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Abstract The minimal geometric deformation (MGD)
paradigm is here employed to survey axion stars on fluid
branes. The finite value of the brane tension provides beyond-
general relativity corrections to the density, compactness,
radius, and asymptotic limit of the gravitational mass func-
tion of axion stars, in a MGD background. The brane tension
also enhances the effective range and magnitude of the axion
field coupled to gravity. MGD axion stars are compatible to
mini-massive compact halo objects for almost all the obser-
vational range of brane tension, however, a narrow range
allows MGD axion star densities large enough to produce
stimulated decays of the axion to photons, with no analogy in
the general-relativistic (GR) limit. Besides, the gravitational
mass and the density of MGD axion stars are shown to be up
to four orders of magnitude larger than the GR axion stars,
being also less sensitive to tidal disruption events under col-
lision with neutron stars, for lower values of the fluid brane
tension.

1 Introduction

The experimental measurement of gravitational-wave (GW)
signatures radiated from the final stages of neutron star binary
merging constitutes one of the most relevant results in funda-
mental physics [1]. In the strong regime of gravity, general-
relativistic solutions of Einstein’s equations and their gener-
alizations may be experimentally detected by the latest obser-
vations mainly at LIGO, Chandra, eLISA, Virgo, GEO600,
TAMA 300, and KAGRA detectors, as well as the next gener-
ation, including the Advanced LIGO Plus, Advanced Virgo
Plus, and the Einstein telescope. These detectors can thor-
oughly address extended models of gravity, whose solutions
of Einstein’s effective equations describe coalescent binary
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systems composed of stars, or even merging black holes, thus
emitting GW-radiation in the endpoint stages of collision
after spiraling in against each other. The gravitational decou-
pling (GD) of Einstein’s equations has been successfully
extending general relativity (GR) and has been modeling a
multitude of self-gravitating compact stellar configurations.
Anisotropic stars arise in a very natural way in the GD appara-
tus, yielding the possibility of obtaining the state-of-the-art
of analytical solutions of Einstein’s equations, when more
general forms of the energy-momentum tensor are employed
[2–6]. The GD mechanism comprises the original minimal
geometrical deformation (MGD) [7–9], which formulates the
description of compact stars and black hole solutions of Ein-
stein’s equations on fluid branes, with finite brane tension
[10–12]. GR is the very limit of the fluid brane setup, when
the brane describing our universe is ideally rigid, correspond-
ing to an infinite value of the brane tension. When the GD is
implemented into the so-called analytical seed solutions of
Einstein’s equations, all sources generating the gravitational
field are decomposed into two parts. The first one includes
a GR solution, whereas the second piece refers to a comple-
mentary source, which can carry any type of charge, includ-
ing tidal and gauge ones, hairy fields of some physical ori-
gin, as well as any other source which plays specific roles
in extended models of gravity. Quasinormal modes radiated
from hairy GD solutions were recently addressed in Ref. [13].
The GD methods have been comprehensively employed to
engender extended solutions reporting an exhaustive catalog
of stellar configurations [14–37], which in particular well
describe an anisotropic star that was recently observed [38–
46]. Not only restricted to the gravity sector of AdS/CFT, the
quantum holographic entanglement entropy was also studied
in the GD context [47]. GD-anisotropic quark and neutron
stars were scrutinized in Refs. [48–50], whereas GD-black
holes with hair were also reported in Refs. [51–54].
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The paradigm of formulating dark matter (DM) dominat-
ing ordinary matter in galaxies is based upon precise observa-
tional data from measuring the CMB by Planck Collaboration
[55]. Despite fruitful observational data confirming the exis-
tence of DM, its very nature remains concealed. Even though
diverse particles have been proposed as the ruling component
of DM, hardly any particle candidate can properly present the
properties of DM. The axion is an exception and plays the role
of a DM prime candidate. In this context, taking into account
the spontaneous breaking of the Peccei–Quinn (PQ) sym-
metry after inflation in the early universe, axion miniclusters
can have originated [56]. The axion is the Nambu–Goldstone
pseudoscalar boson, generated in the spontaneous breaking
of the UPQ(1) global symmetry. The PQ symmetry was orig-
inally introduced to report the tininess of the strong CP vio-
lation that occurs in the QCD context. The axion can couple
to two real photons, being therefore detected by its conver-
sion into a photon, in a strong enough magnetic field. Since
stellar distributions usually present strong magnetic fields,
axions may be originated in their inner core, in the course of
the cooling process, and can have annihilated into photons.
Besides, axion can also form miniclusters. Also owing to the
gravitational cooling, some regions of the axion miniclus-
ter can develop themselves colder than other portions, when
axion particles are ejected. This process leads to the forma-
tion of self-gravitating axion stars [57–59]. There is another
way for axion miniclusters to turn into compact axion stars.
Due to the (attractive) self-interaction, some nonlinear effects
can yield very dense axion miniclusters. If such density peaks
are high enough, coherent axion fields can amalgamate into a
self-gravitating system comprising axion stars. Refs. [60,61]
addressed the problem of describing DM with axions, explor-
ing the resulting astrophysical self-gravitating objects made
of axions, in the general-relativistic case. Axion stellar con-
figurations are bound together by way of equilibrium among
gravitational attraction, kinetic pressure, and an intricate self-
interaction [62]. Reference [63] proposed observational sig-
natures of radiation bursts when axion stars collide with
galaxies, whereas Ref. [64] also put forward the possibil-
ity of observing radio signals from axions miniclusters and
axion stars merging with neutron stars [64]. Other spacetimes
with axion fields were scrutinized in Refs. [65,66].

In this work, we address the possibility of describing
DM with axions, exploring astrophysical axion stars in an
MGD background, in the membrane paradigm of AdS/CFT.
Using an AdS bulk of codimension one with respect to its 4-
dimensional boundary describing our universe, with a finite
brane tension, is quite natural in several scenarios. Axion
particles are introduced in a beyond-standard model context,
being ubiquitous in string theory compactifications. In this
scenario, the axion can be characterized by a Kaluza–Klein
pseudoscalar, associated with (non-trivial) cycles in the com-
pactified geometry [67].

A weak MGD background will be assumed to solve
the Einstein–Klein–Gordon (EKG) equations, coupling the
axion to gravity. The solutions of Einstein’s field equations
describing the gravitational sector in an MGD background,
coupled with the Klein–Gordon equation with the axion
potential, will produce an effective static spherically sym-
metric metric. The asymptotic value of gravitational masses,
the radii, the densities, and the compactnesses of MGD axion
stars will be computed and shown to be a function of the brane
tension. The gravitational mass, the density, and the com-
pactness of self-gravitating systems composed of axions will
be shown to be magnified, when compared to the general-
relativistic scenario, for a considerable range of the MGD
parameter which encodes the brane tension. A couple of rel-
evant results are obtained, with no analogy in GR. The first
one consists of obtaining the typical densities of MGD axion
stars. Contrary to the GR case, where the axion stars have den-
sities of around 4 orders of magnitude smaller than neutron
stars, MGD axion stars can reach magnitudes that approach
typical densities of neutron stars, for a range of the brane
tension lying into the latest allowed observational bounds.
It allows the detection of observational signatures of colli-
sions between MGD axion stars and neutron stars, which are
completely different from the GR axion stars. By the fact
that neutron stars are surrounded by strong magnetic fields,
photons are supposed to be ejected by the collision process
with axions [57,68]. If the plasma constituted by photons
near the neutron star has the same order of the axion mass,
the axion conversion into a photon is then coherent [59]. The
photons that are emitted have typical radio-wave frequencies
and might be detected by ground-based telescopes, such as
the ones in the Square Kilometre Array and the Green Bank
Observatory. When an axion star crosses the way of a neu-
tron star, if they are nearer than a given radius, the tidal force
induced by the neutron star sets off stronger than the self-
gravity of the axion star. Such kind of compact object is called
a diluted axion star, which plays the role of a Bose–Einstein-
like condensate, whose gravity balances quantum pressure.
The dilute axion star can be thoroughly fragmented by tidal
forces, before attaining the radius for which the plasma of
photons has the same mass as the axion. A 2-body tidal cap-
ture mechanism can be then investigated for MGD axion
stars.

Even in the GR case, the study of collisions of axion stars
to neutron stars is still incipient [69]. Here we want to shed
new light on this topic, proposing corrections to the asymp-
totic value of gravitational masses, the radii, the densities,
and the compactnesses of MGD axion stars. Since MGD
axion will be shown to present typical masses and densities
that can reach 4 orders of magnitude larger than GR axion
stars, for a given range of brane tension, the maximum dis-
tance for which the axion star undergoes disruption event
and the percentage of axions that can be converted into pho-

123



Eur. Phys. J. C           (2023) 83:537 Page 3 of 15   537 

tons, across the collision event to neutron stars, will be quite
different. When one takes into account phenomenologically
feasible values of the axion mass and the axion decay con-
stant, we will also show that there are ranges of the brane
tension allowing stimulated decay of axions into photons,
implying that the final stage of the collapse process induced
by gravitational cooling is a flash of photons, which has no
parallel in the general-relativistic limit.

This paper is organized as follows: Sect. 2 introduces
the MGD method, yielding analytical solutions of Einstein’s
field equations on the brane, modeling realistic compact stel-
lar distributions in a membrane paradigm of AdS/CFT, with
finite brane tension. In Sect. 3, the quantized axion field,
described by the Klein–Gordon equation with an appropri-
ate potential, is coupled to Einstein’s equations. The resulting
solutions of the EKG coupled system of equations produce
an effective static spherically symmetric metric. The asymp-
totic value of gravitational masses, the densities, the radii,
and the compactnesses of the compact self-gravitating sys-
tem of axions are analyzed for several values of the param-
eter regulating the MGD solutions. Section 4 is dedicated
to taking phenomenologically feasible values of the axion
mass and the axion decay constant, scrutinizing axion stars
in an MGD background, in a setup compatible with mini-
massive compact halo objects. We show that there are ranges
of the brane tension allowing stimulated decay of axions into
photons implying that the final stage of the collapse pro-
cess induced by gravitational cooling is a flash of photons,
which has no parallel in the general-relativistic limit. Several
other physical features of MGD axion stars are addressed,
with important corrections to the general-relativistic limit.
One of the main relevant results consists of proposing MGD
axion stars with masses and densities that make them less
sensitive to tidal disruption, in collisions with neutron stars,
for a certain range of the brane tension. The maximum dis-
tance beyond which MGD axion stars undergo tidal disrup-
tive events is computed for several values of the central value
of the axion field and is shown to be an increasing function
of the MGD parameter. With it, we show that MGD axion
stars are less sensitive to tidal disruption effects, as the brane
tension decreases. Section 5 is devoted to the conclusions,
further discussion, and perspectives.

2 The MGD protocol

The MGD is naturally developed in the membrane paradigm
of AdS/CFT, wherein a finite value of the brane tension mim-
ics the energy density, ζ, of the brane. The brane tension and
both the running cosmological parameters on the brane and
in the bulk are tied together by fine-tuning [70]. Any phys-
ical system having energy satisfying ζ � E perceive nei-
ther bulk effects nor self-gravity, allowing GR to be recov-

ered as the ideally rigid brane (ζ → ∞) limit. However,
for ζ � E , finite brane tension values can yield new physi-
cal possibilities. The most recent and accurate brane tension
bound, ζ � 2.832×10−6 GeV4, was obtained, in the context
of the MGD [71].

The MGD algorithm has been extensively utilized for con-
structing new analytical solutions of Einstein’s equations,
encompassing new aspects of extended models of gravity
to classical GR solutions, when a fluid membrane setup is
taken into account [72]. In the brane-world scenario, the 4-
dimensional membrane, which portrays the universe we live
in, is usually embedded into a codimension one AdS bulk
space. Therefore the Gauss–Codazzi equations link together
the induced metric and the extrinsic curvature of the brane,
considered as a submanifold of the AdS bulk. In this sce-
nario, the Riemann tensor of the AdS bulk is split into the
sum of the Riemann tensor of the brane and quadratic terms
of the extrinsic curvature. Einstein’s equations on the brane
are given by

Rμν − 1

2
Rgμν = Λ4gμν + Tμν, (1)

where R stands for the Ricci scalar, 8πG4 = 1 will be
adopted throughout this work, G4 is the brane Newton con-
stant, and Rμν denotes the Ricci tensor, whereas Λ4 is brane
cosmological running parameter. The energy-momentum
tensor in Eq. (1) is usually decomposed as [73]

Tμν = Tμν + Eμν + ζ−1Sμν. (2)

The Tμν term is the energy-momentum tensor representing
ordinary matter, eventually also describing dark matter. The
term Eμν is the projection of the Weyl tensor along the brane
directions and is a function inversely proportional to the brane
tension. The tensor Sμν reads

Sμν = 1

3
T Tμν − TμυT

υ
ν + 1

6

[
3T ασ Tασ − T 2

]
gμν, (3)

where T = Tμνgμν [70,73,74]. The electric part of the Weyl
tensor,

Eμν =−1

ζ

[
U

(
uμuν + 1

3
hμν

)
+ Q(μuν)+Pμν

]
, (4)

characterizes a Weyl-type fluid, for hμν emulating the
induced metric projecting any quantity along the direction
that is orthogonal to the velocity field uυ regarding the Weyl
fluid flow. Also, the dark radiation, the anisotropic energy-
momentum tensor, and the flux of energy can be described
by functions of the brane tension, respectively as

U = −ζEμνu
μuν, (5)

Pμν = −ζ

[
h ρ

(μh
σ
ν) − 1

3
hρσhμν

]
Eρσ , (6)

Qμ = −ζhρσEσμuρ. (7)
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One can therefore realize the equations governing the gravi-
tational sector on the brane from holographic AdS/CFT, since
the electric component of the Weyl tensor can be expressed,
in the linear order, as the energy-momentum tensor of CFT
living on the brane [75]. Going further to higher-order terms
yields a relationship between the tensor in (3) and the trace
anomaly of CFT [54].

Denote hereon by �p =
√

G4h̄
c3 the Planck length and

by G5 the bulk Newton running parameter. It was shown
to be related to G4 by the Planck length, as G5 = G4�p
[70]. Denoting by κ5 = 8πG5/c2, the 4-dimensional and
5-dimensional cosmological running parameters are fined
tuned to the brane tension by the expression [76]

Λ4 = κ2
5

2

(
Λ5 + 1

6
κ2

5ζ
2
)
. (8)

Equation (8), together with the fact that the 4-dimensional
coupling constant κ4 = 8πG4/c2 is related to κ5 by κ2

4 =
1
6ζκ4

5, yields [70]

Λ5 = −
√

6

6
κ4ζ

3/2. (9)

what complies with an AdS bulk. The finite brane tension
is related to the 5-dimensional Planck mass, mp5, by ζ ≈
πr

√
−Λ5/24m3

p5, where r ≈ 1µm, With the expression

of the extrinsic curvature [70]

Kμν = −1

2
κ2

5

[
Tμν + 1

3
(ζ − T ) gμν

]
, (10)

the electric part of the Weyl tensor can be alternatively
expressed by [70]

Eμν = −Λ5

6
gμν − ∂z Kμν + K ρ

μ Kρν, (11)

where z denotes the Gaussian coordinate along the bulk.
Compact stars are solutions of Einstein’s effective field

equations (1), with static and spherically symmetric metric

ds2 = a(r)dt2 − 1

b(r)
dr2 − r2d
2, (12)

where d
2 is the solid angle. In this context, the tensor
fields in Eqs. (6, 7) take a simplified expression, respectively
given by Pμν = P(uμuν + hμν/3) and Qμ = 0, where
P = gμνPμν . The brane energy-momentum tensor can be
prescribed by a perfect fluid one, encoding different parti-
cles and fields confined to the brane, as

Tμν = (ε + p)uμuν − pgμν, (13)

withuμ = √
b(r)δ0

μ. Now the MGD-decoupling method will
be shown to yield analytical solutions of Einstein’s equations
on the brane (1, 2). These solutions can realistically represent
compact stars on fluid branes [2,7,72].

The Einstein’s equations on the brane (1) denoting by
Gμν = Rμν − 1

2Rgμν can read

b(r) = 1 − 1

r

∫ r

0
r2ε(r)

[
1 + 1

2 ζ

(
ε(r)+ 3U(r)

8

)]
dr,

(14a)

P(r) = ζ

6

[
G 1

1 (r) − G 2
2 (r)

]
, (14b)

U(r) = −16ε(r)

(
ε(r)

2
+ 16

3
p(r)

)
+ζ

(
2G 2

2 (r) + G 1
1 (r)

)

−16p(r)ζ, (14c)

p′(r) = − a′(r)
2a(r)

[ε(r) + p(r)] , (14d)

where

G 1
1 (r) = − 1

r2 + 1

b(r)

(
1

r2 + a′(r)
ra(r)

)
, (15a)

G 2
2 (r) = 1

4b(r)

[
2a′′(r)
a(r)

− a′(r)b′(r)
a(r)b(r)

+ a′2(r)
a2(r)

+1

r

(
b′(r)
b(r)

− a′(r)
a(r)

)]
. (15b)

GR can be immediately recovered whenever the rigid brane
limit ζ → ∞ is taken into account.

The effective density (ε̌), the radial pressure ( p̌r ), and
also the tangential pressure ( p̌ᵀ), are respectively expressed
as [72]

ε̌ = ε + 1

2ζ

(
ε2 + 3U

)
(16)

p̌r = p + 1

2ζ

(
ε2 + 2εp + U + P

)
(17)

p̌ᵀ = p + 1

2ζ

(
ε2 + 2εp + U − P

)
. (18)

Gravity living in the AdS bulk yields the MGD term, ξ(r),
in the radial metric term

b(r) = μ(r) + ξ(r) (19)

where

μ(r) =

⎧
⎪⎨
⎪⎩

1 − 1
r

∫
r

0
ε(r) r2 dr, r � R,

1 − 2M(ζ)
r r � R,

(20)

for R denoting the star radius. The mass function can be
written as the sum of the GR mass function and terms of
order running with the inverse of the brane tension [7]:

M(ζ) = M0 + O(ζ−1). (21)

Equation (20) can be expressed in a more compact version,
as

μ(r) = 1 − 2M(ζ, r)

r
. (22)
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The general solution of the coupled system of ODEs
(14a)–(14d) can be calculated by replacing Eq. (14c) into
Eq. (14a). This method implies that

1

b

(
4r2a′2 + 4a2

r2a′ + 4ar
− b′

b

)

= 4a

r (a′r + 4a)

[
1 + 4ar

(
ε

ζ
(ε + 3p) + ε − 3p

)]
,

(23)

with

b(r) = −e−I (r)
(∫ r

0

eI

4ar

(
a′r + 4a

) [(
ε− ε

ζ
(ε + 3p)

−3p) − 2

r2

]
dr + β(ζ)

)
, (24)

for β = β(ζ) being an function that is inversely proportional
to ζ, such that its GR limit vanishes, limζ→∞ β(ζ) = 0,
whereas

I (r) =
∫ r

0

[
1

r2a′ + 4r
a′2(r2 − 1) + 4r a′ + 4a2

]
dr.

(25)

In order to the MGD seed (19) match Eq. (24), one must
require that

ξ(r)=e−I (r)
[
β+

∫ r

0

2raeI

ra′ + 4a

(
L+ ε

ζ
(ε + 3p)

)]
dr,

(26)

for

L(r) =
[
μ

(
a′2

a2 − a′2

a2 + 2a′

ar
+ 1

r2

)

+μ′
(
a′

2a
+ 1

r

)
− 1

r2

]
− 3p, (27)

The geometric deformation ξ(r) in the vacuum, denoted by
ξ�(r), is minimal and it can be immediately computed when
Eq. (26) is constrained to L(r) = 0, yielding

ξ�(r) = β(ζ) e−I (r). (28)

The radial metric component in Eq. (19) then becomes

1

b(r)
= 1 − 2M

r
+ β(ζ) e−I , (29)

When the Israel conditions are employed to match the outer
and inner geometry, together with Eqs. (20, 22), for r � R
the MGD metric is given by

ds2 =a−(r)dt2 − 1

1 − 2M(r)
r

dr2 − r2dΩ2, (30)

for the effective gravitational mass [72]

M(r) = M0(r) − r

2
ξ�(r), (31)

whereas in the outer region, Eq. (5) and the trace of (6) respec-
tively read

P+(r) = 4M(r) − 3r

27ζr4
(

1 − 3M(r)
2r

)2 β(ζ), (32)

U+(r) = M(r)

12ζr4
(

1 − 3M(r)
2r

)2 β(ζ). (33)

As both p(r) and ε(r) vanish in the outer region of the MGD
stellar distribution, its metric reads [7]

ds2 =a+(r)dt2− dr2

1− 2M(r,ζ)
r −ξ�(r)

+ r2dΩ2. (34)

At the star surface, r = R, the Israel matching conditions
yield [7]

a−(R) = exp

[
1 − 2M(R)

R

]
= a+(R), (35)

M(R) − M0 = R

2

[
ξ�+(R) − ξ�−(R)

]
. (36)

The Schwarzschild-like solution,

aSchwa(r) = 1

bSchwa(r)
= 1 − 2M(r)

r
, (37)

can be now superseded into Eq. (28), yielding the MGD term
to be equal to

ξ�(r) = −4(r − 2M(r))

(2r − 3M(r))
β(ζ). (38)

In addition, at the surface of the MGD star, it follows that
ξ�(r) < 0. The function β(ζ) can be also expressed as

β(ζ) = 1

2ζR

(
2R − 3M0

R − 2M(R)

)
. (39)

Therefore, for r > R, the metric endowing the spacetime
surrounding the MGD star has the following expression:

a(r) = 1 − 2M(r)

r
(40a)

b(r) =
(

1 + 2l

2r − 3M(r)

) (
1 − 2M(r)

r

)
, (40b)

where

l = l(ζ) = 1

ζ

(
2R − 3M0

2R − 4M0

)
2R − 3M(R)

2R − 4M(R)
(41)

is the MGD parameter, which depends on the value of the
brane tension. The GR limit of a rigid brane, ζ → ∞,
thus recovers the Schwarzschild metric. Gravitational lensing
effects in the strong regime, read off the supermassive black
hole at the center of the Milky Way, the Sgr A�, established
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the bound |l| � 6.370 × 10−2 m for the MGD parameter
[28].

3 Axion field coupled to gravity in MGD background

Axions are usually introduced in beyond-Standard Model
physics. In the low-energy regime, axion phenomenology is
regulated by two energy scales, comprising the axion mass,
ma, and the axion decay constant, fa, set to the order bigger
than the electroweak scale fa ≈ 0.246 TeV to ensure that the
axion field behaves similarly to the Higgs field [77]. Astro-
physical and cosmological observations limit the range 10−6

eV � ma � 10−3 eV. In this way, the axion field can be
an adequate candidate for describing the cold DM as well
as it can form Bose–Einstein condensates. Axions can be
described by (pseudo)-Goldstone bosonic fields, governed
by the potential [62,78,79]

V (φ) = m2
a f 2

a

[
1 − cos

(
φ

fa

)]
. (42)

In this effective approach, one can consider the scenario lead-
ing to the MGD into the EKG system, implementing the
energy-momentum tensor (2) together with the mean value of
the energy-momentum tensor operator 〈T̂ μν〉 associated with
the quantized axion scalar field φ, with potential energy (42).
The axion decay constant fa, representing the scale suppress-
ing the effective operator, appears in the Lagrangian den-
sity regulating QCD with an axion field. Denoting by Aμ =
Aa

μT
a the su(3) Lie algebra-valued gauge vector potential

(for T a being the su(3) generators), by Dμ = ∂μ − igs Aa
μT

a

the covariant derivative, by Ga
μν = ∂[μAa

ν] + gs Ab
μA

c
ν f

abc

the gluon field strength in QCD, and its dual denoted by a
ring, such a Lagrangian density is given by

L = −1

4
Ga

μνG
aμν + 1

2
DμaD

μa +
∑
q

q̄
(
iγ μDμ − mq

)
q

+ g2
s

32π2

(
a

fa
+ θ

)
Ga

μν G̊
aμν, (43)

where a is the massless pseudoscalar axion field and θ is a CP
violating QCD angle, whereas the last term in Eq. (43) is the
axion-gluon operator, regarding the effective coupling to the
CP violating topological gluon density. Equation (43) uses
the standard notation gs for the strong coupling constant, for
the quark fields, regulated by the Dirac-like Lagrangian, and
their mass mq . The axion decay constant is related to the
magnitude va of the VEV that breaks the U(1) symmetry in
the Peccei–Quinn–Weinberg–Wilczek axion model, as fa =
va/N , for N being an integer characterizing the U(1) color
anomaly [78]. The Lagrangian (43) describes an effective
field theory, where the Standard Model can be extended by

the introduction of the axion. The axion mass reads1

ma � 5.7

(
1012 GeV

fa

)
μeV (44)

is adopted, as usual. As a population of relic thermal axions
was produced in the early universe, for fa > 109 GeV, the
axion lifetime exceeds by many orders of magnitude the age
of the universe and the model hereon is robust for such a range
of the axion decay constant. We will adopt later in Sect. 4 the
phenomenologically sound value fa ≈ 1012 GeV.

The self-gravitating system arises as a solution to the EKG
equations,

Gμν = 〈T̂μν〉, (45)
1√−g

∂μ

(√−ggμν∂ν

)
φ − dV (φ)

dφ
= 0, (46)

where the energy-momentum tensor Tμν in Eq. (45) encodes
the Tμν tensor in Eq. (2), explicitly added with the energy-
momentum tensor associated with the axion,

Tμν = g ρ
μ ∂ρφ∂νφ − 1

2

(
gρσ ∂ρφ∂σ φ − V (φ)

)
δμν, (47)

as

Tμν = Tμν + Tμν. (48)

Although the first term of the energy-momentum Tμν on the
right-hand side of Eq. (2) contains particles and fields on
the brane, our analysis in what follows will be less intri-
cate by considering the explicit term (47) summing up the
axion contribution to the total energy-momentum tensor.
With V (φ) = 0, the total mass of a boson star described
by the system (45, 46), ranges from 0 to a maximum of
Mmax = 0.633m2

p/ma, which is typically smaller than a
typical neutron stellar mass. However, if a quartic self-couple
term is included, even for a small coupling constant, the
boson star mass can be comparable to a neutron star, at least
in the GR case [79].

Here the MGD metric is taken into account to analyze the
influence of the scalar field describing the axion in the EKG
system. The total mass of the resulting object and the typical
radius depend mainly on the properties of the scalar field
playing the role of the axion. To handle the quantum nature
of the axion field, the expectation value 〈T̂μν〉 in Eq. (45) must
be computed – which indeed comprises calculating just the
part 〈T̂ μν〉 in Eq. (47) – implementing the usual quantization
procedure φ 
→ φ̂ = φ̂++φ̂−, where

φ̂± =
∑
n�m

μ±
n�mβn�(r)

±Y �
m(θ, ψ)e∓i Ent , (49)

1 See Eq. (2) of Ref. [78]. For the theoretical origin of Eq. (44) in terms
of the u and d quark masses as well as the pion mass and decay constant,
see Eq. (51) of Ref. [80].
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denoting +Y �
m ≡ Y �

m , −Y �
m ≡ Y ∗�

m , whereas the μ
+[−]
n�m are

the usual creation [annihilation] operators, with commuta-
tion relations

[
μ±
n�m, μ±

n′�′m′
] = 0 and

[
μ−
n�m, μ+

n′�′m′
] =

−δnn′δ��′δmm′ . With the operator φ̂, it is now possible to
construct the energy-momentum tensor operator T̂μν just by
inserting the operator φ̂ into the formula for the energy-
momentum tensor (47) underlying the axion field. The expec-
tation value 〈ψ |T̂μν | ψ〉 can be then implemented for a state
| ψ 〉 containing N copies of the ground-state, correspond-
ing to the n = 1 and � = 0 = m quantum numbers. For
computing 〈T̂ μν〉, one performs a Taylor expansion of Eq.
(42),

V (φ)=m2
(

1

2!φ
2− 1

4! f 2
a

φ4+ 1

6! f 4
a

φ6− 1

8! f 6
a

φ8+ · · ·
)

(50)

The leading self-interaction term in Eq. (50) yields a
λφ4-type potential, with attractive coupling λ = −ma/ f 2

a .
Higher-order self-interaction terms turn out to be relevant
when high-density regimes set in [62,81]. Ref. [79] showed
that in the general-relativistic case, all the results for the grav-
itational mass, density, compactness, and radii of axion stars
do not depend strongly on the number of terms considered
in the Taylor expansion of (42). Computing the expectation
value for the diagonal components of 〈T̂μν〉 yields

〈T̂0
0〉 = T0

0 − E2β2

2a
− bβ ′2

2
− m2

aβ
2

2

+m2β4

12 f 2
a

− m2
aβ

6

144 f 4
a

+ · · · , (51a)

〈T̂1
1〉 = T1

1 + E2β2

2a
+ bβ ′2

2
− m2

aβ
2

2

+m2
aβ

4

12 f 2
a

− m2
aβ

6

144 f 4
a

+ · · · , (51b)

〈T̂2
2〉 = T2

2 + E2β2

2a
− bβ ′2

2
− m2

aβ
2

2

+m2β4

12 f 2
a

− m2
aβ

6

144 f 4
a

+ · · · , (51c)

where β denotes β10, associated with the axion ground state.
In all numerical calculations that follow, the axion potential
(50) is expanded up to O

(
φ20

)
, being the error concerning

the use of higher-order terms smaller than 10−3%. Moreover,
the terms T0

0, T1
1, and T2

2 in Eqs. (51a)–(51c) come from the
energy-momentum tensor (2) generating the MGD solutions.
When Eμν = 0 = Sμν , in the absence of Kaluza–Klein
modes, the GR limit is recovered. Considering Eqs. (45, 46),
with the potential (50) and the static spherically symmetric
metric

ds2 = A(r)dt2 − 1

B(r)
dr2 − r2dΩ2, (52)

the EKG system is obtained:

− B′

B2r
+ 1

r2 (1 − B) = −〈T̂0
0〉, (53a)

AA′

Br
− 1

r2 (1 − B) = 〈T̂1
1〉, (53b)

β ′′ +
(

2

r
+ A′

2A
+ B′

2B

)
β ′ + 1

B

[ (
AE2 − m2

a

2

)
β

+m2
aβ

3

6 f 2
a

− m2
aβ

5

48 f 4
a

]
= 0. (53c)

One can express the system (53a)–(53c) with respect to the
variables x = rma, β = 4σ , Ã = m2

aA/E2, and

� = m2
p

24π f 2
a

. (54)

The system (53a)–(53c) can be solved to constrain the
axion scalar field β, with Dirichlet and Neumann conditions
limr→0 β(r) = β0 and limr→0 β ′(r) = 0. By imposing the
solutions of (53a)–(53c) to be regular at the origin and flat at
infinity, the shooting method can be employed. Analogously,
for all figures that follow, considering the MGD parameter
in Eq. (41) as l = 10−4 m corresponds to the brane ten-
sion ζ ≈ 3.118 × 10−6 GeV = 7.323 × 1014 kg m2/s2,
whereas l = 10−6 m and l = 10−8 m regard, respectively,
ζ ≈ 3.118 × 10−4 GeV and ζ ≈ 3.118 × 10−2 GeV. Using
Eq. (9), one obtains the value of the 5-dimensional Planck
mass corresponding to the values of the brane tension con-
sidered here,

mp5 =

⎧⎪⎨
⎪⎩

4.8761 × 10−16 kg, (for l = 10−4 m),

1.0507 × 10−15 kg, (for l = 10−6 m),

2.2638 × 10−15 kg, (for l = 10−8 m).

(55)

The analysis that follows therefore takes into account how
distinct ranges for the finite brane tension can impart physical
signatures on the asymptotic value of the gravitational mass,
the density, the radius, and the compactness of MGD axion
stars. When the brane tension increases, the results approach
the GR regime of an infinitely rigid brane (Figs. 1, 2).

Rewriting the metric (52) in terms of x and supersed-
ing them into the system (53a)–(53c), one can obtain the
solution for the gravitational mass function, as illustrated in
Figs. 3 and 4, for several values of σ(0) and � (see Eq. (54)).
Choosing a value of the radius r which is sufficiently large,
it is possible to estimate the mass M of these objects as (see
Eq. (3.11) of Ref. [79]) as

M(x) = 4πx (1 − B(x))
m2

p

ma
. (56)

When one analyzes the asymptotic value of the mass func-
tion,

M = lim
x→∞ M(x), (57)
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Fig. 1 Asymptotic value of the gravitational mass (in units ofm2
p/ma)

as a function of the central value of the axion scalar field σ(0), for
l = 10−8 m. The black line regards � = 25, the dot-dashed grey line
corresponds to � = 50, the dashed black line depicts � = 75, and the
light-grey line illustrates the � = 100 case

Fig. 2 Asymptotic value of the gravitational mass (in units of
m2

Planck/ma) as a function of the central value of the axion scalar field
σ(0), for l = 10−4 m. The black line regards � = 25, the dot-dashed
grey line corresponds to � = 50, the dashed black line depicts � = 75,
and the light-grey line illustrates the � = 100 case

the effective radius R99 of a self-gravitating compact distri-
bution defines a region that encloses 99% of the axion star
total mass, namely, M99 ≡ M(R99) = 0.99M . One can emu-
late this concept for determining the effective radius of MGD
axion stars.

For each fixed value of σ(0), the higher the value of �,
the lower the peak Mmax – denoting the maximum value of
the gravitational mass function – is.

For realistic values of the MGD parameter l, compati-
ble with the physical bounds of the brane tension, the �-
dependence of R99 is not negligible, for lower values of
σ(0). For all values analyzed, the equilibrium configurations
present a maximal mass Mmax, at some value of σ(0) that
depends on the MGD parameter l, for each value of � (Figs.
5, 6).

Fig. 3 R99 as a function of the central value of the axion scalar field
σ(0), for l = 10−8 m. The black line regards � = 25, the dot-dashed
grey line corresponds to � = 50, the dashed black line depicts � = 75,
and the light-grey line illustrates the � = 100 case

Fig. 4 R99 as a function of the central value of the axion scalar field
σ(0), for l = 10−4 m. The black line regards � = 25, the dot-dashed
grey line corresponds to � = 50, the dashed black line depicts � = 75,
and the light-grey line illustrates the � = 100 case

Fig. 5 Compactness as a function of σ(0), for l = 10−8 m. The black
line regards � = 25, the dot-dashed grey line corresponds to � = 50,
the dashed black line depicts � = 75, and the light-grey line illustrates
the � = 100 case
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Fig. 6 Compactness as a function of σ(0), for l = 10−4 m. The black
line regards � = 25, the dot-dashed grey line corresponds to � = 50,
the dashed black line depicts � = 75, and the light-grey line illustrates
the � = 100 case

The higher the values of �, the bigger the values of Mmax

are, for each fixed value of σ(0). The masses of equilibrium
configurations, including up to the fourth power of φ in the
Taylor series, were considered in the general-relativistic limit
l → 0 [60]. Another interesting issue is a weak dependence
of the radius R99 on the value of �, irrespectively of the value
of the MGD parameter, as the upper panel of Figs. 3 and 4
show. This feature emulates the GR limit in Ref. [60].

4 Axion star in an MGD background

After axion miniclusters are formed, the gravitational cool-
ing effect yields some regions of the axion minicluster to
become colder by ejecting axions, which leads to the for-
mation of axion stars, with gravity balancing the quantum
pressure [57,58]. All the results in Figs. 7, 8 and 9 take into
account the axion mass ma � 10−5 eV. In fact, regarding the
Lagrangian (43), the strong CP problem can be solved as long
as the vacuum energy has a minimum when the coefficient
of the last term in this Lagrangian is equal to zero, making
the CP-violating operator to vanish. As a consequence, the
axion attains the tiny value ma � 10−5 eV of mass, yielding
a population of excitations in a cosmological scale, contribut-
ing to the DM [80]. Regarding Figs. 7, 8 and 9, it is worth
emphasizing that the higher the value of the MGD parameter
l, the more the axion field endures along the x radial coordi-
nate, for any value of the central value σ(0) here analyzed.
It shows that realistic values of the brane tension, encoded in
the MGD parameter l, make the strength of the axion scalar
field enhance, for each fixed value of x . Also, the higher the
value of the MGD parameter l – correspondingly the lower
the value of the brane tension – the slower the axion scalar
field σ(x) decays along x . In this sense, the finite brane ten-

Fig. 7 Axion scalar field σ(x) for a typical MGD axion stellar dis-
tribution, for σ(0) = 5 × 10−4. The black curve regards the general-
relativistic limit l → 0, the blue curve illustrates the results for l = 10−8

m, and the cyan curve depicts the case where l = 10−6 m, whereas the
green curve illustrates the case where l = 10−4 m

Fig. 8 Axion scalar field σ(x) for a typical MGD axion stellar dis-
tribution, for σ(0) = 3 × 10−4. The black curve regards the general-
relativistic limit l → 0, the blue curve illustrates the results for l = 10−8

m, and the cyan curve depicts the case where l = 10−6 m, whereas the
green curve illustrates the case where l = 10−4 m

sion alters the kurtosis of the normal-like form of the axion
field σ(x) in Figs. 7, 8 and 9. The general-relativistic case,
l = 0, has a mesokurtic profile, which turns into a platykur-
tic shape that broadens the tail of the axion scalar field σ(x),
irrespectively of the central value σ(0) taken into account.

The previous results in Sect. 2 were obtained assuming
arbitrary values of the mass ma of the axions and the decay
constant fa. But the mass of the axion is constrained by
astrophysical and cosmological considerations to lie in the
range 10−5 eV � ma � 10−3 eV and the decay constant is
related to the axion mass by Eq. (1) [78,80], yielding 1013 �
� � 1017. Using the variables [60]

β = fa√
m

σ, r = mp

fa

√
ma

4π
x, Ã = m2

a

E2 A, (58)
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Fig. 9 Axion scalar field σ(x) for a typical MGD axion stellar dis-
tribution, for σ(0) = 1 × 10−4. The black curve regards the general-
relativistic limit l → 0, the blue curve illustrates the results for l = 10−8

m, and the cyan curve depicts the case where l = 10−6 m, whereas the
green curve illustrates the case where l = 10−4 m

Fig. 10 Gravitational mass of axion star, for several values of σ(0), as a
function of the MGD length l. The black curve regards σ(0) = 5×10−4,
the grey curve illustrates the results for σ(0) = 3 × 10−4 and the light-
grey curve plots the case σ(0) = 1 × 10−4

to solve (53a)–(53c), one can realize that the axion star
presents small compactness and low gravitational mass, for
a certain range of the MGD parameter l. However, for higher
values of the MGD parameter l, the MGD axion star mass
increases in a steep way, as a function of l. Adopting the axion
mass ma ≈ 10−5 eV, Fig. 10 shows the gravitational mass of
MGD axion stars, for three values of σ(0), as a function of
the MGD parameter l.

On the other hand, Fig. 11 illustrates the effective radius
R99 of MGD axion stars, for three values of σ(0), as a func-
tion of the MGD parameter l. Although the radius increases
as a function of l, the increment is mild for 1 × 10−4 �
σ(0) � 3 × 10−4, being a little sharper for σ(0) = 5 × 10−4

(Fig. 12).
Since the scales for the axion star density for σ(0) =

5 × 10−4 differ by between 2 and 3 orders of magnitude the
axion star density for σ(0) = 1×10−4, this case is separately
depicted in Fig. 13.

Fig. 11 Effective radius R99 of axion stars, for several values of σ(0),
as a function of the MGD length l. The black curve regards σ(0) =
5×10−4, the grey curve illustrates the results for σ(0) = 3×10−4 and
the light-grey curve plots the case σ(0) = 1 × 10−4

Fig. 12 Density of MGD axion stars, for several values of σ(0), as a
function of the MGD length l. The grey curve illustrates the results for
σ(0) = 3×10−4 and the light-grey curve plots the case σ(0) = 5×10−4

Fig. 13 Density of MGD axion stars, for several values of σ(0), as a
function of the MGD length l. The black curve regards σ(0) = 1×10−4

The EKG system has been solved for a quantized axion
scalar field governing the axion field, under the potential (42).
For the MGD parameter near the general-relativistic limit,
MGD axion stars have small masses and radii of meters,
consequently having very low compactnesses. Table 1 illus-
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Table 1 Gravitational masses,
R99, density, and compactness,
for axion stars in the
general-relativistic limit l → 0
[60]

σ(0) M (kg) R99 (m) ρ (kg/m3) C = 2M/R99 (kg/m)

5 × 10−4 3.903 × 1013 1.830 1.518 × 1012 4.266 × 1013

3 × 10−4 6.481 × 1013 2.861 6.613 × 1011 4.530 × 1013

1 × 10−4 1.945 × 1014 8.541 7.455 × 1010 4.554 × 1013

Table 2 Gravitational masses,
R99, density, and compactness,
for axion stars in the MGD
background, in the extremal
upper limit l = 6.370 × 10−2 m
[28]

σ(0) Mass (kg) R99 (m) ρ (kg/m3) C = 2M/R99 (kg/m)

5 × 10−4 4.431 × 1017 2.780 1.667 × 1016 3.187 × 1017

3 × 10−4 6.288 × 1017 4.410 1.805 × 1015 2.851 × 1017

1 × 10−4 1.504 × 1018 13.865 1.514 × 1014 2.169 × 1017

trates the general-relativistic limit, matching the results in
Ref. [60].

In the general-relativistic limit l → 0, the gravitational
mass of axion stars, their radius R99, and corresponding den-
sity, for several values of σ(0), are shown in Table 1. Using
these values, their compactness, C = 2M/R99 can be read
off, lying in the range 1013 − 1014 kg/m. Since the compact-
ness of the Sun is given by 5.71798×1021 kg/m, the compact-
ness of axion stars equals between 7 and 8 orders of magni-
tude smaller than the Solar compactness. The MGD axion star
has typical asteroid-size masses, M ≈ 10−17 − 10−16M�,
for l � 10−5 m. If DM is mainly constituted by axions, the
axion field might have evolved in the early universe, originat-
ing axion miniclusters. These structures can relax by gravita-
tional cooling, evolving to boson stars made of axions [57].
Gravitational cooling ends in a unique final state indepen-
dent of the initial conditions. One can realize that the typi-
cal densities for axion stars, in the general-relativistic limit,
illustrated in Table 1, lies between 5 and 7 orders of magni-
tude smaller than neutron star density, with average density
3.7 × 1017 to 5.9 × 1017 kg/m3, respectively corresponding
to 2.6 × 1014ρ� to 4.1 × 1014ρ�.

It is already known that strong gravitational lensing effects
set up the bound range |l| � 6.370×10−2 m [28]. Taking the
upper bound of this limit yields the values of gravitational
mass, R99, density, and compactness, for several values of
σ(0), displayed in Table 2.

For the MGD parameter far from the general-relativistic
limit, MGD axion stars have bigger masses, being 4 orders
of magnitude more massive axion stars in the general-
relativistic limit. Their radii are still bigger, however still
around the same order of magnitude, having still the order of
meters. Consequently, MGD axion stars have still low com-
pactnesses when compared to the Sun, although they are 4
orders of magnitude larger than axion stars in the general-
relativistic limit. For σ(0) = 5 × 10−4, MGD axion stars
have a density of 1 order of magnitude smaller than neu-
tron stars. This value for the MGD axion star density and
gravitational mass makes it more difficult to be disrupted by

Fig. 14 Maximum distance rmax (in units of 3
√
Mn) as a function of

the parameter l. The black curve indicates σ(0) = 1 × 10−4, the grey
curve regards σ(0) = 3 × 10−4 and the light-grey curve illustrates the
results for σ(0) = 5 × 10−4

tidal forces, when colliding near neutron stars, increasing the
Roche radius. Considering a neutron star of mass Mn, for the
MGD axion star with mass M and radius R99 to undergo
tidal disruption effects, the tidal forces that act on it must
have the same order of magnitude of the forces that keep
the star cohesive. Estimating these forces, the maximum dis-
tance rmax that allows the MGD axion star to undergo a tidal
disruption event is given by [82]

rmax = 3

√
Mn

M
R99. (59)

Therefore one can plot the maximum distance rmax as a func-
tion of the parameter l, for the three values of σ(0) up to here
analyzed.

Figure 14 shows that for σ(0) = 1 × 10−4, the max-
imum distance rmax increases softly as a function of l up
to l � 10−6 m, which becomes a sharper dependence
rmax(l) ∝ (log10 l)

3.82, for l � 5 × 10−4 m. Now, for
σ(0) = 3 × 10−4, rmax increases nearly constant as a func-
tion of the MGD parameter l, up to l � 10−6 m, turning to a
steeper dependence rmax(l) ∝ (log10 l)

1.98, for l � 4×10−5
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m. The last case comprises σ(0) = 5 × 10−4, for which the
radius rmax increases nearly constant as a function of l up
to values approaching l � 10−5 m, having a sharper depen-
dence rmax(l) ∝ (log10 l)

1.52, for l � 2×10−5 m. The lower
the value brane tension – corresponding to higher values of
the MGD parameter l – the larger the maximum distance rmax
is, permitting the MGD axion star to undergo a tidal disrup-
tion event. Therefore MGD axion stars are less sensitive to
tidal disruption effects, as l increases. It also corroborates
the fact that their density increases as l increases. Denser
compact objects are more cohesive and less inclined to tidal
disruption than their GR counterparts. MGD axion stars are
even more robust to tidal disruption events for lower values
of the brane tension, specifically for l � 10−6.

It is worth pointing out that exclusively for the caseσ(0) =
5 × 10−4, when the MGD parameter lies in the tiny range
l � 9.84 × 10−3 m, the axion field typical densities can
induce stimulated decays of the axion to photons [83]. Axion
miniclusters have a standard density equal to ≈ 1010 kg/m3,
at which the annihilation aa → γ γ , including other eventual
dissipative processes, are not importantly effective. Hence
axion miniclusters undergo collapsing due to gravitational
cooling, after separating from the motion of galaxies due
solely to the expansion of the Universe, which characterizes
the Hubble flow. Regarding axions with mass m ≈ 10−5 eV,
the maximum axion star mass equals ≈ 1025 kg, representing
a bigger amount than the minicluster mass [57]. Hence one
might expect the collapse to yield an axion star, with density
ρ ≈ 1015 kg/m3. However, at these densities, stimulated
decay of axions begins to be relevant, as the axion decay rate
is too small, of order ≈ 10−49 sec−1, for ma ≈ 10−5 eV. The
amplification arising from the stimulated decay of axions into
photons yields a factor exp(D), with

D ≈ �π m2
p fπVesc

m4
π fa R

(60)

where �π ≈ 8 eV, fπ ≈ 134 MeV, fa ≈ 1012 GeV,

mπ = 134.977 MeV, Vesc =
√

2GM
R is the escape veloc-

ity. For MGD axion stars with minicluster mass, D ≈ 1027.
It implies that the final stage of the collapse process induced
by gravitational cooling is a flash, comprising a bright beam
of photons [57,68]. This possibility can be traced by ground-
based telescopes. This case does not occur in the GR-limit,
as one can check the highest possible densities for MGD
axion stars in Table 1. Now, for the cases σ(0) = 3 × 10−4

and σ(0) = 5 × 10−4, when the MGD parameter lies in the
tiny range l � 9.84 × 10−3 m, the axion densities induces
stimulated decays of the axion to photons. More precisely,
for any value of σ(0) � 2.932 × 10−4, whatever the value
of the MGD parameter is, there will be no stimulated decays
of the axion to photons, and axions are a DM candidate.
The axion field can form compact self-gravitating objects if

σ(0) � 2.932 × 10−4, for any value of the MGD parameter.
For values σ(0) � 2.932 × 10−4, the MGD parameter must
be in the tiny range l � 9.84×10−3 m, for stimulated decays
of axions to be observed.

Typical densities for axion stars are also shown in Table
1, for the GR-limit, and in Table 2, for the extremal upper
limit l = 6.370 × 10−2 m [28]. Due to the smallness of
the axion star masses, the MGD axion stars can play the
role of the mini-massive compact halo objects, composed
by condensation of axion field, representing the final state
of axion miniclusters originated in the QCD epoch of the
universe evolution [64]. MGD axion stars comprise a large
number of stable asteroid-sized scalar condensations, whose
final stage encompasses clustering into typical structures that
are similar to cold DM halos. Assuming that the axion is the
main component of DM, the galactic halo can be modeled
by an ensemble of MGD axion stars. For σ(0) = 5 × 10−4,
the MGD axion star mass lies in the range

1.962 × 10−17M� � M � 2.228 × 10−13M�. (61)

The lower limit corresponds to the GR limit l = 0, as in
Table 1, whereas the higher limit regards the observational
upper limit l = 6.370 × 10−2 m [28]. Also, considering the
same extremal limits for l, for σ(0) = 3 × 10−4, the MGD
axion star mass lies in the range

2.784 × 10−17M� � M � 3.162 × 10−13M�, (62)

whereas for σ(0) = 1 × 10−4, the MGD axion star mass is
in the range

6.658 × 10−17M� � M � 7.652 × 10−13M�, (63)

5 Conclusions and perspectives

We showed that MGD axion stars have the asymptotic value
of gravitational masses, the radii, the densities, and the com-
pactnesses variable, expressed as a function of the brane
tension. More specifically, MGD axion stars present typi-
cal masses and densities that can reach 4 orders of magni-
tude larger than GR axion stars, for a given range of brane
tension. Several other physical features of MGD axion stars
were addressed, with important corrections to the general-
relativistic limit. When realistic values of the brane tension
are taken into account, the strength of the axion scalar field
enhances along the radial coordinate. MGD axion stars have
typical masses and densities that make them less sensitive to
tidal disruption, in collisions with neutron stars, for a certain
range of the brane tension. The maximum distance beyond
which MGD axion stars undergo tidal disruptive events was
computed, for several values of the central value of the axion
field, and was shown to be an increasing function of the MGD
parameter, which is inversely proportional to the fluid brane
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tension. With it, we show that MGD axion stars are less sensi-
tive to tidal disruption effects, as the brane tension decreases.

The collapse of MGD axion stars can further play the role
of an important ingredient in the formation of the recently
observed black holes of a nearly solar mass, which can-
not be explained by usual theories of black hole formation
[84]. According to the values of the axion decay constant
fa here used, the final stage of the collapse of axion stars
can correspond to black holes. For the extremal upper limit
l = 6.370 × 10−2 m [28], and for the case σ(0) = 5 × 10−4,
MGD axion stars have a density 1 order of magnitude smaller
than neutron stars, being possible to constitute a binary sys-
tem. GWs originated from the merging process coalescing
binaries of MGD of compact stars, which might have a ring-
down phase after merging. In the brane-world scenario of a
compact extra dimension, GWs are expected to be detected
in a range of frequencies that are considerably higher than the
∼ 104 Hz [85,86]. Therefore the quasinormal ringing signa-
tures in GWs emitted from MGD axion star binaries will be
essentially unique and potentially detectable and observed in
ground-based telescopes [87]. Some other aspects, including
the instability and turbulence underlying solutions of Ein-
stein’s field equations coupled to the axion field, can be inves-
tigated using the apparatus developed in Ref. [88]. In the col-
lision process with neutron stars, photons can be emitted in
the collision process with axions. If the photon plasma sur-
rounding the neutron star has the same order of magnitude
as the MGD axion mass, the axion conversion into a photon
is a coherent source, having typical radio-wave frequencies
to be detected by ground-based telescopes. We also studied
the tidal forces in the collision process of MGD axion stars
to neutron stars. The maximum distance for which the MGD
axion star undergoes tidal disruption event and the percent-
age of axions that can be converted into photons, across the
collision event to neutron stars, was shown to increase as a
function of the MGD parameter, corresponding to lower val-
ues of the brane tension. When one takes into account phe-
nomenologically feasible values of the axion mass and the
axion decay constant, for some range of the brane tension
stimulated decay of axions into photons does occur, imply-
ing that the final stage of the collapse process induced by
gravitational cooling is a flash of photons. This phenomenon
has no analogy for axion stars in the general-relativistic limit,
due to their lower typical densities.

We are currently in an unparalleled position wherein
one can observe gravitational radiation. The LIGO–Virgo–
KAGRA collaboration has validated ninety GW events with
a sound probability of astrophysical source [84]. It provides
a unique opportunity to test extensions of GR in the strong-
field regime and extensions, as the MGD solutions, in this
fruitful era of GW astronomy. The range of mass for MGD
axion stars, 10−17M� � M � 10−13M�, characterizes a
diluted axion star, with self-gravity and quantum pressure

can be neglected compared to the gravitational force from
a gravitationally bound neutron star [59]. One can use the
results here obtained to test collisions between MGD axion
stars and neutron stars. Since GWs interact weakly across
their propagation, it can eventually provide relevant signa-
tures of the inflationary epoch [85]. Since the gravitational
mass and the density of MGD axion stars were here shown
to have 4 orders of magnitude larger than the GR, being their
disruption from tidal forces under collision with neutron stars
less feasible, it can provide unique observational signatures.
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