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A B S T R A C T   

A material based on cellulose coated with polyaniline/poly (2-acrylamido-2-methyl-1-propanesulfonic acid) 
(Cell/PANI-PAMPSA) was synthesized in a simple way starting from cellulose fibres, aniline and using PAMPSA 
as dopant. The morphology, mechanical properties, thermal stability, and electrical conductivity were investi-
gated by means of several complementary techniques. The obtained results highlight the excellent features of the 
Cell/PANI-PAMPSA composite with respect to the Cell/PANI one. Based on the promising performance of this 
material, novel device functions and wearable applications have been tested. We focused on its possible single 
use as: i) humidity sensors and ii) disposable biomedical sensors to provide immediate diagnostic services as 
close to the patient as possible for heart rate or respiration activity monitoring. To our knowledge, this is the first 
time that Cell/PANI-PAMPSA system has been used for such applications.   

1. Introduction 

The growing social economic awareness on issues related to the 
environmental impact and sustainability in the production, use and 
disposal of goods, strongly encourages the utilization of natural fibre 
composites for the development of smart materials for various industrial 
applications (Al-Oqla, Sapuan, Anwer, Jawaid, & Hoque, 2015). In 
recent decades, cellulose has been used for various highly value-added 
purposes, such as in the food packaging industry, in the development 
of innovative batteries, supercapacitors, electrochromic materials and 
biosensors (Barandun et al., 2019; Fan, Zhang, Li, Yang, & Du, 2020;, 

Seddiqi et al., 2021). Indeed, cellulose has greatly captured the interest 
of scientists because of its large availability, low density, insolubility in 
water and in most organic solvents, flexibility and good mechanical 
properties, non-toxicity, renewability, biodegradability and low-cost 
(Devabaktuni, Kulkarni, Dixit, Raavi, & Krishna, 2015; Ling et al., 
2020;, Jung et al., 2015). For several applications cellulose fibres can 
also derive from recycled cellulose (e.g. from paper or agricultural 
wastes) (De Haro-Niza, Rincón, Gonzalez, Espinosa, & Rodríguez, 2022; 

Zhen et al., 2019), furthermore, cellulose-based electronic devices could 
facilitate the management of their waste streams, as the cellulose part 
could be recycled or biodegraded to leave recoverable metal constitu-
ents (Jung et al., 2015; Sabo, Yermakov, Law, & Elhajjar, 2016). 

The production of conductive paper has paved the way for paper 
electronics (Tobjörk & Österbacka, 2011; Zhang et al., 2018), which on 
one hand could ease the management of electronic waste by reducing 
their complexity (i.e. coupling of different materials, including metals) 
and increasing their recyclability and biodegradability, on the other 
aspect this would provide innovative solutions in the design of devices 
not yet commercially feasible, in the field of smart packaging (Grau, 
Kitsomboonloha, Swisher, Kang, & Subramanian, 2014; Jung et al., 
2022), identification tags (Mo et al., 2019; Wang et al., 2019) and 
wearable devices (Han et al., 2019; Yang et al., 2021). The main stra-
tegies are based on the deposition of a thin conductive layer on the paper 
sheets through screen printing (He et al., 2019), pen-writing (Li et al., 
2016), inkjet printing (Raut & Al-Shamery, 2018), spray coating (Say 
et al., 2020) spin coating (Kim, Moon, & Han, 2004) and vacuum 
filtration (Hyun, Park, & Chin, 2013) or by combining paper fibres with 
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conductive materials (Hyun et al., 2013). Carbonaceous nanomaterials 
(graphene, carbon nanotubes, etc.) play a leading role in the develop-
ment of these materials (Miyashiro, Hamano, & Umemura, 2020;,Para-
ndeh, Kharaziha, & Karimzadeh, 2019; Liu et al., 2019), but at the same 
time metallic nanomaterials (Nayak, Mohanty, Nayak, & Ramadoss, 
2019; Yang, Huang, Payne, Sun, & Wang, 2019) and, especially, con-
ducting polymers have fascinating characteristics (Fei et al., 2019; Fujita 
et al., 2022; Zhao et al., 2020). Cellulose-based materials show great 
potential in applications involving conductive polymer composites (Al- 
Oqla et al., 2015;, He, Tian, Li, Jin, & Li, 2016): PEDOT:PSS [poly(3,4- 
ethylene-dioxythiophene-poly(styrenesulfonate)] (Fujita et al., 2022), 
polyaniline (PANI) (Fei et al., 2019) and polypyrrole (PPy) (Zhao et al., 
2020) are widely employed in this field. These conjugated polymers 
exhibit good biocompatibility, but their biodegradability was relatively 
poor (Liu et al., 2019); a strategy to improve their biodegradability has 
been to blend them with biodegradable polymers such as cellulose (Liu, 
Xiang, et al., 2019; Shahadat et al., 2017). For instance, a touch sensor 
made with PEDOT:PSS inkjet printed on cellulose nanofibril paper 
resulted to require only 3–4 weeks for a complete degradation in natural 
soil. It was also possible to recycle it, as the presence of the small amount 
of PEDOT:PSS ink did not negatively affect the properties of the recycled 
nano paper (Ling et al., 2020). 

Compared to other conducting polymers, polyaniline (PANI) has a 
unique doping-dedoping mechanism and redox chemical structure. 
PANI remains one of the most investigated conjugated polymers because 
of its high electrical conductivity, its multiple electronic states, electrical 
tuneability, nontoxicity, low manufacturing costs and relative environ-
mental stability (Avelar Dutra, Pires, Nascimento, Mano, & Borges, 
2017;, Ke et al., 2019;, Hajlaoui, Khiari, Ajili, Batis, & Bergaoui, 2020). 
The dopants normally used for doping PANI are small organic or inor-
ganic acids that evaporate at room or higher temperatures, causing a 
decrease in conductivity in the acid-doped polymers. This drawback can 
be overcome by using polymeric acid dopants (Yoo et al., 2007; Yoo & 
Bae, 2013). In addition, polymeric acids with a glass transition tem-
perature (Tg) lower than that of PANI can enhance the flexibility of the 
polymeric film (Cardoso, Lima, & Lenz, 2007; Yoo et al., 2007; Jeon, 
O'Neal, Shao, & Lutkenhaus, 2013;, Yoo & Bae, 2013). Consequently, the 
microstructure of the polymeric acid doped PANI and therefore its 
properties are expected to be different from those of small size protonic 
acid-doped ones. Among the polymeric acids, the use of poly (2-acryl-
amido-2-methyl-1-propanesulfonic acid) (PAMPSA) as dopant allows to 
improve the properties of the conductive polymer in several ways. 
Firstly, as shown in Scheme 1, PAMPSA repeating units contain amide 
groups that can establish additional hydrogen bonding that enhance the 
water dispersibility of the material. Moreover, as both the monomer and 
the polymer are strong acids in aqueous solution, they provide the acid 
environment (pH = 2) that is crucial during aniline polymerization for 
the formation of the conductive form of PANI. Additionally, PAMPSA 
preserves the electrical conductivity and improve the flexibility of the 
final material (Yoo & Bae, 2013; Yoo et al., 2007; Kutorglo et al., 2018; 
Heller, Feldman, Mano Austin, & Yueh-Lin, 2016; Zhang et al., 2012;, 

Jeon et al., 2013). 
Finally, it is known that the conductivity of PANI-PAMPSA depends 

on the molecular weight of the PAMPSA template. More specifically, the 
conductivity increases monotonically with the decreasing of PAMPSA 
molecular weight, ranging from 0.4 to 1.1 S cm− 1 for a PAMPSA that is 
lower than 800 Kg mol− 1 (Heller et al., 2016; Zhang et al., 2012). 

Our group has recently investigated conductive polymer composites 
based on cellulose fibres coated with polyaniline (Cell/PANI) (Ragazzini 
et al., 2021; Ragazzini et al., 2022). This conductive paper was 
employed in the preparation of resistive and humidity touch sensors 
(Ragazzini et al., 2021; Ragazzini et al., 2022). Despite the good per-
formances obtained in both cases, critical issues were represented by the 
poor mechanical stability and flexibility of the final composite materials, 
characteristics that are crucial for real applications in the field of paper 
electronics (Chen et al., 2022;, Muralee Gopi, Vinodh, Sambasivam, 
Obaidat, & Kim, 2020). To improve these qualities and increase the 
biocompatibility of the conductive polymer composite for applications 
in close contact with the skin (Bayer, Trenchard, & Peppas, 2010), we 
have now prepared a Cell/PANI-PAMPSA composite. Moreover, 
PAMPSA seems to provide self-healing features to tactile sensors, an 
important ability to reduce electronic waste in long-term applications 
(Bubniene, Ratautaite, Ramanavicius, & Bucinskas, 2022). 

The Cell/PANI-PAMPSA composite has been synthesized in a simple 
way starting from cellulose fibres, PANI and using PAMPSA as dopant. 
The morphological features, mechanical properties, thermal stability 
and electrical conductivity highlight the excellent properties of the Cell/ 
PANI-PAMPSA composite. Based on the promising performance of the 
materials, novel applications have been tested. In particular, we focused 
on their possible single use as: i) humidity sensors and ii) biomedical 
sensor for heart rate or respiration activity to provide rapid diagnostic 
tools that operate as close to the patient as possible. To our knowledge, 
this is the first time that Cell/PANI-PAMPSA has been used for such 
applications. 

2. Materials and methods 

2.1. Materials 

All chemicals and solvents are ACS reagent grade and were pur-
chased from commercial vendors and used directly unless otherwise 
stated. Sulfuric acid (H2SO4, 95.0–98.0 %), ammonium persulfate [APS, 
(NH4)2S2O8), ≥ 98 %] and aniline (≥ 99 %), were purchased from 
Sigma-Aldrich (now Merck KGaA, Darmstadt, Germany); aniline was 
distilled under nitrogen prior to use. Chloridric acid (≥ 37 %) was 
purchased from VWR Chemicals (Vienna, Austria); a solution of ca. 25 
wt% of Al2(SO4)3 in water (commercial name FLOCLINE S8C) was 
purchased from Bio-Line s.r.l. (Milano, Italy). Poly (2-acrylamido-2- 
methyl-1-propanesulphonic acid) (PAMPSA), MW ~ 800,000, 10 wt% 
aq. sol. Was purchased from Acros Organics. Universal pH paper test was 
purchased by Jovitec. Bare cellulose fibres (pine tree long fibre with 
sulfate treatment) and recycled cellulose fibre (Cellrec) were kindly 
provided by Cromatos s.r.l. (https://www.cromatos.com/, Forlì, Italy). 

2.2. Cell/PANI-PAMPSA synthesis 

In a 1.0 L round bottom flask, 2.5 g of bare cellulose fibres were 
dispersed in demineralized water (300 mL) for 30 min, then 2.54 mL of 
aniline and 58.0 g of PAMPSA were added to the fibre suspension and 
stirred for 1 h at room temperature (Yoo et al., 2007). Successively, 5.8 g 
of APS was dissolved in 25 mL of distilled water, with a fixed aniline to 
APS molar ratios of 1 (Yoo & Bae, 2013). The APS solution was slowly 
added dropwise to the stirred suspension containing aniline, PAMSA and 
cellulose, the flask was kept at 0 ◦C in an ice bath for 6 h. After 24 h the 
coated fibres were filtered in a Buchner funnel and washed several times 
with 1.0 M citric acid solution. The conductive fibres (Cell/PANI- 
PAMPSA or Cellrec/PANI-PAMPSA) were dried in air atmosphere for 24 Scheme 1. Chemical structure of PAMPSA.  
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h. To obtain a 0.20 mm thickness sheet, 5.0 g of conductive fibres were 
added to 1.0 L of demineralized water and stirred for 5 min and then the 
fibres were partially dried in a square sieve (21.0 cm × 14.8 cm size, 
typical A5 paper format). Finally, the sheet was pressed at 50 bar 
pressures (P50 AXA manual hydraulic press) for 10 s. The thickness of 
the sheet is different and can be varied by changing the amount of 
modified cellulose that is used (i.e., 10 g for 0.40 mm, etc.). For com-
parison, Cell/PANI sheets were prepared as previously reported 
(Ragazzini et al., 2021). 

2.3. Fabrication of the sensors 

2.3.1. Humidity sensors 
To increase the mechanical resistance of the conductive sheets, we 

employed the industrially wet coupling method already used for Cell/ 
PANI (Ragazzini et al., 2021). Briefly, a Cell/PANI-PAMPSA sheet of 
0.20 mm thickness was coupled with a bare cellulose sheet (thickness 
0.20 mm), previously moistened with water. The two sheets were then 
pressed (50 bar, 10 s) and dried at 80 ◦C for 10 min. Finally, the sensors 
were prepared by cutting from the sheets a rectangle of 2.2 × 0.9 cm in 
size. The active material is connected to the instrument with two copper 
wires endowed with two alligators placed on the two extremities of the 
rectangle. 

A cooling incubator with controlled humidity (climatic chamber, 
ClimaCell 111 comfort, MMM Group), equipped with humidity and 
temperature sensors for controlling the climatic chamber operating 
conditions, has been used to obtain an exact and reproducible simula-
tion of variable climatic conditions (i.e., %RH). The tests have been 
carried out at a fixed temperature of 21 ± 1 ◦C. The responses of Cell/ 
PANI humidity sensor were acquired with a potentiostat/galvanostat by 
applying a potential of 0.100 V and recording the current that flows in 
the material. During the tests, the humidity was changed with a set step 
uphill (5 %) from 30 % up to 50 %RH, and each step was maintained for 
1 h and 15 min (total time for each measure: 7.5 h) (Fig. S1, SI). 

Finally, a further commercial digital-output relative humidity & 
temperature sensor was used to monitor and record the %RH and tem-
perature inside the climatic chamber during each test. Among the low- 
cost sensors available on the market the DHT22 (also named AM2302, 
Guangzhou Aosong Electronics Co., Ltd., China, temperature from − 40 
to +80 ◦C +/− 0.5 ◦C and relative humidity from 0 to 100 % +/− 2.0 %, 
prize 9.9 USD) was chosen because can be calibrated in an extremely 
precise manner, and it is compatible with Arduino data collection 
system. 

Using Eq. (1) and the parameters of the linear curves obtained with 
Cell/PANI-PAMPSA sensors, it is possible to transform the current signal 
into a %RH signal, for directly comparing the response with those of 
DHT22. 

RH%signal =
i(μA) − intercept(μA)

slope
( μA

RH%

) (1) 

In order to compare the humidity sensitivity between different sen-
sors, the current signal was expressed as the normalized response, which 
is defined as Eq. (2) (Jain, Chakane, Samui, Krishnamurthy, & Bhor-
askar, 2003; Zhao et al., 2017): 

ΔS
S0

% =
S − S0

S0
100 (2)  

where S0 is the signal of the sensor at the start %RH and S stands for the 
signal at targeted %RH environment. All the measurements were per-
formed in triplicate with three different sensors. 

2.3.2. Biomedical sensors 
Cell/PANI-PAMPSA was applied for monitoring various physiolog-

ical signals such as heart rate and respiratory activity. For heart rate 
(EGC measurements) two square Cell/PANI-PAMPSA electrodes with 

dimensions of 2.0 cm2 were cut from the original A5 sheet and con-
nected to the potentiostat with two copper wires endowed with two 
alligators (Scheme 2B). The electrodes were moistened before applica-
tions and were positioned as shown in Scheme 2A. To acquire the ECG 
graph, the instrument monitored the difference of potentials between 
the electrodes in the time. The experiments were carried out being 
careful on avoiding the electrical contact between the metal elements 
and the skin. All the measurements were repeated three times using 
three different couples of electrodes. An ECG graph that represents the 
usual output is reported in the Result and discussion section. 

As regards the respiratory behaviour monitoring, a Cell/PANI- 
PAMPSA rectangular sensor with dimensions of 5 cm2 (1 × 5 cm) was 
proceeded from the original A5 sheet and inserted between a FFP2 and 
FFP1 face mask, as shown in Scheme 3 and Fig. S2, and then connected 
with the potentiostat with two copper wires endowed with two alliga-
tors. The current vs time curves were registered during a normal respi-
ratory activity while a fixed potential was applied between the two 
extremities of rectangular active material (0.1 V, interval time 0.1 s). All 
the measurements were performed in triplicate using different sensors 
for each measure. 

2.3.2.1. Instruments. SEM images were recorded at 25 kV with a SEM 
Zeiss EVO 50 EP equipped with Oxford INCA 350; EDS Spectrometer 
equipped with a Bruker Z200 energy dispersive microanalysis (EDX) 
system was used for semi-quantitative chemical analysis and mapping. 
TGA characterization was carried out using a Perkin Elmer TGA-7 in-
strument. In each analysis, a piece of weight ca. 4.0 mg of the target 
sample was heated in a platinum crucible from 38 ◦C to 950 ◦C (or 
800 ◦C for cellulose), at a rate of 10 ◦C min− 1, under N2 atmosphere. 
ATR-FTIR analyses were performed using a Perkin Elmer Spectrum Two 
spectrophotometer, equipped with a Universal ATR accessory, with a 
resolution of 0.5 cm− 1 in the range 4000–400 cm− 1. The samples were 
directly analyzed performing 40 scans for each analysis. The chro-
noamperometric measurements were performed using a potentiostat/ 
galvanostat Autolab PGSTAT128N (Metrohm-Autolab) controlled by 
NOVA 2.10 software. A cooling incubator with controlled humidity 
(climatic chamber, ClimaCell 111 comfort, MMM Group) was used for 
the humidity tests at a fixed temperature of 21 ± 1 ◦C following the 
chronoamperometric response of the humidity sensor at an applied 
potential of 0.100 V. For the tests with Cell/PANI-PAAMPSA sensors we 
set steps uphill (5 %) from 30 % up to 50 % RH, and each step was 
maintained for 1 h and 15 min (total time for each measure: 7.5 h). For 
comparison, a commercial digital-output relative humidity & tempera-
ture sensor/module DHT22 was used to monitor the % RH and tem-
perature inside the climatic chamber. Tensile strength measurements 
have been carried out on a LBG UDI24Pro Instrument with a traction 
speed of 1 mm min− 1. The samples have been prepared following the 
TAPPI method reported in the literature by cutting the different sheets 
(cellulose, recycled cellulose, Cell/PANI, Cell/PANI-PAMPSA, Cellric/ 
PANI and Cellrec/PANI-PAMPSA) into rectangles with a central size of 
2.0 × 10.0 cm, 0.4 mm of thickness and 1.5 cm for each side for the 
crimping points (Muchorski, 2006). 

3. Results and discussion 

3.1. Characterization 

The conductive paper was prepared using cellulose fibrils covered 
with a thin film of PANI/PAMPSA obtained through the in-situ poly-
merization of aniline. This procedure has been developed by our 
research group for the production of sheets of conductive paper based on 
Cell/PANI (Ragazzini et al., 2021; Ragazzini et al., 2022). The reaction is 
carried out under mild conditions at 0 ◦C and under atmospheric 
pressure. 

The SEM characterization (Fig. 1) shows that the synthesis leads to 

I. Ragazzini et al.                                                                                                                                                                                                                               



Carbohydrate Polymers 316 (2023) 121079

4

the formation of a uniform and continuous film of PANI/PAMPSA on the 
surface of the cellulose fibrils (Fig. 1B). The polymer consists of small 
particles, with dimensions close to the resolution of the instrument, 
which are not present in the image recorded for cellulose alone (Fig. 1A). 
At the same time the PANI/PAMPSA coated cellulose appears less 

fibrous than the cellulose in its original structure. Finally, the images 
recorded for Cell/PANI-PAMPSA are similar to those obtained for Cell/ 
PANI (Fig. 1C), showing that the presence of PAMPSA does not alter the 
morphology of the modified cellulose. The conductive sheets were made 
by exploiting a traditional method for paper production as described in §

Scheme 2. A) Cell/PANI-PAAMPSA sensors position for EGC measurements; B) Cell/PANI-PAMPSA sensors and potentiostat connection.  

Scheme 3. Respiratory behaviour measurements.  
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Fig. 1. SEM micrograph of: A) pristine cellulose; B) Cell/PANI-PAMPSA; C) Cell/PANI; D) image of the final paper sheets and cross-section of Cell/PANI-PAMPSA.  

Fig. 2. ATR-FTR spectra of Cell/PANI-PAMPSA (red line) and PAMPSA (blue line).  
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2.2, Cell/PANI-PAMPSA fibres were first dispersed in water, then 
partially dried in a square sieve and finally pressed. 

The paper sheets made of Cell/PANI-PAMPSA (Fig. 1D, and § 2.2), 
exhibit good flexibility and appear much more resistant than the sheets 
prepared with Cell/PANI (see §3.3). These excellent results suggest a 
possible rapid industrialization as the fibrils modified with PANI- 
PAMPSA behave as the bare cellulose fibrils. The success of the modi-
fication with PANI-PAMPSA has also been demonstrated by an investi-
gation with IR spectroscopy, which clearly shows the characteristic 
patterns of both components of the polymeric blend. 

Fig. 2 shows the ATR-FTIR spectra with the characteristic absorption 
peaks for PAMPSA and Cell/PANI-PAMPSA. In the Cell/PANI-PAMPSA, 
the strong bands located at approximately 1650 cm− 1 and 1032 cm− 1 

are respectively attributed to the C––O and the symmetric O=S=O 
stretchings, which correspond to the carbonyl and sulfonic groups of 
PAMPSA (Gribkova et al., 2013; Shen et al., 2018). The bands at 1296 
cm− 1 and 1148 cm− 1 are assigned to the protonated amine and pro-
tonated imine groups respectively (Shen et al., 2018). Other bands are 
observed at 923 cm− 1 (S − O stretching), and 795 cm− 1 (C − S stretching 
and C − H out-of-plane bending) (Heller et al., 2016), 1302–1304 cm− 1, 
1243–1245 cm− 1, 1108–1119 cm− 1 for the PANI emeraldine salts (Pang 
et al., 2016; Rahayu et al., 2019; Yoo & Bae, 2013). Finally, the bands of 
quinoid and benzenoid observed at 1546 cm− 1 and 1440 cm− 1 suggest 
an interaction between the backbone of PANI and PAMPSA which is 
associated with the p-electron delocalization induced by protonation 
(Shen et al., 2018). 

In summary, the in-situ synthesis procedure covers the cellulose fi-
brils with a uniform film of PANI/PAMPSA as highlighted by the SEM 
and IR characterizations. 

The TGA curves of the Cell/PANI-PAMPSA, Cell/PANI and pristine 
cellulose are reported in Fig. S3. Due to the highly hygroscopic nature of 
cellulose and polyaniline, the first stage of mass loss (about 5 %) up to 
160–180 ◦C can be ascribed to the loss of water. The second stage which 
starts at around 160 ◦C (with a lower loss in the case of PANI-PAMPSA: 
57.6 vs 65.2 % for PANI) is due to loss of dopant and low molar mass 
oligomers, cross-linked fragments of chains and the initiation of polymer 
degradation. The last stage of mass loss that occurs at around 500 ◦C 
corresponds to the total rupture of polymer bonds (polyaniline and 
cellulose), as well as heavier fragments in even smaller fractions and 
gaseous by-products. The residues remaining at 900 ◦C for Cell/PANI- 
PAMPSA (24.3 %) are inert materials, such as fragments of carbonized 
polymer chains (Nepomuceno, Seixas, Medeiros, & Mélo, 2021). 

Cell/PANI shows a higher mass variation at 160 ◦C suggesting the 
material loses the dopant during this stage. Since HCl is the main dopant 
species, acid release tests we conducted on Cell/PANI-PAMPSA in a 
closed chamber in the presence of a pH tester paper for 72 h; the results 
have then been compared with those obtained with Cell/PANI. As 
observable in Fig. S4 in proximity to Cell/PANI, the pH tester paper 
turns in red colour in about 48 h indicating an acid release whereas no 
change in colour occurs with Cell/PANI-PAMPSA exposure. These data 
highlight the better biocompatibility of Cell/PANI-PAMPSA than Cell/ 
PANI. 

3.2. Mechanical and electrical properties 

The synthesis approach described in the previous paragraphs has 
already been investigated to produce sheets based on Cell/PANI alone. 
Therefore, it is important to identify the role that PAMPSA plays in 
defining the technological properties of conductive paper. 

To better investigate the mechanical properties of the materials, the 
tensile strength of the Cell/PANI-PAMPSA sheets has been measured and 
compared with Cell/PANI and pristine Cellulose. The results reported in 
Table 1 and Fig. 3 are the average of the measures carried out for three 
different samples for each type of material. 

Differently from the acidic media used for Cell/PANI preparation, 
the use of PAMPSA during the cellulose fibres modification does not 

damage the fibres and improves the mechanical properties of the 
modified cellulose, resulting in a tensile strength that is more than three 
times higher compared to Cell/PANI. Reasonably, the hydrogen bonds 
and electrostatic interactions between PAMPSA and PANI build up a 
homogeneous dynamic network, which contributes to the elasticity and 
soft compliant nature of the as-prepared electronic polymer material 
with high omnidirectional stretchability (Boland et al., 2014; Kim et al., 
2015; Seyedin, Razal, Innis, & Wallace, 2014; Wu, Li, An, & Sun, 2016). 

Cell/PANI and Cell/PANI-PAMPSA electrical conductivities were 
measured with a Keysight B2902A source meter units in a 4-line-probe 
configuration by exploiting a home-made holder that is composed of 4 
parallel copper electrodes on a glass slide (Fig. S5). The data reported in 
Table 2 represent averages from five measurements each. 

As expected, the conductivity of Cell/PANI-PAMPSA is lower than 
that of Cell/PANI because PAMPSA is inherently insulating; an excess of 
PAMPSA can thus hinder charge hopping and macroscopic conduction 
nevertheless, the values obtained are still suitable for sensor 
applications. 

Moreover, the flexible properties of a material are very important for 
applications such as wearable sensors or energy storage devices (Wang 
et al., 2021; Seshadri et al., 2019;, Heikenfeld et al., 2018). To study the 
flexible behaviour of Cell/PANI-PAMPSA in comparison with Cell-PANI, 
a homemade 3d-printed support is built to fold pieces of paper in a 
reproducible way (Fig. S6). The conductivity of Cell/PANI-PAMPSA was 
measured with a 4-probe tester before and after a series of foldings and 
was compared with those of Cell/PANI. 

As reported in Fig. 4, the conductivity of Cell/PANI decreased pro-
gressively (39 %) under the folding and the material broke after 200 
foldings (Fig. S7). On the contrary, the conductivity of Cell/PANI- 
PAMPSA decreased by only 16 %, and the sheets start to break after 

Table 1 
Tensile strength values obtained from mechanical tests for pristine Cellulose, 
Cell/PANI and Cell/PANI-PAMPSA.  

Sample Stress at break (MPa) Strain at Break (%) 

Cellulose 0.0094 ± 0.0008 20 ± 5 
Cell/PANI 0.0040 ± 0.0009 9.8 ± 0.5 
Cell/PANI-PAMPSA 0.016 ± 0.003 52 ± 5  

Fig. 3. Stress-strain curves obtained for pristine Cellulose (black line), Cell/ 
PANI (red line) and Cell/PANI-PAMPSA (blue line). 

Table 2 
Conductivity values for Cell/PANI and Cell/PANI-PAMPSA.  

Samples S cm− 1 (*10− 1) 

Cell/PANI 3.45 ± 0.01 
Cell/PANI-PAMPSA 0.537 ± 0.001  
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500 foldings. 
In summary, PAMPSA improves the mechanical properties of paper 

and preserves the electrical properties after repeated mechanical de-
formations. Conversely, the introduction of PAMPSA which is an insu-
lating polyelectrolyte, leads to a worsening of the electrical conductivity 
when compared to that of sheets obtained with Cell/PANI. 

3.2.1. Mechanical and electrical properties of recycled cellulose 
To check the possibility to employ recycled cellulose, Cellrec/PANI 

and Cellrec/PANI-PAMPSA samples have been prepared and charac-
terized in terms of mechanical stability and conductivity. In recycled 
paper, (Han, Zhang, Hoang, Gray, & Xie, 2021; Izadi, Hosseini, Najaf-
pour Darzi, Nabi Bidhendi, & Pajoum Shariati, 2018) the cellulose fibres 
are very short and this feature leads to a decrease in the mechanical 
stability of the final paper sheet. This problem is evident if we compare 
the stress/strain curves reported in Fig. S8 for cellulose and recycled 
cellulose. The addition of PAMPSA in the modified recycled cellulose 
gives an improvement in mechanical stability as clearly visible in the 
stress-strain curves reported in Fig. S9 and in data shown in Table S1. 
The electrical conductivities measured with a 4-line-probe configuration 
of Cellrec/PANI-PAMPSA results like those of Cell/PANI-PAMPSA 
(0.501 ± 0,001 S cm− 1 *10− 1) pointing out that the cellulose recy-
cling does not affect the performance of the modified fibres. 

3.3. Device applications 

The Cell/PANI-PAMPSA exhibits very fascinating properties to be 
used as materials for paper electronics. The Cell/PANI has been already 
used for producing all-paper touch and humidity sensors, but its fragility 
and acid release could hinder its widespread use. The mechanical 
strength and high biocompatibility (Bayer et al., 2010) of Cell/PANI- 
PAMPSA make it a promising material for these applications, but 
further experiments are needed to underpin its real use, considering the 
decrease of electrical conductivity due to the introduction of an insu-
lating polymer into the material. To demonstrate its superior properties, 
we fabricated, employing only pristine cellulose as starting material, 
humidity and breath sensors and electrocardiogram electrodes. 

3.3.1. Humidity sensing 
With the aim to compare the sensing behaviour of Cell/PANI- 

PAMPSA with that of Cell/PANI (Ragazzini et al., 2022) by employing 

a method commonly used in the paper industry, we coupled the Cell/ 
PANI-PAMSA sheet with a bare cellulose sheet (thickness 0.40 mm) 
previously moistened with water. The two sheets were then pressed (50 
bar, 10 s, final thickness of 0.80 mm) and dried at 80 ◦C for 10 min. Then 
the humidity sensor is prepared by cutting out the sheet of Cell/PANI- 
PAMPSA of rectangular shape usually of dimensions 2.2 × 0.9 cm2 at 
the ends of which a potential of 0.100 V is applied. The current flowing 
in the material is the signal used by the sensor. As reported in literature 
(Sezen-Edmonds, Yeh, Yao, & Loo, 2019), the increase in the conduc-
tivity of PANI-PAMPSA with humidity is ascribed to the increased sol-
vation of the polymer acid with water exposure. Moreover, since 
conducting PANI is preferentially located on the exterior of PANI- 
PAMPSA globules, swelling of PAMPSA with water absorption should 
not disrupt the connectivity of the conducting domains; it should instead 
bring the conducting domains closer (Sezen-Edmonds et al., 2019). The 
performance as a sensor was evaluated in a climatic chamber wherein 
the humidity value was varied in a controlled way. Moreover, for 
comparison, the humidity sensor DHT22 was used to monitor the hu-
midity level during the experiments. 

The current vs time curves for Cell/PANI-PAMPSA and % RH vs time 
curves registered with DHT22 are reported in Fig. 5; the oscillation in 
the signal, observed with all the sensors employed are due to the fluc-
tuations present in the chamber for each % RH variation. Indeed, when 
necessary, inside the chamber the climatic parameters are iteratively 
adjusted through heating/cooling and humidification/dehumidification 
processes to maintain the temperature and % RH values as faithful as 
possible to the programmed ones. Beyond the device studied in this 
paper, the experimental setup is endowed with a double system for 
monitoring the humidity level (DHT22 and climate chamber sensor). 

From the response values obtained (considering the values in the 
middle of the plateau registered for each step), it is possible to calculate 
the current vs % RH response curves (Fig. S10) that present a linear 
trend (y = 0.11×+ 10.28, R2 = 0.996). The slope results about one order 
of magnitude lower than that observed previously with Cell/PANI (0.11 
vs 1.41 μA/%RH respectively) in agreement with the lower Cell/PANI- 
PAMPSA conductivity (Ragazzini et al., 2022). From Eq. (1) (§2.3.1) it 
is possible to transform the current signal into an RH% signal and 
directly compare the response of Cell/PANI-PAMPSA with those of the 
DHT22 sensor, as reported in Fig. 6. 

A perfect overlap of the two signals was observed. In order to 
compare the humidity sensitivity between Cell/PANI-PAMPSA, Cell/ 
PANI and DHT22, the normalized response, which is defined in §2.3.1 
(Jain et al., 2003; Zhao et al., 2017), was calculated. The responses vs 
RH% relationship is reported in Fig. 7; Cell/PANI-PAMPSA present a 
good linearity (R2 = 0.998) in the RH% range investigated. 

The slopes of the curves for Cell/PANI-PAMPSA (3.3 ± 0.1), Cell/ 
PANI and DHT22 (3.3 ± 0.1 and 3.44 ± 0.03, respectively) show that 
the rate of change response of the three sensors is statistically equal. The 
data suggest the good humidity sensing performance of Cell/PANI- 
PAMPSA. 

3.3.2. Biomedical sensing – respiratory behaviour 
Breathing patterns contain fundamental information (rate, depth, 

and rhythm) that represent the most informative vital signs. In health-
care, variations in respiratory frequency can be used as predictors of 
physiological deterioration and serious adverse events. In sports and 
physical activities, respiratory frequency is a valid marker of physical 
effort and is associated with exercise tolerance in different populations 
(Al-Halhouli et al., 2021; Kano et al., 2022; Piuzzi, Pisa, Pittella, 
Podestà, & Sangiovanni, 2020). For example, the respiratory rate is 
10–20 breaths per minute (bpm) for a healthy adult whereas an 
abnormal respiratory rate (< 6 bpm or > 24 bpm) is a prediction of 
mortality heart rate or hypertension; on the contrary with a high- 
intensity exercise, the respiratory rate can become as high as 60 bpm 
(Duan, Jiang, & Tai, 2021). Despite various sensors, such as flexible 
pressure, strain, temperature and Fibre Bragg Grating (FBG) sensors 
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Fig. 4. Conductivity graphs vs folding number for (▪black) Cell/PANI and (
red) Cell/PANI-PAMPSA during the bending test. Error bars for Cell/PANI- 
PAMPSA are negligible. 
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(Duan et al., 2021), have been used until now, often they fail in terms of 
stability, accuracy or cost. 

The humidity sensors exhibit a large response/recovery rate making 
them ideal candidates for respiratory detection (Kano et al., 2022). A 
rectangular Cell/PANI-PAMPSA sheet with dimensions of 5 cm2 (1 × 5 
cm), has been embedded between an FFP2 and FFP1 face mask and has 
been fixed using a pointer as shown in Scheme 3 and Fig. S2 to be used as 
a breath sensor. The fabrication process is very simple and easily inte-
grable in a mass production plant. A fixed potential is applied between 
the two extremities of the sensor, and the signal is the current flowing in 
the material. 

In Fig. 8 we present the response curve for nose breathing rate ob-
tained interspersing 30 s without breathing (A) with normal (B) or fast 
(C) breathing. The data are reported without processing the signal, 
normally necessary to eliminate the baseline drift of the respiratory rate 
response curve (Duan et al., 2021). In the absence of breathing, the 
signal is flat, in accordance with a stable humidity value inside the mask. 
Instead, during respiration, the current value fluctuates due to the hu-
midity variation generated by breath. Greater is the intensity of 
breathing, greater is the signal oscillation. The data shows that the 
sensor can measure the respiratory rate by also identifying the intensity 
of respiration. 

3.3.3. Biomedical sensing – ECG measuring 
Bioelectric signals coming from the human body could give impor-

tant information about physiological functions and routine healthcare, 

Fig. 5. Current vs time curves registered uphill and downhill for Cell/PANI-PAMPSA (blue line) and DHT22 (red line).  

Fig. 6. Comparison between the response of Cell/PANI-PAMPSA (blue line) 
and DHT22 (red line) under pulse stimuli obtained by switching between 30 
and 55 % RH in a climate chamber. The test was carried out using an applied 
voltage of 0.100 V at 21 ± 1 ◦C. 

Fig. 7. Response vs RH% relationship of Cell/PANI-PAMPSA (y = 3.30 x −
101.09, R2 

= 0.998) ( blue), Cell/PANI (y = 3.34 x − 102.10, R2 
= 0.998) (

red) and DHT22 (y = 3.44 x − 103.31, R2 = 0.999) (▪black) sensors. All the 
measurements were performed in triplicate. Fig. 8. Response curve for noise breathing rate; A) 30 s without breath; B) 60 s 

normal breath; C) 60 s fast breath. 
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therefore they have been widely studied to provide immediate diag-
nostic and therapeutic services (Chen et al., 2022;, Acar et al., 2019). 
One of the most investigated technologies in this field is the Electro-
cardiogram (ECG) that, collecting bioelectrical signals with electrodes 
on the surface of the body, could give not only a clinical diagnosis of 
various heart diseases, but also represent a simple but effective tool to 
explain arrhythmia and conduction disorders (Ankhili, Tao, Cochrane, 
Coulon, & Koncar, 2018; Shathi, Chen, Khoso, Rahman, & Bhattachar-
jee, 2020;, Yamamoto et al., 2017;, Yapici & Alkhidir, 2017). ECG sen-
sors detect the polarization and depolarization of myocardial cells that 
generate electric current (Al-Ani, 2018). An important criterion for 
suitable electrodes is low impedance to limit the noise generated during 
signal recording. The stratum corneum (SC), which is the top layer of the 
skin, has a high impedance, so the application of a gel that hydrates the 
SC is necessary to create an ionic path between the metal part of the 
electrode and the skin allowing a good contact during body movement 
(Webster, 2010;,Ankhili et al., 2018). Unfortunately, conductive gel 
sometimes causes allergic symptoms on the skin and can dry in a short 
time causing noise in the electrical signals; to overcome this problem 
textile electrodes manufactured from common fabrics treated with 
conductive polymers have been recently studied (Acar et al., 2019; 
Castrillón, Pérez, & Andrade-Caicedo, 2018; Yamamoto et al., 2017). 
Cell/PANI-PAMPSA can be a valid replacement due to its high sensi-
tivity, biocompatibility, flexibility, mechanical stability, and low cost, as 
well as more sustainable disposal compared to conventional AgCl gel 
electrodes. Two square Cell/PANI-PAMPSA electrodes (2.0 × 2.0 cm) 
were placed on the skin close to the heart (Scheme 2), and the difference 
in voltage between the two electrodes was measured. Due to the 
conductive form of PANI-PAMPSA, it is not necessary the use of a 
conductive gel and the two square electrodes can be directly positioned 
after being moistened. Fig. 9 shows the ECG output registered on a 
volunteer with a normal sinus rhythm. The three main components of a 
typical ECG tracing can be recognized: the P wave, which represents 
depolarization of the atria, the QRS complex, which represents depo-
larization of the ventricles and the T wave which represents 

repolarization of the ventricles. Furthermore, it is possible to measure 
the RR interval which represents the time elapsed between two suc-
cessive R-waves of the QRS signal on the electrocardiogram and to see 
the U wave which represents the last phase of ventricular repolarization. 

4. Conclusions 

The synthesis of new materials for paper electronics plays a key role 
in the creation of biocompatible, eco-friendly, biodegradable, recyclable 
and low-cost devices, which can also be exploited to develop gadgets 
that are not yet commercially available. The intimate modification of 
cellulose fibrils with polyaniline has proven to be an attractive approach 
to produce conductive paper sheets that have been exploited in the 
fabrication of touch and humidity sensors. However, the fragility and 
the slow acid release hinder their effective use in a real environment. 
The introduction of PAMPSA, used as a polyelectrolytic dopant, in-
creases the mechanical resistance of the material and makes the material 
biocompatible because of the replacement of the HCl dopant. The 
excellent properties of metal-free Cell/PANI-PAMPSA sheets have been 
demonstrated by realizing proof of concept biomedical devices based on 
this material by successfully building electrocardiogram electrodes, 
without using any electrode gel, and humidity sensors. The integration 
of the humidity sensor inside a mask allows the monitoring of the res-
piratory rate of the wearer with the possibility of distinguishing the 
intensity of the breath. The results presented in this work clearly show 
the excellent properties of Cell/PANI-PAMPSA as a material for paper 
electronics, paving the way for new fascinating applications. 
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