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Simple Summary: Multiparametric Magnetic Resonance Imaging (mpMRI) interpretation and re-
porting is based on the more recent version 2.1 of the Prostate Imaging-Reporting and Data System
(PI-RADS), revised in 2019, indicating the probability of clinically significant Prostate Cancer (csPCa)
on a 5-point scale, which should be confirmed through trans-rectal ultrasound (TRUS) fusion-targeted
biopsy. Among PI-RADS categories, PI-RADS 3 lesions represent a highly “equivocal” result, with a
non-negligible probability of PCa, or even csPCa. This study exploits machine learning methods in or-
der to investigate the role of mpMRI as a stand-alone tool for early and non-invasive detection of PCa
in a selected cohort of PI-RADS 3 lesions, by means of a radiomic analysis of Apparent Diffusion Coef-
ficient sequences. Differently from what reported in the current literature, the methodology adopted
has bounded the possibility of overoptimistic predictive performance, also improving the state-of-art
by achieving a positive predictive value of 80%, with specificity = 76% and sensitivity = 78%.

Abstract: The Prostate Imaging and Reporting Data System (PI-RADS) has a key role in the manage-
ment of prostate cancer (PCa). However, the clinical interpretation of PI-RADS 3 score lesions may be
challenging and misleading, thus postponing PCa diagnosis to biopsy outcome. Multiparametric
magnetic resonance imaging (mpMRI) radiomic analysis may represent a stand-alone noninvasive
tool for PCa diagnosis. Hence, this study aims at developing a mpMRI-based radiomic PCa diag-
nostic model in a cohort of PI-RADS 3 lesions. We enrolled 133 patients with 155 PI-RADS 3 lesions,
84 of which had PCa confirmation by fusion biopsy. Local radiomic features were generated from
apparent diffusion coefficient maps, and the four most informative were selected using LASSO, the
Wilcoxon rank-sum test (p < 0.001), and support vector machines (SVMs). The selected features where
augmented and used to train an SVM classifier, externally validated on a holdout subset. Linear and
second-order polynomial kernels were exploited, and their predictive performance compared through
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receiver operating characteristics (ROC)-related metrics. On the test set, the highest performance,
equally for both kernels, was specificity = 76%, sensitivity = 78%, positive predictive value = 80%,
and negative predictive value = 74%. Our findings substantially improve radiologist interpretation of
PI-RADS 3 lesions and let us advance towards an image-driven PCa diagnosis.

Keywords: prostate cancer; machine learning; PI-RADS 3 lesions; prediction models; magnetic
resonance imaging

1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, with
an estimated 1.4 million diagnoses worldwide in 2020 [1], and it expresses a wide clinical
variability, from indolent to more aggressive diseases [2]. From a pathological point of view,
the 2014 and 2019 International Society of Urological Pathology (ISUP) grading system
classifies PCa grades, ranging from 1 to 5 [3], being useful to distinguish clinically signifi-
cant (csPCa) from not clinically significant (ncsPCa) tumours. In large studies of radical
prostatectomy (RP) specimens that showed only ISUP grade 1 disease, in fact, extracapsular
extension (0.3%) [4] and biochemical recurrence (3.5%) were rare, and seminal vesicle (SV)
invasion or lymph node (LN) metastasis did not occur at all [5,6], noting a very low-risk dis-
ease. Conversely, ISUP grade 2 and above, and even ISUP grade 3 and above, are differently
considered clinically relevant diseases by many authors, with substantial disagreement on
the definition [7–10]. Nowadays, despite the prostate-specific antigen (PSA) and digital
rectal examination remaining essential for the diagnosis of PCa, multiparametric magnetic
resonance imaging (mpMRI) and transrectal ultrasound (TRUS) fusion-targeted biopsy
significantly improve the detection and localization of ISUP ≥ 2 grade cancers, especially
when their diameter is larger than 10mm, with more precise preoperative assessment of
both grade and stage [7–10]. Interpretation and reporting of mpMRI is based on the more
recent version 2.1 of the Prostate Imaging Reporting and Data System (PI-RADS), revised
in 2019, indicating the probability of csPCa on a five-point scale [11]. In a meta-analysis
of 17 studies involving men with suspected or biopsy-proven PCa, the average positive
predictive values (PPVs) for ISUP grade > 2 cancers of lesions with a PI-RADSv2.1 score
of 3, 4, and 5 were 16% (7–27%), 59% (39–78%), and 85% (73–94%), respectively [12]. Nev-
ertheless, the assessment of PI-RADS scores is still limited by large heterogeneity due to
many factors, the most important of which is observer’s experience [13]. This heterogeneity
mainly affects the PI-RADS 3 category assessment, which represents an “equivocal” result
and can hide a non-negligible probability of csPCa [14]. Proper clinical management of
patients with a PI-RADS 3 lesion at the mpMRI represents an intriguing and sometimes
distressing challenge for urologists, although it is significantly improved by the use of clini-
cal parameters such as age, familiarity, digital rectal examination (DRE), PSA, PSA density,
and recently introduced new tools such as transverse prostate maximum sectional area [15],
which can be combined in predictive nomograms. In fact, European Urology Association
(EAU) guidelines suggest a risk-adapted matrix table for biopsy management based on
the utilization of PSA density (PSAD), which is considered a best predictor of csPCa. For
the PI-RADS 3 category, the biopsy can be considered for PSAD 0.10–0.15 ng/mL2, and
is strongly suggested for PSAD > 0.15 ng/mL2 [16]. Recent improvements to identify
csPCa besides mpMRI results include the adoption of PSMA-PET to identify suspicious in-
traprostatic uptake according to PRIMARY score [17], which may be used to target prostate
biopsy in equivocal findings at mpMRI. Nevertheless, it would be desirable to improve
the categorization of benign vs. malignant lesions in PI-RADS 3 ones in order to reduce
the proportion of indeterminate findings. From a radiological point of view, despite the
improvements introduced by subsequent versions of PI-RADS, it is now clear that it is not
possible to overcome intrinsic limitations of the visual analysis of the images. Radiomics
have become popular, as the employment of well-established machine learning and arti-
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ficial intelligence strategies for analysing radiological images can enrich the information
retrieved by visual analysis, even, in fact, beyond that perceivable by the human eye, by
means of the generation of quantitative measurements, called radiomic features (RFs),
and the employment of the most relevant ones to build a predictive model supporting
clinicians’ decisions [18–20]. Potentially, using radiomics in PI-RADS 3 lesions evaluation
could allow for the diagnosis of benign and malignant lesions by analysing image features
only, definitely improving the PCa predictive capability of the PI-RADS 3 score. As a matter
of fact, some previous studies have investigated this field [21–25], obtaining promising
results. The aim of this study is to develop a machine learning model predictive of PCa
in a selected cohort of equivocal PI-RADS score 3 lesions, improving the state of the art
through a dedicated automated pipeline of image processing and automatic explainable
feature generation.

2. Materials and Methods
2.1. Study Population

Our local Institutional Review Board approved this observational, retrospective, single-
centre study (approval code: 784/2021/Oss/AOUBo) and waived the requirement for
informed consent. This study was carried out in accordance with institutional guidelines,
including the Declaration of Helsinki. We screened our database of mpMRI exams, con-
ducted according to the PI-RADSv2.1 guidelines at our Radiology Unit from September
2020 to December 2021, in order to collect only PI-RADS 3 lesions. The inclusion criteria
were the following: (1) MRI-TRUS fusion targeted biopsy (fusion-TB) only performed at
our Radiology Unit; (2) histopathological report from a dedicated genitourinary pathol-
ogist of the Pathology Unit of our institution. The exclusion criteria were the following:
(1) simultaneous PI-RADS 4 or 5 lesions; (2) mpMRI protocol not strictly adhering to the
guidelines’ recommendations; (3) prior surgery for benign prostatic hyperplasia; (4) severe
motion or magnetic artifacts altering one or more mpMRI sequences. After the application
of inclusion and exclusion criteria, 133 patients with 155 PI-RADS 3 lesions were finally
selected and included in our study population.

2.2. Image Acquisition

Prostate mpMRI examinations were performed on a 1.5T scanner (Signa HDxt; GE
Healthcare, Chicago, IL, USA), using a pelvic phased-array surface coil combined with a dis-
posable endorectal coil. The mpMRI acquisition protocol of the prostate gland and seminal
vesicles included fast relaxation fast spin echo (FR-FSE) T2-weighted (T2w), diffusion-
weighted imaging (DWI), and dynamic contrast-enhanced (DCE) sequences (scan param-
eters were reported in our previous study [15]. Apparent diffusion coefficient (ADC)
parametric maps were obtained from DWI acquisitions at b = [50, 1000] s

mm2 .

2.3. Biopsy Procedure and Pathological Examination

After receiving antibiotic prophylaxis and a cleansing rectal enema, two highly qual-
ified and expert radiologists (each of them reads ≥250 mpMRI per year and carries out
≥50 mpMRI-TRUS fusion biopsy per year) performed the transrectal biopsies for all PI-
RADS 3 lesions by using the mpMRI-TRUS Fusion image guide, a nondisposable biopsy
gun (Medgun, Medax, Modena, Italy) with a disposable 18-gauge needle, and a US plat-
form (Canon-Toshiba Aplio 500TM, Ōtawara, Kanto, Japan) with an end-fire TRUS probe,
as previously described [26–29]. Two expert genitourinary pathologists examined the
tissue specimens, mainly determining whether or not they contained a malignant disease.
The ISUP Grade Group System (GGS) was used to assign a score from 1 to 5 to each
malignant lesion.

2.4. Region of Interest (ROI) Segmentation

The mpMRI studies of included patients were retrieved from our local Picture Archiv-
ing and Communication System (PACS). In particular, T2w and ADC series were jointly
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used for manual segmentation of PI-RADS 3 lesions, whilst ADC only was admitted to
quantitative image analysis (i) because of its suitability in evaluating both peripheral and
transition zones and (ii) to make the predictive model for PCa diagnosis (hereinafter, PCa
diagnostic model) exploitable by biparametric MRI protocols too. Two radiologists with
more than ten years of experiences in prostate imaging (C.G. and B.C.) contoured the
whole prostate gland and each PI-RADS 3 lesion on ADC maps, checking corresponding
findings on T2w. After proper windowing, each radiologist, blinded to biopsy outcome,
segmented the regions of interest (ROIs) of patients on which he had previously per-
formed prostate biopsy, on all slices where either prostate or lesions were visible, using
ImageJ v1.53 (https://imagej.nih.gov/ij, accessed on 28 September 2022), a Java-based
public-domain software.

2.5. Machine Learning Pipeline

The PCa diagnostic model was developed by a bioengineer (M.M.) with 6 years
of experience in image processing and data analysis using machine learning methods,
implementing a pipeline in MatLab® (R2021b v.9.11, The MathWorks, Natick, MA, USA).
Figure 1 illustrates the machine learning pipeline, which takes the segmented images as
the input and provides the PCa diagnostic model as the output, throughout the stages
described in the following subsections.

Figure 1. Machine learning pipeline.

2.6. Radiomic Feature Generation

Quantitative imaging features, so-called radiomic features (RFs), were generated ac-
cording to our method proposed in [30], already applied in [31–33]. The method is based on
a two-stage procedure. First, 12 first-order features (i.e., mean, median, entropy, uniformity,
standard deviation, median absolute deviation, interquartile range, coefficient of variation,
skewness, kurtosis, mean and median of the last decile of image pixel distribution) were
computed locally within each prostate ROI, that is, by assigning each ROI pixel the value of
a first-order metric computed in a rectangular window (centred on the pixel itself). In par-
ticular, a window of 9 × 9 pixel size was adopted, based on a previous report [33]. This
stage provided us with 12 stacks of parametric maps for each patient, displayed as hot–cold
colorimetric maps, and as many local first-order features, for all prostate and lesion slices.
Then, the feature values of the PI-RADS 3 lesion ROIs in all slices were extracted from
first-order parametric maps and their global distributions (i.e., of all slices) were described
through the same 12 first-order features as above. After that, the second stage provided
us with 144 RFs. At the end, the 12 first-order features were also derived from ADC maps
within lesion ROIs; altogether, this yielded 156 RFs for each PI-RADS 3 lesion.

https://imagej.nih.gov/ij
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2.7. Radiomic Feature Selection

On the basis of the sample size of the smallest class of the dataset (i.e., 71 PI-RADS
3 benign lesions), a selection procedure was performed to derive the most informative
combination (i.e., a radiomic signature) from the entire set of 156 generated RFs. After
preliminary tests, a combination was chosen of four RFs at most, thus minimizing the
risk of overfitting. The procedure for feature selection consisted of two main stages. First,
after RF standardization, a preliminary subset of the most informative RFs arose from the
least absolute shrinkage and selection operator (LASSO) regression, employing 10-fold
cross-validation (CV) at the minimum CV error rule, and weighing each sample by its
prior probability. Second, the most informative combination of four RFs was derived
from the LASSO subset, by performing a preliminary discriminatory study. In particular,
the discriminatory capability of all possible combinations of 4 different RFs was assessed
through as many support vector machines (SVMs). Hence, their discriminatory perfor-
mance was ranked by the p-value of the Wilcoxon rank-sum test (p < 10−3), corrected by
Holm–Bonferroni, and in case of equivalent p-values, by the maximum Youden index (Y.I.)
of the corresponding receiver operating characteristic (ROC) curve of each SVM-based di-
agnostic test, which is equal to specificity(SP)+sensitivity(SN)-1. In view of the subsequent
training phase of the PCa diagnostic model, this procedure was repeated twice, by using
1st- and 2nd-order polynomial SVM kernels, respectively, yielding two radiomic signatures
employed for developing as many PCa diagnostic models.

2.8. Training of the Prostate Cancer (PCa) Diagnostic Model

Once selected, the RFs were admitted to data augmentation, exploiting the procedure
described in [32], in order to strengthen the statistical significance of the data subsets
used for training, validation, and test phases. By augmenting the initial dataset by 60%,
the resulting oversampled dataset (OD) was constituted by 248 samples, split between
114 PIRADS 3 benign lesions and 134 PIRADS 3 PCa. To build the PCa diagnostic model, we
exploited an SVM classifier with both linear and 2nd-order polynomial kernels, to compare
their predictive performance. In particular, the SVM was chosen for its suitability for
working at best even on small datasets. In fact, the placement of the SVM hyperplane in the
feature space is given by just the coordinates of the support vectors (SVs), thus contributing
to minimize the risk of overfitting. The entire OD was split between training (70%) and
holdout test (30%) subsets according to the method used in [27,30,32], exploiting the SVM
margin rule to ensure the statistical representativeness of subsets. For model training, the
PIRADS 3 lesions being diagnosed as PCa were the positive class, whilst the benign lesions
were the negative one. On the training set, 100 runs of 3-fold CV were performed, with
each CV fold having 31 positive samples and 27 negative ones. For each SVM run, the
hyperparameter tuning was performed using the MatLab Bayesian optimization algorithm.
Finally, the training phase yielded 300 competing models.

2.9. Final Model Selection and Holdout Test Phase

The last model selection phase has to detect and tune the ultimate PCa diagnostic
model, to be tested on the holdout subset. The procedure consisted of two main stages.
First, among each run, which yielded three SVM classifier models (stemming from 3-fold
CV), one only was kept, that is, that leading to the highest Area Under the ROC (AUC)
on the test fold, after discarding models prone to overfitting, where AUC on the training
folds was lower than on the test fold. This stage reduced the number of competing models
to 100. Then, to increase the robustness of the final PCa diagnostic model, all 100-sample
distributions of the SVM kernel parameters were considered. Hence, the median value of
each distribution was calculated and used to train the final optimized model. Accordingly,
a separating hyperplane was defined for each SVM kernel, and its corresponding ROC
curve referred to the entire training subset was assessed. As regards the SVM bias term, it
was adjusted to meet the radiomic score at the Y.I. of the ROC. The PCa diagnostic models
(arising from the linear and the 2nd-order polynomial kernels) were tested on the holdout
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subset, and model performance was measured through SN, SP, I, positive predictive value
(PPV), and negative predictive value (NPV). In addition, the performance was visually
assessed through boxplots and waterfall plots. Finally, the radiomic score on the holdout
test subset was converted into posterior probability using a binomial logit function.

2.10. Literature Search

Our diagnostic performance was compared with peer-reviewed articles published on
international journals, identified by querying PubMed and Google Scholar database with
((radiomic AND “PI-RADS 3”) AND (radiomic AND “PIRADS 3”)) regular expressions,
and filtering results since 2019, to select studies compliant with PI-RADS v2.1 definition.

3. Results
3.1. Patient Characteristics

Patient and lesion characteristics are summarized in Table 1.

Table 1. Characteristics of study population.

Parameter Value

Patients (n°) 133

Age
µ ± σ, years 69 ± 6
range, years 51–88

PSA
µ, ng/mL2 8

range, ng/mL2 1.59–46

PSAD
<0.15, ng/mL2 81
≥0.15, ng/mL2 52

PI-RADS 3 lesions (n°) 155

Size
median, mm2 119

IQR, mm2 177

PZ 115
TZ 40
Negative biopsy (n°) 71/155 (46%)

ISUP 1 (n°) 28/84 (33%)
PSAD < 0.15, ng/mL2 14
PSAD ≥ 0.15, ng/mL2 14

ISUP 2 (n°) 34/84 (40%)
PSAD < 0.15, ng/mL2 16
PSAD ≥ 0.15, ng/mL2 18

ISUP 3 (n°) 10/84 (12%)
PSAD < 0.15, ng/mL2 8
PSAD ≥ 0.15, ng/mL2 2

ISUP 4 (n°) 8/84 (10%)
PSAD < 0.15, ng/mL2 2
PSAD ≥ 0.15, ng/mL2 6

ISUP 5 (n°) 4/84 (5%)
PSAD < 0.15, ng/mL2 1
PSAD ≥ 0.15, ng/mL2 3
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3.2. Radiomic Signature

Of the entire set of generated RFs (i.e., 155), the 13 most relevant RFs were selected
by LASSO, this yielding 715 possible combinations of four different RFs, fed to the second
stage of feature selection. The most discriminant combination (with p ∼ 10−10), arising from
the discriminatory study performed by linear SVM, consisted of the standard deviation
computed on the parametric map of the local median (M–σ, RF55), the mean computed on
the map of the mean value of the last decile (µ90th–µ, RF61), the entropy of the map of the
median value of the last decile (M90th–e, RF83), and the σ of the skewness map (S–σ, RF91).
Instead, the discriminatory study performed by polynomial SVM yielded 13 combinations,
having p ∼ 10−11, where the best one, with the highest I value (I = 0.57), was constituted
by M–σ, µ90th–µ, S–σ (as for the linear SVM study), and the skewness was computed on
the parametric map of the local mean (µ–S, F39). Table 2 resumes the meaning of the five
different selected RFs, by indicating, separately, the local parametric map they refer to and
the global descriptor computed upon.

Table 2. Selected radiomic features.

Radiomic Feature (RF) Local Parametric Map Global DescriptorsNumber Identifier

RF39 µ–S mean (µ) skewness (S)
RF55 M–σ median (M) standard deviation (σ)
RF61 µ90th–µ µ of the last decile (µ90th) µ
RF83 M90th–e M of the last decile (M90th) entropy (e)
RF91 S–σ mean (µ) S

3.3. PCa Diagnosis among PI-RADS 3 Lesions

Figure 2 reports the ROC curves of the PCa diagnostic models referred to training (a)
and holdout test (b) subsets, using both linear (red line) and second-order polynomial (pur-
ple line) SVM kernels, whose AUC values, in training, are equal to 0.82 (95% C.I. 0.74, 0.87)
for linear and 0.84 (95% C.I. 0.80, 0.90) for polynomial kernels, whilst in test, AUC values
are 0.81 (95% C.I. 0.70–0.90) for linear and 0.81 (95% C.I. 0.65, 0.88) for polynomial kernels.

Figure 2. ROC curves of the PCa diagnostic models of training (a) and test (b) subsets, using both
linear (red line) and 2nd-order polynomial (purple line) SVM kernels.

By referring to the Y.I. of the ROC curves, the diagnostic model developed by the linear
SVM predicted PCa, in training, with 18 FP and 20 FN, this corresponding to SP = 78% and
SN = 78% (Y.I. = 0.56). Instead, in test, PCa diagnosis was achieved with 7 FP and 10 FN,
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which yielded SP = 79% and SN = 76% (Y.I. = 0.54). Then, Figure 3 also reports the boxplot
(a) and the waterfall plot (b) of the linear SVM radiomic score referred to the test set.

As regards the polynomial SVM model, the prediction of PCa lesions was achieved,
in training, with 19 FP and 15 FN, SP = 77% and SN = 84% (Y.I. = 0.60), whilst in test with
8 FP and 9 FN, SP = 76% and SN = 78% (Y.I. = 0.54). Figure 4 reports the boxplot (a) and the
waterfall plot (b) of the second-order polynomial SVM radiomic score referred to the test
set. As regards the clinical performance of the diagnostic model in the test subset, PPV and
NPV values are 82% and 72%, respectively, by linear SVM, and 80% and 74%, respectively,
by polynomial SVM.

Figure 3. Boxplot (a) and the waterfall plot (b) of the linear SVM radiomic score referred to the test set.

(a) (b)

Figure 4. Boxplot (a) and the waterfall plot (b) of the 2nd-order polynomial SVM radiomic score
referred to the test set.

Finally, Table 3 reports the performance of both diagnostic models referred to the
training and test subsets.

Table 3. Performance of diagnostic models.

RFs SVM Kernel Subset AUC FP/P FN/N SP SN Y.I. PPV NPV

RF[55-61-83-91] Linear Training 0.82 18/93 20/81 78% 78% 0.56 80% 76%
Test 0.81 7/41 10/33 79% 76% 0.54 82% 72%

RF[39-55-61-91] 2nd-order Training 0.84 19/93 15/81 77% 84% 0.60 80% 81%
polynomial Test 0.81 8/41 9/33 76% 78% 0.54 80% 74%

3.4. Literature Analysis

A total of 81 scientific articles resulted from the Google Scholar query and 29 from the
PubMed, one, all included in Google Scholar results. Of these, 4 studies focussed on PCa
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diagnosis among selected cohorts of equivocal PI-RADS 3 lesions [21–25]. Table 4 reports
the performance of these previous studies in terms of enrolled patients and the number of
PI-RADS 3 lesions, the number of RFs included in the final model, AUC, SP, SN, and Y.I.
The table also reports if the model was tested on a holdout or external subset.

Table 4. Literature analysis.

Study Series Pz PI-RADS 3 PCa * RFs Test AUC SP (%) SN (%) Y.I.

2020, Li et al. 2 [22] mpMRI 36 36 6 45 yes 0.94 100 80 0.80
2021, Giambelluca et al. 1 [21] ADC 43 46 19 6 no 0.82 – – –
2021, Lim et al. 2 [23] T2w, ADC 158 160 80 10 yes 0.68 – – –
2021, Brancato et al. 1,2 [24] T2w – 41 26 2 yes 0.76 51 80 0.31
2023, Jin et al. 1,2 [25] – 463 80 3 26 3 3 yes 0.75 72 85 0.57
our work 2 ADC 133 74 † 41 4 yes 0.81 76 78 0.54

1 Reported data refer to the predictive model having the highest performance among those presented by the
authors. 2 Reported results refer to the test subset. 3 Reported data refer to the external validation set. * Number of
non-PCa lesions can be derived by subtracting data in “PCa” from data in “PI-RADS 3” columns. † This number
refers to augmented lesions within the test subset.

4. Discussion

Category 3 of the PI-RADS score, indicating an equivocal likelihood of csPCa, repre-
sents an intriguing clinical challenge between avoiding unnecessary biopsies and improving
PCa detection. In our study population, 61% of patients with at least one PI-RADS 3 lesion
at mpMRI underwent fusion targeted biopsy despite the PSA density being ≤ 0.15 ng/mL2

due to several reasons, such as other suspicious clinical data (including DRE and familiar-
ity) or an evaluation before the last change of EAU guidelines. This trend still manifests
a difficulty in the management of PI-RADS 3 lesions in daily clinical practice, which can
affect the complete adherence to the guidelines. Moreover, 36% of PI-RADS 3 lesions in our
study population resulted in PCas with GGS ≥ 2, of which 14% of GGS ≥ 3, suggesting
that some important limitations still remain in the adequate radiological assessment, and
that some efforts can be made to improve the correct categorization of benign vs. malignant
lesions visible on mpMRI. Starting from the optimistic results offered by radiomic analysis
in the PCa detection and evaluation compared to the PI-RADS assignment, we investigated
the capability of the radiomic approach of improving the stratification of lesions in the
PI-RADS 3 category, which is potentially useful in the future to determine a downgrade to
PI-RADS 2 or an upgrade to PI-RADS 4 for some lesions and to reduce the proportion of
indeterminate lesions.

Therefore, using biopsy as the reference standard, we developed two diagnostic
models for PCa, based on ADC radiomics, adopting SVM classifiers with two kernel
types, linear and second-order polynomial, each based on a combination of four RFs only.
In particular, three out of four RFs were shared between the two models (i.e., M–σ, µ90th–µ,
and S–σ), this strengthening the informative role held by the selected RF vectors. Both
models could achieve high performance in diagnosing PCa among PI-RADS 3 score lesions,
with PPV values always higher than 80% while NPV was kept not lower than 72%, this
enforcing the stand-alone role of mpMRI imaging (and ADC series) endowed with machine
learning tools, as a noninvasive alternative to better select patients with PI-RADS 3 who
really need prostate biopsy. The potential value of our findings is even higher if we consider
the limited number of exploited RFs with respect to the sample population, which increases
the generalizability of the diagnostic model on wider populations. In particular, as regards
diagnostic performance, the polynomial model shows similar training performance to the
linear one, and equivalent performance in the holdout test subsets, with the same AUC and
number of total errors (i.e., 17) that yield the same Y.I. values (i.e., Y.I. = 0.54). Nevertheless,
the polynomial model should be preferred in order to have a balanced distribution of
FP and FN errors, which yields more similar values of SP and SN, and of PPV and NPV
values, accordingly. Our findings also confirm the well-established role of ADC radiomics,
already exploited in a previous study [33], and highlight the feasibility of single-sequence
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radiomics, thus also minimizing, in the view of a prospective implementation of radiomic
tools in the clinical practice, the computing time, favouring a reduction in patient motion,
and the time required to clinicians for image series segmentation, after acquisition.

Even considering studies from the literature, ADC radiomics is always explored [21–25],
and most of the time, it is included in the predictive model showing the highest perfor-
mance [21,23]. Actually, not all studies from the literature comparison (Table 3) report
sufficient metrics to allow for an exhaustive comparison to our performance. For instance,
two studies [21–25] report exclusively AUC values. As regards the study in [20], not any
validation, either internal or external, is reported, so the AUC value should be compared to
that achieved in the training subset, which is somewhat higher. Moreover, results in [21] are
achieved with a notably high number of RFs with respect to their sample size. Instead, the
study in [23] reports substantially a lower value of AUC. Similarly, the study in [24] shows
worse performance than ours when considering, besides AUC, the Y.I., a summarizing
index of SP and SN metrics, which is much lower. The study in [22] is the only one showing
higher performance than ours, being driven by an incredibly high number of RFs, even
greater than the total sample size, thus substantially depicting an overfitted model.

Moreover, the achieved results represent a marked step forward in confirming the ca-
pability of radiomics to improve the discrimination between benign and malignant lesions,
by integrating the evaluation through the PI-RADS score and mainly using the diffusion
sequence. This could confirm the efficacy of the biparametric versus multiparametric MRI
approach, with a consequent reduction in costs and execution times.

In conclusion, our study represents a proof-of-concept of the determinant contributions
stemming from the ML analysis of mpMRI images for improving the diagnostic capability of
radiological images, with early and noninvasive tools. Notably, the benefits of ML analysis
have been proved even on the diagnosis of PCa in a selected cohort of PI-RADS 3 lesions,
whose clinical management is still uncertain. Differently from what was reported in the
reviewed literature, the methodology adopted bounded the possibility of overoptimistic
predictive performance, thus allowing us to be confident on the robustness of results,
although this needs to be confirmed on a wider population.

Actually, the present study also has some limitations. First of all, this study was a
retrospective analysis of a relatively small group of patients from a single institution, with
a single scanner, and before its wider clinical application, our predictive model needs to
be prospectively validated on a larger scale, with patients from other medical units using
different MRI scanners. Second, a separate analysis of PZ and TZ lesions was not performed
due to too insufficient a sample size, and this will be pursued on a wider population. Finally,
we used biopsy as the reference standard, which can be affected by undersampling errors;
thus, a correlation with surgical specimens can be more appropriate, although from a
methodological point of view, this implies, at most, a negative bias on the performance
of the model. A future development, requiring a larger cohort, could be represented by
the integration of radiomic analysis and clinical data, such as PSAD, in order to improve
the accuracy of the model predictive of PCa and enforce a tailored approach in selecting
patients with PI-RADS 3 lesions who need a biopsy.
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