenMP. Morgan kaufmann, 2001.

[61] Giuseppe Tagliavini, Daniele Cesarini, and Andrea Marongiu. Unleashing fine-grained parallelism on embedded
many-core accelerators with lightweight OpenMP tasking. IEEE Transactions on Parallel and Distributed Systems,
29(9):2150–2163, 2018.

[62] Adrian Munera, Sara Royuela, and Eduardo Quiñones. Towards a qualifiable OpenMP framework for embedded
systems. In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 903–908. IEEE, 2020.

[63] Barbara Chapman, Lei Huang, Eric Biscondi, Eric Stotzer, Ashish Shrivastava, and Alan Gatherer. Implementing
OpenMP on a high performance embedded multicore MPSoC. In 2009 IEEE International Symposium on Parallel &
Distributed Processing, pages 1–8. IEEE, 2009.

[64] Spiros N Agathos, Vassilios V Dimakopoulos, Aggelos Mourelis, and Alexandros Papadogiannakis. Deploying
OpenMP on an embedded multicore accelerator. In 2013 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), pages 180–187. IEEE, 2013.

[65] Sumit Patel, MB Potdar, and Bhadreshsinh Gohil. A survey on image processing techniques with OpenMP. International
Journal of Engineering Development and Research, 3(4):837–839, 2015.

[66] Dionis A Padilla, Ramon Alfredo I Pajes, and Jerome T De Guzman. Detection of Corn Leaf Diseases Using Convo-
lutional Neural Network With OpenMP Implementation. In 2020 IEEE 12th International Conference on Humanoid,
Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM),
pages 1–6. IEEE, 2020.

[67] Lei Huang, Eric Stotzer, Hangjun Yi, Barbara Chapman, and Sunita Chandrasekaran. Parallelizing ultrasound image
processing using OpenMP on multicore embedded systems. In 2012 IEEE Global High Tech Congress on Electronics,
pages 131–138. IEEE, 2012.

[68] Karl Fürlinger and Michael Gerndt. Analyzing overheads and scalability characteristics of OpenMP applications. In
International Conference on High Performance Computing for Computational Science, pages 39–51. Springer, 2006.

[69] Frederica Darema. The SPMD model: Past, Present and Future. In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, pages 1–1. Springer, 2001.

[70] Fabio Montagna, Giuseppe Tagliavini, Davide Rossi, Angelo Garofalo, and Luca Benini. Streamlining the OpenMP Pro-
gramming Model on Ultra-Low-Power Multi-core MCUs. In International Conference on Architecture of Computing
Systems, pages 167–182. Springer, 2021.

[71] J.S. Cramer. The Origins of Logistic Regression. In Tinbergen Institute Discussion. Tinbergen Institute, 2002.
[72] Christiana Ioannou and Vasos Vassiliou. An Intrusion Detection System for Constrained WSN and IoT Nodes Based

on Binary Logistic Regression. In Proceedings of the 21st ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, page 259–263. ACM, 2018.

[73] Mahmudul Hasan, Md. Milon Islam, Md Ishrak Islam Zarif, and M.M.A. Hashem. Attack and anomaly detection in IoT
sensors in IoT sites using machine learning approaches. Internet of Things, 7:100059, 2019.

[74] V. Vapnik C. Cortes. Support-Vector Networks. Machine learning, 20(1):273–297, 1995.
[75] Yi-Hung Liu and Yen-Ting Chen. Face Recognition Using Total Margin-Based Adaptive Fuzzy Support Vector Machines.

IEEE Transactions on Neural Networks, 18(1):178–192, 2007.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

DNN is not all you need: Parallelizing Non-Neural ML Algorithms on Ultra-Low-Power IoT Processors 1:33

[76] T. Siddharth, Pranjali Gajbhiye, Rajesh Kumar Tripathy, and Ram Bilas Pachori. EEG-Based Detection of Focal Seizure
Area Using FBSE-EWT Rhythm and SAE-SVM Network. IEEE Sensors Journal, 20(19):11421–11428, 2020.

[77] Friedman Nir, Geiger Dan, and Goldszmidt Moises. Bayesian Network Classifiers. Machine learning, 29(7):131–163,
1997.

[78] DiWu, Zhongkai Jiang, Xiaofeng Xie, XuetaoWei,Weiren Yu, and Renfa Li. LSTMLearningWith Bayesian andGaussian
Processing for Anomaly Detection in Industrial IoT. IEEE Transactions on Industrial Informatics, 16(8):5244–5253,
2020.

[79] Nikhil Kumar, Debopam Acharya, and Divya Lohani. An IoT-Based Vehicle Accident Detection and Classification
System Using Sensor Fusion. IEEE Internet of Things Journal, 8(2):869–880, 2021.

[80] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):21–27,
1967.

[81] W. K. Wong, Filbert H. Juwono, and Brendan Teng Thiam Khoo. Multi-Features Capacitive Hand Gesture Recognition
Sensor: A Machine Learning Approach. IEEE Sensors Journal, 21(6):8441–8450, 2021.

[82] Ranjitha M M, Taranath N L, Arpitha C N, and C.K. Subbaraya. Bone Cancer Detection Using K-Means Segmentation
and Knn Classification. In 2019 1st International Conference on Advances in Information Technology (ICAIT), pages
76–80, 2019.

[83] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability: Weather modification, pages 281–296. University of
California, 1967.

[84] Wenbin Wu and Mugen Peng. A Data Mining Approach Combining 𝐾 -Means Clustering With Bagging Neural
Network for Short-Term Wind Power Forecasting. IEEE Internet of Things Journal, 4(4):979–986, 2017.

[85] Xiaosheng Peng, Chengke Zhou, Donald M. Hepburn, Martin D. Judd, and W. H. Siew. Application of K-Means method
to pattern recognition in on-line cable partial discharge monitoring. IEEE Transactions on Dielectrics and Electrical
Insulation, 20(3):754–761, 2013.

[86] L. Breiman. Random Forests. Machine learning, 45(1):5–32, 2001.
[87] Enrico Tabanelli, Davide Brunelli, and Luca Benini. A Feature Reduction Strategy For Enabling Lightweight Non-

Intrusive Load Monitoring On Edge Devices. In 2020 IEEE 29th International Symposium on Industrial Electronics
(ISIE), pages 805–810. IEEE, 2020.

[88] Tzu-Hsuan Lin and Jehn-Ruey Jiang. Anomaly Detection with Autoencoder and Random Forest. In 2020 International
Computer Symposium (ICS), pages 96–99, 2020.

ACM Trans. Embedd. Comput. Syst., Vol. 123, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Related work
	2.1 NN Tools And Libraries
	2.2 Non-Neural ML Libraries
	2.3 Non-Neural ML Parallelization
	2.4 HW/SW Optimizations

	3 Background
	3.1 Motivations
	3.2 PULP Platform
	3.3 GAP8
	3.4 PULP-OPEN
	3.5 FP Emulation Libraries
	3.6 Programming Model and Compilation Toolchain

	4 Algorithm Design
	4.1 Parallelization Approach
	4.2 Horizontal and Vertical Workload Distribution
	4.3 GEMM-based Algorithms
	4.4 Gaussian Naive Bayes (GNB)
	4.5 Metric Space based Algorithms
	4.6 Random Forest

	5 Experimental Evaluation
	5.1 Setup
	5.2 Benchmarking Floating-Point Emulation Libraries vs FPU-Native Support
	5.3 Parallel performance
	5.4 Comparison with Cortex-M4

	6 Conclusion
	References

