Supporting information

Circularly Polarized Luminescence from new heteroleptic Eu(III) and Tb(III) complexes

Silvia Ruggieri,¹ Silvia Mizzoni,¹ Chiara Nardon,¹ Enrico Cavalli,² Cristina Sissa,² Michele Anselmi,³ Pier Giorgio Cozzi,^{3,4} Andrea Gualandi,^{3,4} Martina Sanadar,⁵ Andrea Melchior,^{5*} Francesco Zinna,⁶ Oliver G. Willis,⁶ Lorenzo Di Bari,^{6*} Fabio Piccinelli^{1*}

¹ Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy

² Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University Parco Area delle Scienze, 17/a – 43124, Parma, Italy

³ Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2 – 40126, Bologna, Italy

⁴ Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy

⁵ Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine, via Cotonificio 108, 33100 Udine, Italy

⁶ Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy

*corresponding authors' email address: fabio.piccinelli@univr.it, lorenzo.dibari@unipi.it and andrea.melchior@uniud.it

Figure S1. Absorbance of both the enantiomers reported as the average of their molar extinction coefficients (ϵ) (left) and ECD (right) spectra of [Eu(bpcd)](tta) (row 1), [Eu(bpcd)(Coum)] (row 2), [Tb(bpcd)(Coum)] (row 3) and [Gd(bpcd)(Coum)] (row 4). The spectrum of the *R*,*R* enantiomer is reported in red while the spectrum of the *S*,*S* enantiomer is reported in blue.. The concentration of all the enantiomers is 1 mM and the spectra were measured with 0.01 cm path length.

Figure S2. Experimental absorbance data (symbols) and fitting isotherm obtained by least squarestreatment in Hypspec for the spectra recorded upon addition of [Eu(bpcd)]Cl to 50 μ M solutions of a) Coum (λ = 317 nm) and b) tta (λ = 347 nm).

Figure S3. Luminescence excitation (left) and emission (right) spectra of (S,S)-[Eu(bpcd)(tta)] (top); (S,S)-[Eu(bpcd)(Coum)] (middle) and (S,S)-[Tb(bpcd)(Coum)] (bottom) complexes dissolved in methanol (50 μ M). The spectra of the *R*,*R* enantiomer are not reported as they are perfectly comparable to those of the *S*,*S* counterpart.

Chiroptical instrumentation

CPL measurements

Discrimination of left/right circular polarized states was performed by a photoelastic modulator from a decommissioned Jasco J500C spectropolarimeter operating at 50 KHz coupled with an uncoated Glenn-Thompson polarizer. A Jasco CT-10 was used as the emission monochromator and the detection was performed by a Hamamatsu R376 PMT. The spectra were collected under either 365 or 254 nm irradiation from commercial LED-sources, using a 90° geometry between the excitation and detection direction. All CPL spectra were recorded in 1 cm semi-micro (aperture 4 mm) optical glass cells using the following parameters: scan-speed 0.5 nm/sec, integration time 2 sec, photomultiplier tube driving voltage 600 V, accumulations 4.

UV-Vis/ECD measurements

UV-Vis spectra were recorded using a Jasco-V650 spectrophotometer in the spectral range of 200 to 400 nm. All samples were measured in 1 mM MeOH solutions at room temperature. The same solutions were used to record CD spectra using a J1500 spectropolarimeter in 0.01 cm optical glass cells.

B_{CPL}

Given the complex structure of CPL spectra with several opposite bands within the same manifold, a more general definition of B_{CPL} factor was employed:

$$B_{CPL} = \epsilon \cdot \phi \cdot \frac{1}{2} \frac{\int_{\lambda_a}^{\lambda_b} I(\lambda) g(\lambda) d\lambda}{\int_{\lambda_i}^{\lambda_f} I(\lambda) d\lambda}$$

Where the integral in the numerator has to be estimated between the extrema of the considered transition (λ_a , λ_b), while the integral in the denominator is calculated over the whole emission range (λ_i , λ_f). Note that if $g(\lambda)$ does not change sign within a term-to-term transition and it is approximately constant ($g(\lambda) \simeq \overline{g}$), then the above definition is reduced to:

$$B_{CPL} = \epsilon \cdot \phi \cdot \frac{1}{2} \overline{g} \cdot \frac{\int_{\lambda_a}^{\lambda_b} I(\lambda) d\lambda}{\int_{\lambda_i}^{\lambda_f} I(\lambda) d\lambda} = \epsilon \cdot \phi \cdot \frac{1}{2} \overline{g} \cdot \beta$$

According to the usual definition applicable to lanthanide CPL.^{S1}

Additional chiroptical spectra

Figure S4. The g_{lum} -vs-wavelength plot for each enantiomer of [Eu(bpcd)(tta)].

Figure S5. The *g*_{lum}-vs-wavelength plot for each enantiomer of [Eu(bpcd)(Coum)].

Figure S6. The *g*_{lum}-vs-wavelength plot for each enantiomer of [Tb(bpcd)(Coum)].

Figure S7. Kohn–Sham molecular orbitals composition of S_1 and T_1 states for [Y(bpcd)(Coum)]. Hydrogen atoms are omitted for clarity.

Figure S8. Kohn–Sham molecular orbitals composition of S_1 and T_1 states for [Y(bpcd)(tta)]. H atoms are omitted for clarity.

Figure S9. Kohn–Sham molecular orbitals composition of S_1 and T_1 states for $[La(bpcd)(Coum)(H_2O)_n]$. Hydrogen atoms are omitted for clarity.

Figure S10. Kohn–Sham molecular orbitals composition of S_1 and T_1 states for $[La(bpcd)(tta)(H_2O)_n]$. Hydrogen atoms are omitted for clarity.

Figure S11. ¹H-NMR (400 MHz, CDCl₃) spectrum of 3-acetyl-4-hydroxy-2*H*-chromen-2-one.

Figure S12. ¹³C-NMR (100 MHz, CDCl₃) spectrum of 3-acetyl-4-hydroxy-2*H*-chromen-2-one.

References

[S1] L. Arrico, L. Di Bari, F. Zinna. Quantifying the Overall Efficiency of Circularly Polarized Emitters. *Chem. Eur. J.* **2021**, *27*(*9*), 2920.