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Abstract: Over the past two decades, the strategy of conjugating polyamine tails with bioactive
molecules such as anticancer and antimicrobial agents, as well as antioxidant and neuroprotective
scaffolds, has been widely exploited to enhance their pharmacological profile. Polyamine transport
is elevated in many pathological conditions, suggesting that the polyamine portion could improve
cellular and subcellular uptake of the conjugate via the polyamine transporter system. In this review,
we have presented a glimpse on the polyamine conjugate scenario, classified by therapeutic area, of
the last decade with the aim of highlighting achievements and fostering future developments.
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1. Introduction

Polyamines are polycationic aliphatic molecules consisting of a hydrocarbon-made
skeleton with at least two amino groups interposed where the number of nitrogen atoms,
length and architecture account for the different biological activities. The three major
polyamines triamine spermidine (Spd), tetramine spermine (Spm) and their precursor
putrescine (Put, Figure 1) are almost ubiquitous and widely distributed in both prokaryotic
and eukaryotic cells [1–3].
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length and architecture account for the different biological activities. The three major pol-
yamines triamine spermidine (Spd), tetramine spermine (Spm) and their precursor pu-
trescine (Put, Figure 1) are almost ubiquitous and widely distributed in both prokaryotic 
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Figure 1. Chemical structures of spermine, spermidine and putrescine. 

At physiological pH, the amino functional groups are positively charged and can in-
teract with negatively charged macromolecules such as RNA, DNA, protein and phos-
pholipid. Polyamine’s cellular content is tightly regulated given its involvement in several 
basic cellular functions such as growth, motility, apoptosis, differentiation and response 
to exogenous stress [4]. Due to the essential role played in cellular machinery, alterations 
of the polyamine pool classically represent a marker of cellular impairment. Some poly-
amines can be introduced through diet, but the three major natural polyamines (Put, Spd 
and Spm) are basically biosynthesized in the cytoplasm of all cells. The key brick of the 
polyamine pathway is Put, which mainly derives from decarboxylation of ornithine cata-
lyzed by ornithine decarboxylase (ODC). From Put, two sequential steps of aminopropyl 
group addition, added by decarboxylated S-adenosylmethionine (dcSAM), yield Spd and 
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Figure 1. Chemical structures of spermine, spermidine and putrescine.

At physiological pH, the amino functional groups are positively charged and can
interact with negatively charged macromolecules such as RNA, DNA, protein and phos-
pholipid. Polyamine’s cellular content is tightly regulated given its involvement in several
basic cellular functions such as growth, motility, apoptosis, differentiation and response to
exogenous stress [4]. Due to the essential role played in cellular machinery, alterations of
the polyamine pool classically represent a marker of cellular impairment. Some polyamines
can be introduced through diet, but the three major natural polyamines (Put, Spd and Spm)
are basically biosynthesized in the cytoplasm of all cells. The key brick of the polyamine
pathway is Put, which mainly derives from decarboxylation of ornithine catalyzed by
ornithine decarboxylase (ODC). From Put, two sequential steps of aminopropyl group
addition, added by decarboxylated S-adenosylmethionine (dcSAM), yield Spd and Spm,
respectively catalyzed by spermidine synthase and spermine synthase. On the contrary,
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catabolic processes involve oxidative steps that release reactive oxygen species (ROS) as by-
products. Briefly, Spm is reconverted to Spd with spermine oxidase (SMOX) or through an
acylation–oxidation mechanism mediated by spermidine/spermine N1-acetyl transferase
1 (SSAT) and polyamine oxidase (PAOX), respectively, which works also for Spd-to-Put
reconversion. The scenario herein briefly reported is far better meticulously tuned thanks
to the involvement of several other enzymes and cofactors, besides feedback mechanisms
guided by the same substrate concentration [5]. Furthermore, another key component
of the polyamine pathway is represented by the polyamine transport system (PTS) be-
cause physiologically protonated polyamines are not able to passively diffuse through
cell membrane. The PTS mechanism is not yet fully elucidated but seems to work with a
complex system of endocytosis or vesicle-mediated transport. PTS together with anabolic
and catabolic enzymes constitute an optimized regulatory system for polyamine cellular
concentration, while alterations of this balance are related to peculiar or pathological cel-
lular conditions. Particularly, PTS upregulation is observed in physiological proliferating
cells and further exacerbated in carcinogenic cells, while polyamine biosynthesis decreases
with aging, making cells more susceptible to exogenous stimuli [6–8].

Intrinsic biological activities of natural polyamines paired to the essential role played
by polyamines for cellular homeostasis in pathophysiological conditions paved the way
for a plethora of drug discovery approaches targeting the polyamine pathway at multi-
ple levels [9]. Particularly, conjugation of polyamines with bioactive molecules has been
envisioned as a promising strategy to improve their potential therapeutic efficacy for sev-
eral objectives: (1) targeting specific tissue to deliver bioactive payloads with increased
selectivity thanks to peculiar up/downregulation of polyamines in diseased conditions;
(2) exploiting PTS to increase cell entrance for compounds with suboptimal PK properties;
(3) optimizing target engagement by leveraging its polycationic architecture;
(4) simultaneous modulation of enzymes involved in polyamine metabolism and additional
target(s), resulting in a multifaceted mechanism of action. The same approach can also be
applied to identify new molecular tools that could help to clarify the role of polyamines
in different diseased conditions [10,11]. In this review, we have presented a glimpse on
the polyamine conjugate scenario, categorized by pathological area, of the last decade
with the aim of pointing out achievements and fostering future developments. Due to
polyhedral activities of polyamines, some conjugates were evaluated in different diseased
conditions, but herein are reported only with reference to their best observed therapeutic
efficacy, for clarity. Furthermore, it is important to clarify that the conjugated fragment, by
definition, should bring additional biological activities to the polyamine portion, differing
from simple polyamine analogues that are not covered here. For the same reason, all of the
published derivatives where polyamine functional groups were inserted as simple linker or
structural modification within structure–activity relationship studies, and not as intended
for their biological activities, are not reported here because that is beyond the scope of the
conjugate approach.

2. Antitumor Agents

The finding of increased polyamine concentration in cancer cells, as well as in other
diseased tissues, paved the way for several drug discovery campaigns involving polyamine
trafficking as a promising target. Particularly, upregulation of polyamines' biosynthetic
enzymes and downregulation of their catabolic enzymes are strictly related to malignant
cell proliferation and tumorigenesis [12]. Furthermore, there is experimental evidence that
dysregulated polyamines trigger several oncogene pathways or improve the malignancy of
tumors, to the extent that polyamines and their metabolites have been regarded as cancer
biomarkers [13]. Polyamines are required for cell proliferation, and this fact makes cancer
cells particularly sensitive to polyamine depletion. In addition, cancer cells strongly rely on
exogenous polyamines, which are imported through an overactivated PTS, because they are
unable to biosynthesize enough polyamines [14]. Based on these premises, the polyamine
metabolic pathway has been envisioned as a promising target for antitumor therapeutic
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treatments. Particularly, several inhibitors of polyamine biosynthesis have been developed
as well as modulators of the polyamine transport system, catabolism and polyamine cellular
content for cancer chemotherapy or chemoprevention [5,15]. In addition to the polyamine
analogue strategy, the overactivation of PTS in cancer cells was exploited to increase the
antiproliferative activities of some anticancer agents through the development of polyamine
conjugates with the aim of leveraging a polyamine driving force for tailored delivery [16].
In this context, the pioneering breakthrough of F14152, defined as “polyamine-vectorized
anticancer drug” with its promising preclinical and clinical progression, paved the way
for the polyamine conjugate approach in anticancer drug discovery [17–19]. Herein, we
have dissected the realm of antitumor polyamine conjugates by categorizing them based
on the nature of the conjugate portion, which mainly comprises natural (or nature-inspired)
scaffolds or synthetic polycyclic cores such as naphthalimides.

2.1. Natural Scaffolds

Nature has always represented a source of inspiration, but also production for drug
development, and this applies also for anticancer drugs. The above-mentioned success of
F14512 relies on the therapeutic properties of etoposide, which is an anticancer drug that
acts by inducing topoisomerase II-mediated DNA cleavage, and it is used to treat a wide
spectrum of human cancers. Particularly, in F14512, the podophyllotoxin core is linked to
an Spm moiety at C4, instead of etoposide’s sugar moiety, as a cancer cell delivery vector
and DNA anchor thanks to its positive charges (Figure 2). The polyamine conjugation
notably increased both F14512 uptake in cancer cells and its cytotoxic activity with respect
to etoposide, both in vitro (10 times more potent topoisomerase II poison thanks to an
increased DNA affinity) and in vivo without showing any toxicity issues [16]. The presence
of the polyamine chain in F14512 resulted in tighter binding and increased stability of the
ternary topoisomerase II-drug-DNA complex [20]. This was further confirmed through the
development of F14512’s analogues by substituting the Spm tail with other polyamines
that vary in length and number of nitrogen atoms [21]. Particularly, the polyamine moiety
boosts the drug binding and stabilization of enzyme–DNA complex, thus showing higher
inhibitory properties toward topoisomerase II for all new derivatives (except for one bearing
an inner ether chain) with respect to etoposide, albeit remaining less potent than F14512.
Among the series, compound 1 (Figure 2) with a 3-3-3 polyamine chain, most similar to the
F14512 spermine, emerged as the most potent with an IC50 = 35 µM vs. 30 µM for F14512,
but still four times better than etoposide (IC50 = 120 µM) [21]. Further insights revealed that
all polyamine hybrids demonstrated higher abilities to induce double-stranded (ds) DNA
breaks with isoform topoisomerase IIβ than topoisomerase IIα. Generally, all conjugates
triggered DNA cleavage to a higher extent than etoposide with topoisomerase IIα, and
even more with topoisomerase IIβ. Computational simulations revealed that the presence
of a glutamine residue in topoisomerase IIβ, instead of methionine in topoisomerase IIα,
and the resulting interaction with polyamine tail are behind the difference in the enhanced
specificity of these conjugates toward the former isoform [22].
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1,4-Naphthoquinone constitutes another nature-derived pharmacophore endowed
with cytotoxic properties; thus, several clinically used chemotherapeutics possess a quinone
scaffold. By inserting a substituted Spd tail on the naphthoquinone core of lapachol, a
remarkable increase in selective cytotoxicity for glioblastoma cells was observed while
preserving astrocytes [23]. The IC50 value for polyamine-conjugate 2 (Figure 3) dropped
to 6.6 µM for the GBM95 cell line and to 4.3 µM for the U87MG cell line (two models
of in vitro glioblastoma) compared to 23.4 µM and 18.4 µM, respectively, with starting
naphthoquinones. Furthermore, at 50 µM, 2 significantly reduced glioblastoma tumor
invasion. Topoisomerase IIα inhibition notably increased for the reported polyamine
conjugate, and this partially accounted for its cytotoxic profile in cancer cells [23]. Contrarily,
the Spd derivative of 5-hydroxynaphthoquinone 3 (Figure 3) retained promising anticancer
activity in the low µM range, but without any significant improvement over the starting
unconjugated scaffold [24].
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Driven by the promising anticancer properties of gambogic acid, a small series of
xanthone-polyamine hybrids were developed with the aim of defining their mechanism of
action at topoisomerase IIα [25]. The most potent compounds of the series, featured by an
Spd or Spm side chain, act as catalytic inhibitors with IC50 values of around 1–3 µM, while
the xanthone core and separated polyamine are completely inactive. Particularly, in-depth
analyses on compound 4 (Figure 3) highlighted the ability to inhibit the strand passage
step of topoisomerase activity by suppressing the ability of DNA to promote the rate of
ATP hydrolysis. This was possible because of its interaction in the proximity of the DNA
cleavage active site even though it has almost no effect on the cleavage reaction [25].

To efficiently deliver in cancer cells the well-known antiproliferative effect of chalcones,
the chalcone scaffold was connected to different polyamines through an amido linker,
and the cytotoxicity of the conjugates was evaluated in different colorectal and prostatic
cancer cell lines [26]. Surprisingly, all of the polyamine conjugates exerted moderate
antiproliferative effects in comparison to the parent chalcones. Among them, the Spm
derivatives emerged as the most promising, with compound 5 (Figure 4) acting as one of
the most active in prostatic cancer cell lines (IC50 = 34 µM in PC-3, and IC50 = 35.4 µM
in DU-145) but also in the colorectal HCT-116 (IC50 = 33.8 µM) [26]. A follow-up series
where the amido linkage was replaced with an amino linkage led to an overall increase
in the antiproliferative activities, similar to those of parent chalcone [27]. In this case, the
Spd derivative 6 (Figure 4) emerged as the most potent in all tested human cancer cell
lines, with IC50 ranging from 8 to 13 µM. It showed a tissue-specific effect on cell cycle
progression, with induced cell cycle arrest in the G1 phase for colorectal cells or in the G2
phase for prostate cells, combined with apoptosis induction [27].
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Flavonoids constitute another class of natural compounds, chemically characterized
by a chromone core, endowed with a plethora of beneficial properties, including an antipro-
liferative effect. In a small series of polyamine–flavonoid conjugates, compound 7 (Figure 5)
exerted the best selective cytotoxic effect, albeit moderate, in liver tumor cells (IC50 = 65 µM
for HepG2 and 32 µM for H22) compared to normal liver cells [28]. The potency mildly
increased if aspirin was used as adjuvant (IC50 = 59 µM for HepG2 and 21 µM for H22).
Furthermore, it also showed a dose-dependent antimetastatic effect by inhibiting tumor cell
invasion and migration, and pro-apoptotic properties as confirmed by the enhanced level of
caspases, ROS and other apoptotic-related factors. In vivo, when given alone, 7 at 20 mg/kg
exhibited only a moderate tumor inhibition rate (around 40%), which notably increased
when co-administered with aspirin 20 mg/kg (69%). The same anticarcinogenic effect was
also confirmed in lung metastasis, with inhibition rates of 29.3% alone and 59.9% with
aspirin [28]. Further chemical optimizations led to compound 8 (Figure 5) featuring a Put
tail with enhanced antitumor activity both in vitro (IC50 = 7.10 µM for HepG2) and in vivo
(69.1% inhibition of tumor progression at 40 mg/kg) [29]. The naphthalene-chromone core
provided moderate fluorescence that allowed defining a non-specific subcellular localiza-
tion for 8 (i.e., mainly mitochondria and endoplasmic reticulum), from which the complex
cytotoxic profile originated. Compound 8 proved to induce apoptosis, mainly activating
caspases 3, 8 and 9, but also activated autophagy processes that are usually adverse to
apoptotic pathways [29].
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Encouraged by the promising results obtained with flavonoids, the same authors
reported a new series of chromone–polyamine conjugates where a naphthalimide core,
endowed with anticancer and bioimaging properties, was inserted between the two scaf-
folds [30]. The hit compound 9 (Figure 5) bearing an homospermidine chain inhibited
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hepatoma proliferation in a dose-dependent manner, as well as preventing its migration,
with a marked selectivity over a healthy hepatocyte cell line. In a tumor animal model, 9
at 3 mg/kg strongly suppressed tumor growth and metastasis better than amonafide, a
naphthalimide-based antitumor agent, at 5 mg/kg (60.4% vs. 48.1% and 77.9% vs. 41.4%,
respectively). Thanks to the fluorescent properties of the naphthalimide moiety, it was
possible to visualize 9’s cellular route and mechanism of action: it was taken up partially
through PTS, without affecting cellular polyamine metabolism, and localized in the mi-
tochondria where it triggered tumor-selective oxidative stress, inducing apoptosis and
migration inhibition of hepatoma cells [30].

Triterpenes constitute a huge family of natural products derived from plants endowed
with important biological properties. Among others, the intrinsic antiproliferative effect,
paired with easy membrane permeation and a feature of different anchor points, guided
the development of triterpene–polyamine conjugates for potential anticancer efficacy. The
same strategy was followed in pursuing antimicrobial triterpene–polyamine conjugates,
achieving more promising experimental outcomes. Therefore, herein, only major results for
these derivatives are reported, and greater space will be devoted to triterpene conjugates in
the antimicrobial section.

Betulinic acid was identified as a suitable building block for anticancer polyamine con-
jugates, and different polyamines were attached at OH in C3 through a hemisuccinate linker
and at the carboxy functional group in C28. Generally, amido-derivatives conjugated at C28
exerted higher cytotoxicity in cancer cell lines but were equipotent toward normal human
fibroblast cell line, highlighting low selectivity. Regarding the C3-attached series, spermine-
bearing 10 (Figure 6) displayed important cytotoxicity toward human T-lymphoblastic
leukemia cells (IC50 = 5.2 ± 2.3 µM) with moderate selectivity (IC50 = 42.9 ± 3.8 µM toward
normal human fibroblasts) [31]. Compound 10 was also selected to evaluate its antimi-
crobial activity (see Antimicrobial paragraph). More recently, another series of betulinic
acid conjugates were reported with polyamines of different lengths attached at C28 over
an amido functional group. In this case, the shorter tail of 11 (Figure 6) turned out as
the preferred substitution for antiproliferative activity. In a panel of 60 human tumor cell
lines (ranging from leukemia to ovarian cancer, melanoma, lung cancer, colon cancer, etc.),
compound 5 showed GI50 values (concentration of the compound causing a 50% decrease
in net cell growth) ranging from 1.09 µM to 13.20 µM [32]. Similarly, Spm attachment at C28
of heterobetulonic and ursolic acid (12 and 13 respectively, Figure 6) produced important
anticancer properties among a series of triterpenoid acid conjugates. Particularly, they
exerted low micromolar cytotoxicity in a panel of cancer cell lines (IC50 = 2.8–4.8 µM for 12
and IC50 = 6.3–8.1 µM for 13), confirming also comparable toxicity toward normal human
fibroblast cell line, as emerged from previous betulinic acid derivatives [33]. Moreover,
several ethylenediamide tails were inserted at C28 of oleanolic, betulinic or maslinic acid,
achieving high cytotoxicity, albeit with low selectivity over non-cancer cells, by triggering
apoptosis [34–36]. Furthermore, among oleanolic conjugates, by varying the length of
the diaminoalkyl chain, cytotoxicity was only partially affected [36]. Lastly, stigmasterol
conjugation yielded a suboptimal anticancer profile, where the most potent Spm derivative
had a highlighted IC50 > 30 µM [37].

Motuporamines are natural products isolated from a sea sponge and are endowed
with remarkable antimetastatic efficacy and chemically characterized by a macrocycle
with a polyamine tail appended. Particularly, dihydromotuporamine C (Figure 7), with
a norspermidine embedded into the cycle, is powered with antimigration and antian-
giogenic properties combined with cytotoxicity. By simply inserting a methylene bridge
between 15-member carbocycle and norspermidine motif (14, Figure 7), the antimigration
potency was doubled (38.4% vs. 20.3% inhibition at 0.6 µM) and cytotoxicity dramatically
reduced (IC50 = 82.9 µM vs. 2.90 µM). Particularly, the enhanced antimetastatic activity
was confirmed in vivo in terms of incidence and size of micrometastasis in the liver from
pancreatic tumor. From experimental evidence on a series of polyamine-macrocycle deriva-
tives emerged the importance of both functional groups for the activity and the perfect



Molecules 2023, 28, 4518 7 of 30

balance achieved with a methylene linker between them, while increasing the linker length
reduced cellular viability and antimetastatic activity. These beneficial properties partially
account for the ability of these conjugates to modulate cellular ceramide and sphingomyelin
pools and interfere with membrane stability [38,39]. Thanks to this peculiar mechanism of
action, some motuporamine derivatives were also identified as promising antimicrobial
agents [40].
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Polyamine toxins are naturally occurring conjugates composed of different polyamines
fused with lipophilic acid heads that have been recently identified also as antiproliferative
agents [41]. Different analogues were synthesized, varying the polyamine architecture
and lipophilic group with the aim of increasing anticancer properties in breast cellular
lines; however, except for few compounds that maintained micromolar potency, such
as Spd-bearing 16 (Figure 7, IC50 = 3.15–12.6 µM), all other modifications caused a drop
in activity. The most promising polyamine toxin remained natural 15 (Figure 7), with a
sub-micromolar antiproliferative effect (IC50 = 0.55–3.31 µM) and selectivity over normal
epithelial mammary cells (IC50 = 184.14 µM) [41].

2.2. Naphthalimides and Derivatives

Polycyclic cores such as naphthalimides have attracted particular attention in anti-
cancer drug discovery programs for their peculiar abilities as DNA intercalating agents
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and tumor growth and metastasis suppressors [42]. Interestingly, some of them, such as
amonafide, mitonafide and elinafide, have reached clinical trials as potential treatments for
different types of cancers [43]. To achieve cell tumor specificity and enhance DNA binding,
several naphthalimide–polyamine conjugates were developed, representing the leading
topic for many years of medicinal chemistry research. All of those efforts were widely
reported in 2013 in a review by Kelly and colleagues [43]; therefore, herein, we focus only
on subsequent developments in the field.

Firstly, polyamines of all lengths and distances among nitrogen atoms were attached
to a naphthalimide core to study its effect on conjugates/DNA interaction and further
rationalize their cytotoxic profiles [44,45]. Spectroscopic analyses confirmed that aromatic
nuclei intercalate with DNA base pairs and polyamine motifs locate along grooves, mainly
minor, and by increasing the number of nitrogen atoms or length, also enhance the binding
constant of DNA–ligand complex [45]. One of the more interesting compounds for potency
and selectivity over non-cancer cells (17, Figure 8) confirmed that through the abovemen-
tioned DNA engagement, it exerts an antiproliferative effect by arresting cells in G2/M
phase and induces apoptosis in a dose-dependent manner [44].
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In many experimental works, it has been reported that terminal-substituted polyamines
can increase anticancer efficacy. In this context, Seliga and coworkers developed a series of
polyamines with a pyridine head linked to naphthalimide and evaluated their anticancer
properties [46]. The most potent compounds (18 and 19 in Figure 8), albeit with completely
different tethers, exhibited comparable IC50 values between 5.67 and 11.02 µM against
human leukemia, breast and lung adenocarcinoma but not cervical cell lines. Both 18
and 19 demonstrated the ability to trigger apoptosis by inducing G0/G1 and G2/M arrest,
respectively. Further investigations on 18 highlighted a lack of efficacy as an intercalator
but possible activity as a minor groove binder [46].

Among different terminal alkyl heads tested in longer polyamine chains, the
naphthalimide–polyamine conjugate 20 (Figure 8) with a terminal cyclohexyl head achieved
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the highest proliferation inhibition efficacy in several colorectal and hepatoma cell lines [47].
Particularly, by triggering ROS production and mitochondrial dysfunction, 20 induced
p53-mediated apoptosis and migration suppression in hepatocellular carcinoma cells.
Furthermore, at 15 mg/kg, it reduced hepatoma xenograft in mice by 50.34% in weight
(vs. 44.17% with amonafide 5 mg/kg) and reduced pulmonary metastasis (61.80% vs.
41.24% with amonafide) without any toxic effects [47]. On the other hand, in dinitro or
diamino naphthalimide conjugates, with the same Spd linker, the terminal cyclopropyl
head was preferred for the anticancer efficacy, and nitro derivatives were more potent than
amino ones [48]. The hit compound 21 (Figure 8) showed sub-micromolar cytotoxicity in
hepatoma cells (even in a cisplatin-resistant line) paired to selectivity over normal liver
cells and potent tumor growth inhibition at 5 mg/kg. Interestingly, 21 not only induced
apoptosis through p53 upregulation, but also promoted cellular polyamine metabolism,
thus disadvantaging rapid tumor growth [48]. In another work, from Xie et al., ami-
donaphthalimide was selected as a template to investigate the effect of polyamine chain
length on the antitumor efficacy of naphthalimide–polyamine conjugates [49]. The 4,4,4
unsubstituted triamine tail of 22 (Figure 8) proved to be the most efficient substitution
for selective cytotoxicity, especially in hepatic carcinoma cells (IC50 = 1.32 µM in HepG2
and IC50 = 0.98 µM in Huh-7). The remarkable in vivo antitumor (76.01% suppression at
5 mg/kg) and antimetastatic (75.02% reduction at 5 mg/kg) activities of 22 were then
explained by a multifaceted mechanism of action: induction of DNA damage and apoptosis
to kill cancer cells and lysosome-targeting modulation of polyamine catabolism (mainly
downregulating SSAT and PAO) and autophagy to reduce metastasis formation [49]. An
amido linker between Spm and unsubstituted naphthalimide gave 23 (Figure 8) with
antitumor (70.92% tumor growth inhibition) and antimetastatic (62.42% lung metastasis
inhibition) effects similar to those of 22 in mice hepatoma transplant models at lower
dosage (1 mg/kg), highlighting the importance of a tailored polyamine tether. In this case,
the proliferation inhibition of 23 involved a dose-dependent apoptosis induction triggered
by mitochondrial impairment and ROS production [50]. Conversely, the antiproliferative
effect of a similar compound (24, Figure 8), a 3-aminonaphthalimide directly fused with
Spm, depends on hepatoma-selective induced apoptosis through the PI3K/Akt signal
pathway. Particularly, the inactivation of serine/threonine kinase Akt 24-related induced
G0/G1 cell cycle arrest, mitochondrial dysfunction and caspase activation with consequent
cell apoptosis [51]. Finally, an aminothiazole-fused naphthalimide with short polyamine
(25, Figure 8), albeit moderately potent in cancer cell lines and with anti-hepatocellular
carcinoma effects in vivo (52.63% inhibition at 5 mg/kg), represented one of the most
efficient antimetastatic agents for pulmonary metastasis (75.73% inhibition at 5 mg/kg)
mainly by upregulating E-cadherin and attenuating α6 integrin expression [52].

Several bis-intercalators with polyamine linker have been reported, showing higher
DNA affinity than single fragments and a promising anticancer profile [53]. Therefore,
the same approach was exploited using two substituted naphthalimide moieties bridged
through N,N-bis(3-aminopropyl)methylamine. 1-Piperazinethanol substitution in 4-position
emerged as preferred for cytotoxicity in different cancer cell lines (26, Figure 9). Particularly,
bis-naphthalimide 26 triggered apoptosis and was confirmed to act as intercalator into the
DNA [54]. Interestingly, also in a series of bis-naphthalimides connected with a N,N-bis(3-
aminopropyl)ethylenediamine linker, the piperazine ethanol derivative resulted in one of
the best cytotoxic compounds (27, Figure 9), with an IC50 ranging from 1.60 ± 0.37 µM
in MGC-803 to 2.73 ± 0.18 µM in HeLa cancer cell lines. Differently from 26, it showed
weak intercalator properties paired to strong binding interactions with DNA helix, which
resulted in a promising bioimaging tool [55]. In a diethylenetriamine-bridged series, the
3-nitro-4-morpholino analogue (28, Figure 9) was highlighted by low micromolar antipro-
liferative activities in human ovarian, bladder, gastric and nasopharyngeal cancer cell lines.
In an in vivo xenograft cancer model, 28 reduced the tumor weight by 44.7% at 4 mg/kg
after 21 days of treatment, which was higher than mitonafide and its mono-naphthalimide
analogue at the same concentration (34.2% and 34.4%, respectively). Further investigations
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at the cellular level demonstrated that induced apoptosis, DNA intercalation and cell cycle
arrest could account for 28’s cytotoxic efficacy [56].
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Naphthalene diimides (NDI) constitute naphthalimide derivatives with well-known
anticancer properties, mainly acting as intercalator agents or binders to non-canonical
DNA structures. Notably, they have been reported as more active than their monoimide
or biphenyl diimide analogues in this respect [57,58]. The Spm derivative 29 (Figure 10)
resulted as the most potent antiproliferative agent among all of the polyamine-attached
unsubstituted naphthalene diimides. Iv-administered 0.2 mg/kg 29 in mice hepatoma
transplant models increased the lifespan by 2.3-fold, by inhibiting tumor growth and pri-
marily reducing tumor metastasis without any systemic toxicity, unlike amonafide. In this
case, preliminary results indicated apoptosis induction in a ROS-mediated mitochondrial
pathway as the mechanism of action for 29 [58]. The lengths of the two basic side chains and
terminal substituted benzyl heads were also evaluated for the naphthalene diimide core’s
antiproliferative profile [59]. 2,3,4-Trimethoxy benzyl derivative 30 (Figure 10) demon-
strated remarkable cytotoxicity in several cancer cell lines with a sub-micromolar profile by
prompting caspase activation and apoptosis. Interestingly, it exerted a multifaced profile
with different putative interactions with different DNA structures, accounting for its biolog-
ical profile: intercalator only with dsDNA and “sandwich-type” stacking for G-quadruplex
(G4) DNA conformation [59]. A stable lyophilized liposomal formulation of 30 was then
developed to facilitate potential iv anticancer treatment, maintaining a similar in vitro
cytotoxic profile after 72 h incubation [60]. To increase the selectivity for G4, the DNA
substructure more prevalent in tumor tissues and usually located in the promoter region of
oncogenes, asymmetric NDIs were developed with substituted benzylpropylendiamine in
one arm and different polyamines in the other [61]. Compound 31 (Figure 10) with an Spd
chain resulted as the most potent and selective binder for G4 over dsDNA (∆Tm = 29 ◦C vs.
12.2 ◦C at 2.5 µM, respectively), paired with an in vitro sub-micromolar anticancer profile.
The moderate inhibition of two DNA processing enzymes such as topoisomerase IIα and
TAQ-polymerase was attributed to DNA–ligand interaction, with a key role played by the
polyamine tail rather than the ligand/protein one [61]. In a multitarget approach, the same
scaffold was further exploited to add to DNA binding abilities the histone deacetylase
(HDAC) inhibitory properties with the aim of achieving polyhedral anticancer efficacy [62].
Interestingly, it was found that compounds 30 and 31 impaired the growth of metastatic
castration-resistant prostate cancer (mCRPC), a lethal form of prostate cancer, thanks to
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their ability to target and rearrange into a G4 a region within the promoter of epidermal
growth factor receptor (EGFR), reducing the receptor production [63].

Molecules 2023, 28, x FOR PEER REVIEW 11 of 31 
 

 

formulation of 30 was then developed to facilitate potential iv anticancer treatment, main-
taining a similar in vitro cytotoxic profile after 72 h incubation [60]. To increase the selec-
tivity for G4, the DNA substructure more prevalent in tumor tissues and usually located 
in the promoter region of oncogenes, asymmetric NDIs were developed with substituted 
benzylpropylendiamine in one arm and different polyamines in the other [61]. Compound 
31 (Figure 10) with an Spd chain resulted as the most potent and selective binder for G4 
over dsDNA (ΔTm = 29 °C vs. 12.2 °C at 2.5 µM, respectively), paired with an in vitro sub-
micromolar anticancer profile. The moderate inhibition of two DNA processing enzymes 
such as topoisomerase IIα and TAQ-polymerase was attributed to DNA–ligand interac-
tion, with a key role played by the polyamine tail rather than the ligand/protein one [61]. 
In a multitarget approach, the same scaffold was further exploited to add to DNA binding 
abilities the histone deacetylase (HDAC) inhibitory properties with the aim of achieving 
polyhedral anticancer efficacy [62]. Interestingly, it was found that compounds 30 and 31 
impaired the growth of metastatic castration-resistant prostate cancer (mCRPC), a lethal 
form of prostate cancer, thanks to their ability to target and rearrange into a G4 a region 
within the promoter of epidermal growth factor receptor (EGFR), reducing the receptor 
production [63]. 

 
Figure 10. Naphthalene diimide–polyamine conjugates. The bioactive core is highlighted in red and 
the polyamine chain in blue. 

Figure 10. Naphthalene diimide–polyamine conjugates. The bioactive core is highlighted in red and
the polyamine chain in blue.

By substituting in one side a benzylamine tail with an alkyl hydroxamic acid functional
group inspired by Scriptaid, which represents a naphthalimide-based HDAC inhibitor,
different polyamines were tested in the other branch to reach both targets. Once again, the
spermine homolog derivative 32 (Figure 10) joined the best DNA binding, both ds and G4,
with HDAC inhibitory capabilities, with a preference for isoform 6, which resulted in a
micromolar antiproliferative effect. Furthermore, the simultaneous interaction with DNA
and HDACs provided 32 with a peculiar cell phenotype reprogramming property that
prompted cancer cells toward a less aggressive and migratory profile through a reduced
conversion from epithelial to mesenchymal phenotype [62].

In another attempt to increase G4 affinity, macrocyclic NDIs have been created by
locking side polyamine chains through a phenyl ring [64]. The efficiency and selectivity
in G4 binding directly correlates with the length of the polyamine chain and number
of nitrogen atoms therein, with Spm derivative 34 (Figure 10) as the best of the series
(∆Tm = 26.8 ◦C at 1 µM). On the contrary, the in vitro anticancer profile was inversely
related to G4 affinity, where the less stabilizing agent 33 (Figure 10) with shortest chain
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exerted the highest antiproliferative efficacy. Surprisingly, an analogue bearing an ether
side junction with almost no DNA-binding ability exerted cytotoxicity as the most potent
polyamine derivative, highlighting criticisms in in vitro-to-cell translation, probably due to
unfavorable physico-chemical properties of macrocyclic ligands [64].

Prompted by these encouraging results, researchers further attempted tri- or tetrasub-
stitution on a naphthalene diimide core with polyamine tails to boost the DNA affinity and
antiproliferative effects [65]. Figure 11 shows the most potent polysubstituted naphthalene
diimides developed by Neidle’s group, with remarkable antitumor activities in pancreatic
cancer animal models and cell lines [66–68]. They are all characterized by heterocycle end-
groups with tertiary amines, to increase their basicity, which resulted in higher DNA affinity
and more potent G4 binders and stabilizers. Particularly, the terminal physiologically pro-
tonated nitrogen atoms drove the interaction with DNA phosphate backbone, while the
morpholino groups mitigated the overall pharmacokinetic properties and maximized the
binding onto G4 substructures. Differences in polyamine side chains contributed to the com-
pounds' G4 selectivity, while all retained selectivity over DNA duplex [69]. Symmetrically
tetrasubstituted 35 (Figure 11) demonstrated the ability to potently bind different promoter
or telomeric quadruplexes and induced cellular senescence, leading to a potent anticancer
profile in vivo (80% decrease in tumor growth after 40 days with 12 iv-administered doses
of 15 mg/kg) thanks to massive tumor uptake [66,70]. The trisubstituted 36 (Figure 11)
increased the antiproliferative efficacy of 35 toward pancreatic ductal adenocarcinoma by
reducing tumor volume by 73% at 15 mg/kg after 28 days of treatment (vs. 66.7% with
35 or gemcitabine). Furthermore, this efficiency partially accounted for 36–quadruplexes
binding, which resulted in potent down-regulation of several genes involved in tumor
survival, metastasis and gemcitabine resistance paired with increased DNA damage [67,71].
Further structural optimizations on the same core led to the asymmetrically tetrasubsti-
tuted 37 (Figure 11) with enhanced quadruplex affinity and cytotoxicity. Furthermore, 37
overcame tumor regrowth after the end of 28 days of treatment with 36, resulting in even
more potent effects at a lower dose (86.6% tumor volume reduction at 1 mg/kg vs. 73.3%
at 15 mg/kg) [68,69].

Molecules 2023, 28, x FOR PEER REVIEW 13 of 31 
 

 

 
Figure 11. Polysubstituted naphthalene diimide–polyamine conjugates. The bioactive core is high-
lighted in red and the polyamine chain in blue. 

2.3. Miscellaneous 
Besides naphthalimides and NDIs, several other scaffolds endowed with anticancer 

properties were attached to polyamines to further optimize and boost their efficacy. In-
spired by the first one, smaller benzo[cd]indol-2(1H)-one cores were differently substi-
tuted or attached to polyamines for verifying if the promising antiproliferative effect of 
naphthalimide–polyamine conjugates was retained [72]. Of particular note, the unsubsti-
tuted homospermine hybrid 38 (Figure 12) constituted a potent antimetastatic agent 
(82.5% inhibition after 15 days of 1 mg/kg treatment) and a moderate antitumor agent 
(46.9% inhibition after 15 days of 1 mg/kg treatment), while other substitutions on the 
benzo[cd]indol-2(1H)-one scaffold led to low anticancer profiles in vitro. By partially en-
tering through PTS, 38 taken up in lysosomes triggered polyamine catabolism and caspa-
ses activation to reduce cell migration and induce apoptosis/autophagy-mediated cyto-
toxicity [72]. 

Figure 11. Polysubstituted naphthalene diimide–polyamine conjugates. The bioactive core is high-
lighted in red and the polyamine chain in blue.



Molecules 2023, 28, 4518 13 of 30

2.3. Miscellaneous

Besides naphthalimides and NDIs, several other scaffolds endowed with anticancer
properties were attached to polyamines to further optimize and boost their efficacy. In-
spired by the first one, smaller benzo[cd]indol-2(1H)-one cores were differently substi-
tuted or attached to polyamines for verifying if the promising antiproliferative effect of
naphthalimide–polyamine conjugates was retained [72]. Of particular note, the unsub-
stituted homospermine hybrid 38 (Figure 12) constituted a potent antimetastatic agent
(82.5% inhibition after 15 days of 1 mg/kg treatment) and a moderate antitumor agent
(46.9% inhibition after 15 days of 1 mg/kg treatment), while other substitutions on the
benzo[cd]indol-2(1H)-one scaffold led to low anticancer profiles in vitro. By partially enter-
ing through PTS, 38 taken up in lysosomes triggered polyamine catabolism and caspases
activation to reduce cell migration and induce apoptosis/autophagy-mediated cytotoxic-
ity [72].
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In order to achieve greater DNA affinity and selectivity, bis-intercalators have been
developed by inserting different polyamine linkers between two intercalating functional groups
such as quinazoline, quinoline, naphthalene, indole, coumarin and chromone [73–75]. All of
the reported compounds showed low cytotoxicity with IC50 above 10 µM, a concentration
at which it is difficult to gain selectivity over non-cancer cells, except for bis-napthalene
derivatives such as 39 (Figure 12). In this case, it demonstrated an IC50 of 7.63 µM and 6 µM
in prostate carcinoma and mammary gland adenocarcinoma cell lines, respectively, thanks
to an observed mild ability to stabilize double helix DNA through stacking interactions [73].

Albeit widely used in clinical treatments, platinum-containing antineoplastics, as
well as other alkylating agents, have prominent side effects due to low selectivity that
remain their major issues. In an attempt to increase the antimetastatic efficacy and tumor-
specific targeting, new platinum-polyamine complexes have been recently developed [76].
In this case, the new conjugates were far more potent in comparison to parent drugs
where cisplatin and unsubstituted polyamine derivatives were preferred over oxaliplatin
or substituted analogues, with 40 (Figure 12) emerging as a hit. In particular, a remarkable
antimetastatic effect was verified for the homospermidine hybrid 40 due to upregulation
of polyamine catabolism and ROS that reduce polyamine content and discourage cell
migration as well as overcome cisplatin resistance. Furthermore, exploiting selective
uptake through PTS in cancer tissue, it triggered p53-mediated apoptosis and platinum-
induced DNA damage that resulted in notable antitumor activity in a mouse breast cancer
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model (75.44% inhibition at 20 mg/kg after 13 days of treatment) compared to cisplatin
(57.06% inhibition at 5 mg/kg) and without maintaining its toxicological profile [76].

Metal-sequestering agents have been widely considered as potential anticancer treat-
ments thanks to the correlation between metal dyshomeostasis, commonly upregulation,
and tumor environment. Metals such as iron, copper and zinc are cofactors of several
enzymes and essential for physiological processes such as survival, growth and prolifera-
tion; therefore, their depletion in fast-growing cells has been proposed as a tumor therapy.
Depending on the architecture, polyamines hold chelating properties paired with tumor-
driving force, making them suitable multifunctional ligands for anticancer research [77]. In
particular, some polyamine-based theranostic agents were developed by merging optical
imaging to iron-chelating tumor-targeted cytotoxic properties [78,79]. In addition to macro-
cyclic polyamines exploited mainly for radiometals, even linear polyamines bear chelating
properties that were amplified when they were grafted to other chelating fragments (e.g.,
hydroxyquinoline motif). Particularly, conjugate 41 (Figure 12) with a homospermidine
tail exploited a selective PTS-mediated uptake to direct its dose-dependent cytotoxic effect
(IC50 of 1.4 µM in CHO cells). In this case, the polyamine moiety played a double role: as
vector and for boosting the hydroxyquinoline iron chelating capacity [80].

3. Antimicrobial Agents

Polyamines are polycationic molecules ubiquitously expressed in nature. Some of
them have been proved to exert a critical influence on microorganism metabolism and
proliferation, and accordingly were considered as potential starting points for antimicrobial
drug development. The involvement of polyamines in cellular machinery, and then the
biological activity of polyamine derivatives, depend closely on the family of pathogens in-
volved. Therefore, herein, the polyamine conjugates are handled according to the targeting
microorganism.

3.1. Antibiotics

In bacteria, besides core physiological functions, polyamines proved essential for their
pathogenesis by optimizing the interplay between host cells and infecting bacteria [81].
Furthermore, discrepant outcomes were reported regarding polyamines’ influence on
antibiotic activity. In some cases, polyamines seem to induce resistance by modulating
outer membrane permeability [82,83], while in other cases, co-treatment with exogenous
polyamines can increase the antibiotic susceptibility of some strains of both Gram-positive
and Gram-negative bacteria [84]. These premises, along with the discovery of the strong and
wide antibiotic effects of natural aminosterols (e.g., squalamine and trodusquemine) bearing
Spd or Spm moieties, have represented the starting point for antibacterial polyamine
conjugate development [85]. Furthermore, polycationic amine tail conjugation has been
validated as a medicinal chemistry strategy to re-empower the efficacy of antibiotic agents
against resistant strains [86,87]. Following the same path of squalamine, other bioactive
sterols, but with modest or no bacteriostatic activity, were linked to polyamines and their
antimicrobial profiles evaluated. Moreover, these designed cationic amphiphilic molecules
were considered to be biomimetics of endogenous peptide antibiotics [88].

One example is represented by the hybrid 42 (Figure 13), which originated from the
linkage of a phytosterol (i.e., stigmasterol) with Spm, showing a selective inhibition ef-
fect on S. aureus and reducing bacterial growth to 25% within 12 h at a concentration of
50 µg/mL [37]. Similarly, several other sterol backbones were exploited for polyamine
conjugation, such as cholic or deoxycholic acid (compounds 43, 44 and 45, Figure 13),
betulinic acid and β-sitosterol (compounds 42, 46 and 50, Figures 13 and 14) or ursolic acid
(compound 13, Figure 6). Analogs of squalamine but constituted of cholic (or deoxycholic)
acid and Spm showed significant, wide and non-selective antibacterial activities toward
both Gram-positive and Gram-negative bacteria (compounds 43 and 44, Figure 13). On
the other hand, their head-to-tail dimeric conjugates exerted strong antibiotic efficacies
against a broad spectrum of Gram-positive bacteria, ranging from Enterococcus to Staphylo-
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coccus and Streptococcus with MICs in the low µM profile. In particular, cholic acid dimer
45 (Figure 13) highlighted the highest activities, similarly to squalamine, whereas the de-
oxycholic conjugate was the most potent among monomeric analogs [89]. Additionally,
tail-to-tail cholic acid Spm conjugates were reported linked with different tethers. In com-
pound 46 (Figure 13), the rigid bridge led to an increased anionophoric efficiency that
accounted for their antibacterial activity [90]. More recently, a deoxycholic derivative with
Spm moiety directly attached at C3 was developed and called Claramine A1 (Figure 13) [91].
It demonstrates antimicrobial activities against a large panel of both Gram-positive and
Gram-negative bacteria, including multi-drug resistant pathogens, with MIC values rang-
ing from 2 to 32 µg/mL and a multifaceted mechanism of action dependent on the type
of strain. In Gram-positive bacteria, Claramine A1 can disrupt membrane integrity via
depolarization, whereas in Gram-negative strains, it influences cell membrane permeabi-
lization by altering proton homeostasis, in addition to possessing synergistic effects [91].
The same tail-to-tail approach was recently evaluated in different polyamine conjugates
linked through a C-24 amide functional group by exploring different cholic acid head
groups. In this case, the hyodeoxycholic acid analogue 47 (Figure 13) exhibited remarkable
Gram-positive antibacterial (MIC ≤ 0.20 µM in S. aureus strains) and antifungal activity
(MIC ≤ 0.20 µM in C. albicans and MIC = 0.80 µM in C. neoformans) and was devoid of any
cytotoxic or hemolytic effects at the top dose tested (32 µg/mL). The bactericidal properties
of 47 were also confirmed in several bacterial strains, albeit its exact mechanism of action
has still to be elucidated, while membrane perturbation/ATP depletion and antibiotic
enhancement have been ruled out [92].
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The two betulinic acid-based Spm hybrids 48 (Figure 14) and 10 (Figure 6) demon-
strated high and selective antimicrobial activity [31]. Compound 48, bearing conjugation
of the two moieties through a carboxy functional group at C28, displayed activities to-
ward S. aureus (MIC of 12.5 µg/mL) and E. coli (MIC of 6.25 µg/mL), while 10, with an
hemisuccinate bridge at C3 between the two fragments, was more active against S. aureus
and E. faecalis (MIC of 3.125 µg/mL for both). Both of them showed weak or no activity
toward Gram-negative bacteria [31]. Triterpenoids alone, like previously reported sterols
exploited as anchor points for polyamine conjugation, exert modest bacteriostatic activ-
ities, whereas their amine hybrids show considerable increases in antimicrobial activity.
3-Acetylated betulinic, ursolic and oleanolic derivatives were conjugated at C28 with dif-
ferent polyamines or guanidines, and their antimicrobial activities were evaluated toward
different strains [93]. The ursolic 49 and betulinic 50 derivatives, bearing biogenic Spd and
tris(2-aminoethyl)amine, respectively, were among the best of the series in terms of their
anti-staphylococcal potential (MICs ≤ 0.25 µg/mL), with an antibacterial effect superior to
that of clinically used vancomycin (MIC = 1 µg/mL). In parallel, their antifungal activities
were also evaluated against Cryptococcus neoformans, revealing them to be 65 times more
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potent than the drug fluconazole. These findings, together with low toxicity in mammalian
cells, confirmed once more the antimicrobial potential of polyamine–sterol conjugates,
which would pave the way for further clinical investigations [93].

Oleanonic acid represents another bioactive terpene that has been exploited for con-
jugation with diamines or polyamines to evaluate their profiles as antibiotic potency
enhancers [94]. Compound 51 (Figure 14) with N-methyl-norspermidine bridged through
C17 carboxamide functional group was shown to possess low MICs (6.25–25 µM) against
a wide panel of strains, particularly some multidrug-resistant bacteria (e.g., P. aeruginosa
CIP100720 and K. aerogenes EA289). Interestingly, the mechanism of action accounted
for the antibiotic activity of 51 in P. aeruginosa PA01 cells through the disruption of the
outer bacterial membrane [94]. Furthermore, as proof of their polyhedral profile, an ami-
doethylpiperazine derivative of oleanonic acid recently demonstrated moderate antiviral
activity [95].

Heterobetulonic acid and ursolic acid were attached at C17 with Spm by carboxamide
functional group (12 and 13, Figure 6), and their MIC values were 6.25 µM for Staphylococcus
aureus, Streptococcus mutans and Listeria monocytogenes, identically for both compounds
and for all three microorganisms [33]. Another betulonic acid-diethylentriamine conjugate,
compound 52 (Figure 14) showed partial activity against methicillin-resistant S. aureus and
the yeast C. neoformans, exerting growth inhibition of 71.80% and 62.56% at 32 µg/mL,
respectively [32].

To increase the hydrophilicity and cationic charge, a series of bis(polyamino)steroid
derivatives were reported with amino tails attached at C3 and C20 [96]. Interestingly, the
chain length has a major impact on the antimicrobial activities, pointing to eight carbon
atom the optimal length in this respect (53, Figure 14). Compound 53 showed potent
anti-staphylococcal activity and moderate to excellent antibacterial potency against Gram-
negative E. coli (MIC = 5 µg/mL) and P. aeruginosa (MIC = 2.5–10 µg/mL), while low or
no activity was shown against I. limosus and B. cepacia. Particularly, it showed direct and
fast bactericidal effects against Gram-positive S. aureus, also acting through membrane
depolarization. On the other hand, disruption of the outer membrane, similarly to colistin
with a detergent-like mechanism, accounted for its Gram-negative antibacterial effect [96].

In 2012, Xu et al. identified three bromotyrosine-derived metabolites from the sponge
S. ianthelliformis equipped with antibacterial activity [97]. Particularly, ianthelliformisamine
C, bearing an Spm linker between two substituted cinnamic functional groups, showed
MICs from 12.5 to 25 µg/mL against different Gram-positive and Gram-negative bacterial
strains [98]. Moreover, ianthelliformisamine C and its synthetic analogue 54 featuring
a tris(3-aminopropylamine) chain (Figure 15) were demonstrated to restore doxycycline
activity against several Gram-negative strains at low micromolar concentrations. In the case
of P. aeruginosa strains, besides doxycycline, they proved to improve even chloramphenicol
(at 12.5 and 100 µg/mL, respectively) and cefepime activities (at 1.6 and 0.4 µg/mL,
respectively) without any cytotoxicity issues until >200 µg/mL. Further experimental
investigations suggested a possible modulation of drug transporters, accounting for the
antibiotic susceptibility of compound 54 [98].

Following the strategy of polyamine conjugation to tackle antibiotic resistance, even
some approved antimicrobial drugs were exploited as attaching sites. Chloramphenicol is a
broad-spectrum antibiotic that acts by inhibiting protein synthesis, but its use is limited due
to its adverse effects. Kostopoulou et al. developed a series of chloramphenicol–polyamine
derivatives with different polyamine architectures and docking sites with the aim of im-
proving chloramphenicol’s activity and uptake [99]. The most potent conjugate, compound
55 (Figure 16), possesses N8, N8-dibenzylspermidine attached through N4 to a succinate
bridge, in replacement of the dichloroacetyl group of chloramphenicol. It exerted compara-
ble or improved antibacterial potency against S. aureus (IC50 = 4.7 µM vs. 3.1 µM) and E.
coli (IC50 = 9.4 µM vs. 6.2 µM), particularly against resistant E. coli strains (IC50 = 9.4 µM
vs. 15.5 and 24.7 µM), with reduced toxicity against human health cells. Furthermore, the
same mechanism of action of chloramphenicol was maintained in compound 55, where the
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precursor scaffold competes with aminoacyl-tRNA binding to ribosome A-site, while the
polyamine chain could interfere with the rotation of aminoacyl-tRNA toward the P-site [99].
Analogously, the antimalarial primaquine was exploited as a bioactive head and conjugated
with different polyamines, through a succinyl linker, to explore their antimicrobial and
antibiotic adjuvant properties [100]. Compound 57 (Figure 16) with a decyl central tether
emerged as the most potent antimicrobial of the series, with selectivity against S. aureus
(MIC = 3.3 µM) and the yeast C. neoformans (MIC = 1.7 µM). Interestingly, compound 56
(Figure 16), with an Spm linker that was devoid of any antimicrobial activity, showed
enhanced doxycycline activity against P. aeruginosa equipotent to that of 57 (MIC = 6.25 µM
for potentiation of 2 µg/mL doxycycline) coupled with more modest potentiation toward
E. coli (MIC = 50 and 12.5 µM, respectively) [100].
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3.2. Antiprotozoa

Besides bacteria (and fungi in some cases), several polyamine conjugates were in-
vestigated for their antimicrobial profiles, mainly related to different protozoa such as
kinetoplastids (e.g., Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani) and
Plasmodium falciparum. Particularly, their development was built on the essential role played
by polyamines in parasitic cellular machinery, and thus exploited it to direct the antiproto-
zoal efficacy of polyamine conjugates [101]. Two of the first polyamine antimalarial hits
derived from a screening on marine natural products afforded orthidine F (IC50 = 0.89 µM)
and didemnidine A and B (IC50 = 41 µM and 15 µM, respectively) [102,103]. Further-
more, orthidine F, unlike didemnidines, showed promising selectivity while avoiding any
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cytotoxicity against a mammalian cell line, serving as a suitable starting point in antimalar-
ial drug design (Figure 17). Different polyamine linkers and substituents on arylacetic
heads were evaluated with the aim of increasing potency against P. falciparum strains while
maintaining good selectivity. Spm analogues, like the parent compound, retained the
best antimalarial profile, with increased potency relative to orthidine F. Regarding aryl
substituents, 2-hydroxy derivative (compound 58, Figure 17) achieved the highest potency
(IC50 = 8.6 nM), which was not preserved in other 3- and 4-isomers associated with the origi-
nal non-cytotoxic profile. Of note, 2,5-disubstituted analogue (compound 59, Figure 17) also
exerted interesting antimalarial activity (IC50 = 19 nM), albeit accompanied by higher cyto-
toxicity (IC50 = 88 µM) [102]. By reducing the distance between aryl and amide functional
groups, a small reduction in activity with increased toxicity was verified, but increasing
the distance yielded equipotent or more active 3-phenylpropanamide compounds 60 and
61 (Figure 17) while retaining good selectivity (IC50 = 15 nM, SI = 5700 and IC50 = 6.1 nM,
SI = 16,230, respectively) [104]. Concurrently, by introducing longer polyamine chains,
antimicrobial activity generally decreased (except for 2-hydroxysubstituted PA3-8-3, which
achieved IC50 = 1.3 nM) and toxicity dramatically increased. Compounds 58 and 60 were
also tested in vivo in P. berghei infected mice, revealing no increase in mean survival time
but a 27.9% reduction in parasitemia for 62 when tested repeatedly at 30 mg/kg/day
ip [104].
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A similar structure–activity relationship study of polyamine linkers and capping in-
doles was conducted starting from didemnidine scaffolds to improve their modest antipro-
tozoal activities [105]. Starting with the experimental evidence for the higher antimalarial
activities detected in bis-bromoindole analogues, a double-headed drug design strategy
was conducted, such as occurred before with orthidine derivatives. An indolglyoxylamide
cap was preferred over indolacetamide, pointing to 7-methoxy substitution as the preferred
one. Surprisingly, compounds bearing Boc-protected amino groups of central tether demon-
strated higher activity and selectivity over the non-protected analogues, while PA3-8-3 was
identified as the optimal length in this respect. Compound 62 (IC50 = 92 nM, SI ≥ 1300,
Figure 17), featuring all of the identified structural requirements, emerged as the best
derivative of the series and was thus selected for in vivo studies. Ip administration to P.



Molecules 2023, 28, 4518 20 of 30

berghei infected mice for 4 days at 50 mg/kg/day led to 20.9% parasitemia reduction but
without an increase in mean survival time [105]. Although the identified structural require-
ments to achieve optimal antimalarial potency for orthidine and didemnidine derivatives
were slightly different, orthidine analogues generally confirmed the best antiprotozoal and
toxicity profiles already encountered with their parent natural compounds.

Differently from the natural polyamine-bearing compounds, some bioactive scaffolds
endowed with antimalarial potency were conjugated with polyamines to leverage the
delivery of these latter toward parasitic cells. A small set of polyamines were attached to
the cytotoxic nucleus of anthracene, and the resulting hybrids were shown to be capable of
inhibiting P. falciparum’s growth in human erythrocytes [106]. Particularly, Put derivative 63
(Figure 18) was the analogue with the highest antimalarial potency (IC50 = 0.64 ± 0.04 µM)
and selectivity over a panel of human cancer cell lines, while for the others, IC50 and cyto-
toxicity against P. falciparum were comparable. As evidence of this, 63 was demonstrated
to be selectively taken up in infected erythrocytes over uninfected ones and inhibited the
parasite’s cell cycle within the first 24 h of exposure, in addition to inhibiting polyamine
uptake by competing with the transport [106]. Similarly, the antimalarial drug artemisin
and bioactive 1,2,4-trioxolanes were conjugated with different polyamines to evaluate if this
structural modification led to the enhancement of biological activities [107,108]. Generally,
the artesunate analogues were more potent than trioxolanes, and PA3-4-3 was found to be
the best chain length, whereas with a longer tether, cytotoxicity issues arose independently
of the type of substitution. Bis-(Boc)-bis-artesunate derivative 64 and (tetra)-artesunate con-
jugate 65 (Figure 18) emerged with the best antimalarial activities against the drug-sensitive
P. falciparum NF54 strain (IC50 = 0.4 and 0.3 nM, respectively) and selectivity index over
cytotoxicity in a rat cell line (SI = 30,250 and 37,333, respectively). In the trioxolane series,
compound (bis)-Boc-protected 66 (Figure 18) turned out to be the most efficient against
P. falciparum NF54 (IC50 = 5.1 nM), with low cytotoxicity (IC50 = 65.85 nM). In P. berghei
infected mice, only 64 and 65 reduced parasitemia (99.8% and 95.5%, respectively) with
30 day survival rates, while trioxolanes turned out to be ineffective. In this case, polyamine
conjugation with artesunate retained the promising biological activities of the parent com-
pound, whereas trioxolane acid remained more potent relative to its derivatives [108].
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In kinetoplastids, the polyamine pathway is considered one of the main targets to
tackle parasitemia because, apart from the essential role of polyamines in parasitic growth
and survival, in some cases the parasite is not able to produce them by itself, and proper
uptake from the host becomes vital [101]. For example, T. cruzi does not contain enzymes
to synthesize de novo Put and Spm and, therefore, their intracellular availability relies
only on transport processes. That explains why polyamine transporters are targeted to
alter parasite viability [109]. Furthermore, Put and/or Spd are involved in trypanothione
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biosynthesis, the main parasite defense mechanism against oxidative stress [110]. Based on
these, several polyamine derivatives have been synthesized over the years in the search
for effective antikinetoplastid chemotherapeutics, and all of these efforts were properly
described and reported in a review by Labruère et al. in 2017, to which the interested reader
is referred [111]. More recently, a series of differently substituted tris(2-aminoethyl)amines
were reported to bear trypanocidal effects against T. cruzi, identified as the etiological
agent of Chagas disease [112]. Different aromatic caps attached at terminal amino groups
were evaluated, and derivatives bearing monofluorene (compound 67, Figure 19) or tris(2-
quinoline) (compound 68, Figure 19) substitutions yielded the best activity profile (in low
micromolar range) against different T. cruzi strains and forms. Furthermore, both of them
demonstrated a very low toxicity profile in a mammalian cell line (i.e., over 1500 mM).
In infected mice, compound 68 demonstrated almost no activity, whereas compound 67
caused a drop of 72% in parasitemia by the 23rd day of treatment (comparable to the drug
benznidazole) and was effective in both acute and chronic phases as well as preventing
reinfection after immunosuppression. Investigations on their potential mechanism of action
identified the inhibition of enzymes involved in the catabolic glucose pathway for 67 and
induced alteration in mitochondrial membranes for 68 [112]. For compound 69 (Figure 19),
redox-stress by inhibition of Fe-SOD enzyme and mitochondria-dependent bioenergetic
collapse were considered the principal induced dysfunctions accounting for its trypanocidal
effect. Furthermore, in infected mice after oral administration (i.e., 20 mg/kg·day for five
consecutive days), 69 showed a ~65% reduction on the day of maximum parasitemia
associated with an overall parasite burden and parasite load decrease, more efficiently than
benznidazole [113].
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Due to the essential role played by polyamine transporters in T. cruzi, several polyamine
conjugates were tested to verify their inhibitory properties in this respect. Among all of
the derivatives evaluated, 63 (Figure 18) emerged as the most interesting because it was
able to join inhibition of Put and Spd transport (respectively IC50 = 5.02 ± 0.39 µM and
IC50 = 8.78 ± 1.04 µM) to trypanocidal activity (IC50 = 16.97 ± 1.16 µM in epimastigote and
IC50 = 0.46 ± 0.02 µM in trypomastigote) [109].

4. Antioxidant

The correlation of polyamine cellular content and oxidative stress condition is well-
known, and several experimental examples are already reported above. With the aim of
improving their antioxidant efficacy, polyamines have been conjugated with other radical
scavenger pharmacophores such as (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Par-
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ticularly, TEMPO exerts a multifaceted antioxidant efficacy by inhibiting myeloperoxidase,
a heme peroxidase enzyme impaired in inflammatory diseases, and directly counteracting
oxidant species. In this view, Maiocchi et al. exploited the TEMPO nucleus to attach
different polyamines in order to increase its bioavailability and antioxidant potency [114].
Notably, Put-TEMPO hybrid 70 (Figure 20) achieved one of the highest cellular uptakes,
which allowed it to retain efficient inhibition of cellular myeloperoxidase activities such
as chlorination, H2O2 consumption, HOCl production, protein nitration and NO oxida-
tion [114]. Minoxidil belongs to a similar nitrone family and is an antihypertensive agent
with antinflammatory properties. Therefore, two series of conjugates with polyamine
directly attached to a minoxidil amine functional group or through a urea bridge were
developed and evaluated for their antioxidant/antinflammatory properties [115]. From
the first series, the Spm conjugate 71 (Figure 20) was derived as a more potent lipid perox-
idation inhibitor (94% inhibition at 100 µM) with a generally mild antioxidant profile as
well as lipoxygenase inhibition and considerable cytotoxicity in vitro. A similar profile was
obtained also for the best urea derivative 72 (Figure 20), with an ameliorated antioxidant
profile, except for lipid peroxidation, but in this case, it showed the highest antinflamma-
tory activity in a rat model of acute inflammation (36.5% vs. 22% of 71 at 0.01 mmol/kg
measured as inhibition of paw edema). To note, all polyamine-minoxidil conjugates were
still less potent than minoxidil alone [115].
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IC50 of 16 nM for this enzyme while being almost inactive for AChE, with a selectivity 
index (BChE/AChE) higher than 3125. On the other hand, the anthraquinone-Put ana-
logue 74 (Figure 21) turned out to be as the most potent and selective AChE inhibitor (IC50 
= 1.50 µM). Further kinetic investigations on 73 highlighted interactions with both cata-
lytic and peripheric active sites of the BChE enzyme. Interestingly, anthraquinone 74, a 
less potent AChE inhibitor than tacrine, showed higher hepatoxicity in comparison to this 
drug, while no toxic issues were encountered with anthracene 73, a more potent BChE 
inhibitor than tacrine. 
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5. Neuroprotective

Complex pathologies such as cancer and neurodegenerative diseases require suitable
and multifaceted treatments to obtain an efficient therapeutic effect. In the latter case, the
required brain–blood barrier permeation further complicates the intended strategy. In
this field, besides the usual antioxidant profile, polyamine conjugation has been mainly
exploited to optimize target interactions or deliver bioactive payloads at specific subcellular
compartments, although the mechanisms involving polyamine uptake and trafficking at a
central level are still controversial.

Cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE),
are enzymes responsible for acetylcholine cleavage, and their inhibition, with the conse-
quent enhancement of cholinergic transmission, represents the therapeutic approach most
widely exploited for the treatment of Alzheimer’s disease, albeit only palliative. Inspired
by the structure of tacrine, the first cholinesterase inhibitor placed into clinical use and then
withdrawn due to hepatotoxicity, several polycyclic polyamine conjugates were developed
and screened as ChEs inhibitors [116]. In particular, three aromatic polycyclic building
blocks, i.e., naphthalene, anthracene and anthraquinone, were selected and bound to dif-
ferent polyamine moieties. Most of the synthesized molecules are active against ChEs: in
particular, anthraquinone–polyamine conjugates are more active on AChE, anthracene–
polyamine conjugates are more selective towards BChE, and naphthalene–polyamine con-
jugates display generally low activity. Compound 73 (Figure 21), bearing a four-methylene
linker, is the best one in terms of BChE inhibition, displaying an IC50 of 16 nM for this
enzyme while being almost inactive for AChE, with a selectivity index (BChE/AChE)
higher than 3125. On the other hand, the anthraquinone-Put analogue 74 (Figure 21) turned
out to be as the most potent and selective AChE inhibitor (IC50 = 1.50 µM). Further kinetic
investigations on 73 highlighted interactions with both catalytic and peripheric active sites
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of the BChE enzyme. Interestingly, anthraquinone 74, a less potent AChE inhibitor than
tacrine, showed higher hepatoxicity in comparison to this drug, while no toxic issues were
encountered with anthracene 73, a more potent BChE inhibitor than tacrine.

Molecules 2023, 28, x FOR PEER REVIEW 24 of 31 
 

 

 
Figure 21. Neuroprotective polyamine conjugates. The bioactive core is highlighted in red, the pol-
yamine chain in blue, and the linker portion in green. 

N-Methyl-D-aspartate receptors (NMDARs) play a key role in regulating learning 
and memory functions, as well as neuroplasticity; however, their glutamate overexcita-
tion, as in the case of AD, leads to excessive calcium influx, which is responsible for neu-
ronal death. Memantine is one of the medications currently used for symptomatic relief 
in patients suffering from AD, and its mechanisms of action lie in the uncompetitive an-
tagonism of NMDARs, thus mitigating excitotoxic conditions following overexcitation. In 
this respect, polyamines act as allosteric modulators of NMDARs and possess a specific 
recognition site on their extracellular side. To develop more efficient NMDAR blockers 
and increase the therapeutic efficacy of memantine, polyamine–memantine hybrids were 
developed by Kumamoto et al. with different lengths and terminal substitutions and eval-
uated against NMDAR GluN2A and GluN2B subtypes [117]. All of the reported derivates 
demonstrated lower inhibitory potency relative to memantine, except for triamine 75 and 
diaminoguanidine 76 (Figure 21). In particular, 76 was found to be the most potent 
NMDAR channel blocker (IC50 GluN2A = 379 nM and IC50 GluN2B = 432.7 nM vs. 1.376 
µM and 2.099 µM, respectively, of memantine), representing a potential starting point for 
the development of new therapeutics able to tackle excitotoxicity [117]. 

Oxidative stress and ROS overproduction are commonly widespread during neuro-
degenerative processes and constitute a means to further foster synaptic loss. In this con-
text, mitochondria represent the cellular hub for ROS production during physiological 
oxidative phosphorylation, and even more during neurodegeneration when their physio-
logical functions are impaired. Accordingly, mitochondria-directed ligands have been en-
visioned as a proper strategy to direct antioxidant payloads at the site of toxicity by using 
a positively charged driving force, such as polyamine, for suitable targeting thanks to the 
negatively charged mitochondrial membrane. In this context, a series of Spm and norsper-
midine tails were previously conjugated with curcumin congener core, 3,5-dibenzylidene-
piperidine-4-one (DBP), and validated as mitochondria-directed antioxidant agents with 
less cytotoxic effects of starting moiety [118]. The most promising compound carrying 
Spm was then further decorated to provide anti-amyloid activity through the insertion of 
catechol moieties that have been extensively proven to reduce β-amyloid (Aβ) aggregation 
and related toxicity [119]. The resulting compound 77 (Figure 21) maintained the previous 
mitochondrial import capacity with an antioxidant profile and also antiaggregant ability 
(53% of residual Aβ42m at 10 µM) and neuroprotection against Aβ-induced toxicity. Inter-
estingly, from molecular dynamic simulations, it emerged that while the catechol motif 

Figure 21. Neuroprotective polyamine conjugates. The bioactive core is highlighted in red, the
polyamine chain in blue, and the linker portion in green.

N-Methyl-D-aspartate receptors (NMDARs) play a key role in regulating learning and
memory functions, as well as neuroplasticity; however, their glutamate overexcitation, as
in the case of AD, leads to excessive calcium influx, which is responsible for neuronal death.
Memantine is one of the medications currently used for symptomatic relief in patients
suffering from AD, and its mechanisms of action lie in the uncompetitive antagonism of
NMDARs, thus mitigating excitotoxic conditions following overexcitation. In this respect,
polyamines act as allosteric modulators of NMDARs and possess a specific recognition
site on their extracellular side. To develop more efficient NMDAR blockers and increase
the therapeutic efficacy of memantine, polyamine–memantine hybrids were developed
by Kumamoto et al. with different lengths and terminal substitutions and evaluated
against NMDAR GluN2A and GluN2B subtypes [117]. All of the reported derivates
demonstrated lower inhibitory potency relative to memantine, except for triamine 75
and diaminoguanidine 76 (Figure 21). In particular, 76 was found to be the most potent
NMDAR channel blocker (IC50 GluN2A = 379 nM and IC50 GluN2B = 432.7 nM vs. 1.376 µM
and 2.099 µM, respectively, of memantine), representing a potential starting point for the
development of new therapeutics able to tackle excitotoxicity [117].

Oxidative stress and ROS overproduction are commonly widespread during neurode-
generative processes and constitute a means to further foster synaptic loss. In this context,
mitochondria represent the cellular hub for ROS production during physiological oxidative
phosphorylation, and even more during neurodegeneration when their physiological func-
tions are impaired. Accordingly, mitochondria-directed ligands have been envisioned as a
proper strategy to direct antioxidant payloads at the site of toxicity by using a positively
charged driving force, such as polyamine, for suitable targeting thanks to the negatively
charged mitochondrial membrane. In this context, a series of Spm and norspermidine tails
were previously conjugated with curcumin congener core, 3,5-dibenzylidenepiperidine-4-
one (DBP), and validated as mitochondria-directed antioxidant agents with less cytotoxic
effects of starting moiety [118]. The most promising compound carrying Spm was then
further decorated to provide anti-amyloid activity through the insertion of catechol moi-
eties that have been extensively proven to reduce β-amyloid (Aβ) aggregation and related
toxicity [119]. The resulting compound 77 (Figure 21) maintained the previous mitochon-
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drial import capacity with an antioxidant profile and also antiaggregant ability (53% of
residual Aβ42m at 10 µM) and neuroprotection against Aβ-induced toxicity. Interestingly,
from molecular dynamic simulations, it emerged that while the catechol motif acts as a key
recognition fragment in amyloid binding, the large number of interactions established by
77 along with the perpendicular pose of its Spm tail to the amyloid β-sheets are believed to
boost the antiaggregating activity of this conjugate [119].

Some polyamines, depending on the architecture, possess chelating abilities. For exam-
ple, triethylenetetramine, a copper chelator, is approved for the treatment of Wilson disease,
a genetic disorder where copper accumulation occurs in tissues. Metal dyshomeostasis
constitutes a pathological feature of complex pathologies by catalyzing ROS production
and triggering protein misfolding processes. Following a multitarget approach, Li and col-
leagues recently developed triethylenetetramine–melatonin hybrid 78 (Figure 21) to merge
the chelating abilities of polyamine and the antioxidant/antinflammatory properties of
melatonin and evaluate their synergistic efficacy in an AD mouse model at 0.5 mg/kg [120].
Firstly, 78 retained both beneficial properties of the starting synthons in vivo by reducing
copper, pro-inflammatory cytokines and ROS content. Furthermore, it down-regulated
both AD misfolding processes by mitigating τ hyperphosphorylation and Aβ plaques
with a concurrent stimulation of non-amyloidogenic pathways. Unfortunately, none of
the detected beneficial properties resulted in a neuroprotective effect in terms of neuronal
activity rescue, requiring further optimization [120].

6. Conclusions

Over the past two decades, the strategy of conjugating polyamine tails with different
anticancer and antimicrobial agents, as well as antioxidant and neuroprotective scaffolds,
has been widely exploited to enhance their pharmacological profiles. From a structural
point of view, the resulting molecules are quite different compared to the starting scaffolds,
and it is, therefore, difficult to predict their metabolic pathways and the biological activity
that can arise from this modification.

Although the examples presented in this review, which covered the last 10 years of
the literature, show that most of the conjugates retain the activities of the corresponding
payloads, suggesting a similar mechanism of action, in some conjugates the polyamine
reduces the activity of the parent compound, indicating that the polyamine backbone
interferes negatively in the signaling pathways of the conjugated molecule. In the most
successful cases, such as the podophyllotoxin–Spm conjugate F14152 currently in clinical
trials, the Spm moiety provides the conjugate with enhanced anticancer activity compared
to the original compound, modulating additional cellular targets and enhancing cellular
uptake. The application of the conjugating strategy between polyamine and an anticancer
drug has led to the most promising results. Indeed, high polyamine transport activity
and upregulation of its biosynthesis are hallmarks of aggressive cancers. Therefore, the
development of anticancer–polyamine conjugates provides a greater chance for anticancer
drugs to achieve higher concentrations in cancer cells and more selective targeting than in
normal cells.

In this respect, the role of cellular and subcellular delivery vectors of polyamines
depends on the full elucidation of PTS molecular structure and functionality. However,
differently from bacteria, fungi and plants, the molecular identity and properties of the
polyamine transporters in mammalians are poorly characterized. So far, transporters
belonging to the solute carrier (SLC), ATP-binding cassette (ABC) and P5B-ATPase transport
families have been highlighted as candidate polyamine transporters, but only a few of
them have been biochemically or structurally validated. For this reason, only indirect
methods (Chinese Hamster Ovary (CHO) cells/PA transport deficient CHO-MG cells or
DFMO (difluoromethylornithine)/Spd experiments) are used to evaluate PTS involvement.
The recent advances in elucidating the structure of the different polyamine transporters
imply the potential of structure-based drug design, not only of drug–polyamine conjugates,
but also of PTS modulators to control polyamine homeostasis in the cells that are known
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to be altered in several pathological conditions [121]. Although the carrier (such as PTS)
should be expected to favorably recognize biogenic polyamines (Put, Spd and Spm), the
best feature of the polyamine chain that leads to an improvement in the biological activity
of the conjugates is unpredictable. Indeed, the examples reported in this review showed
that polyamine conjugation contributes not only to improving targeted delivery thanks
to active transport systems, but also to the interaction with the target of interest and the
overall lipophilicity of the conjugate thanks to the peculiar properties provided by the
polyamine moiety. Furthermore, several deficiencies in efficacy were encountered, and also
herein reported, in in vitro-to-in vivo translation due to tissue-selective transporters, which
recalls the need for proper preclinical characterization.

Despite these pros and cons, the reported summary on the polyamine conjugation
approach demonstrated that it is still widely exploited in different and multifaceted drug
discovery programs. Further investigations into issues such as the polyamine trafficking
in diseased conditions or the metabolic pathways of polyamine conjugates could further
boost the potential future clinical translation of this class of compounds.
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betulinic acid and β-sitosterol: A comparative investigation. Steroids 2015, 100, 27–35. [CrossRef] [PubMed]

32. Kazakova, O.B.; Giniyatullina, G.V.; Mustafin, A.G.; Babkov, D.A.; Sokolova, E.V.; Spasov, A.A. Evaluation of Cytotoxicity
and α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids. Molecules 2020, 25, 4833.
[CrossRef]

33. Bildziukevich, U.; Malík, M.; Özdemir, Z.; Rárová, L.; Janovská, L.; Šlouf, M.; Šaman, D.; Šarek, J.; Nonappa; Wimmer, Z. Spermine
amides of selected triterpenoid acids: Dynamic supramolecular system formation influences the cytotoxicity of the drugs. J.
Mater. Chem. B 2020, 8, 484–491. [CrossRef] [PubMed]

34. Heller, L.; Knorrscheidt, A.; Flemming, F.; Wiemann, J.; Sommerwerk, S.; Pavel, I.Z.; Al-Harrasi, A.; Csuk, R. Synthesis and
proapoptotic activity of oleanolic acid derived amides. Bioorg. Chem. 2016, 68, 137–151. [CrossRef] [PubMed]

35. Kahnt, M.; Fischer Née Heller, L.; Al-Harrasi, A.; Csuk, R. Ethylenediamine Derived Carboxamides of Betulinic and Ursolic Acid
as Potential Cytotoxic Agents. Molecules 2018, 23, 2558. [CrossRef] [PubMed]

36. Kahnt, M.; Loesche, A.; Serbian, I.; Hoenke, S.; Fischer, L.; Al-Harrasi, A.; Csuk, R. The cytotoxicity of oleanane derived
aminocarboxamides depends on their aminoalkyl substituents. Steroids 2019, 149, 108422. [CrossRef]

37. Vida, N.; Svobodová, H.; Rárová, L.; Drašar, P.; Saman, D.; Cvačka, J.; Wimmer, Z. Polyamine conjugates of stigmasterol. Steroids
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