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ABSTRACT 
Computationally creative systems for music have recently achieved 
impressive results, fuelled by progress in generative machine learn-
ing. However, black-box approaches have raised fundamental con-
cerns for ethics, accountability, explainability, and musical plausi-
bility. To enable trustworthy machine creativity, we introduce the 
Harmonic Memory, a Knowledge Graph (KG) of harmonic patterns 
extracted from a large and heterogeneous musical corpus. By lever-
aging a cognitive model of tonal harmony, chord progressions are 
segmented into meaningful structures, and patterns emerge from 
their comparison via harmonic similarity. Akin to a music memory, 
the KG holds temporal connections between consecutive patterns, 
as well as salient similarity relationships. After demonstrating the 
validity of our choices, we provide examples of how this design 
enables novel pathways for combinational creativity. The memory 
provides a fully accountable and explainable framework to inspire 
and support creative professionals – allowing for the discovery of 
progressions consistent with given criteria, the recomposition of 
harmonic sections, but also the co-creation of new progressions. 

CCS CONCEPTS 
• Applied computing → Sound and music computing; • Com-
puting methodologies → Knowledge representation and rea-
soning; Ontology engineering. 
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1 INTRODUCTION 
Creativity has been defned as the ability to come up with new, 
surprising, and valuable ideas or artifacts [4]. These can be abstract 
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concepts, scientifc theories, solutions to real-world problems, but 
also new designs and artworks. In her seminal work, Boden cat-
egorised creativity into three types: (i) exploratory, where new 
ideas are generated by exploration of a space of concepts; (ii) com-
binational, which enables the creation of new ideas through the 
combination of familiar ones; and (iii) transformational, where the 
“the rules” governing a space are challenged and transformed, to 
generate new kinds of ideas. A computational creativity theory was 
also formulated by Colton et al., to describe creative and generative 
acts (FACE model) and their potential for impact (IDEA model). 

Attempts at formalising human creativity date back to the an-
cient Greeks, and remained up to and beyond Mozart with the 
“Dice Game” and Ada Lovelace – speculating that the “calculating 
engine” might compose elaborate and scientifc pieces of music of 
any degree of complexity. Since then, creativity, creative reasoning 
and creative problem solving have been extensively researched in 
cognitive [5] and computational sciences [24]. A simple defnition 
of a computationally creative system is that of a model capable to 
perform “generative acts” that create artefacts, concepts, or pro-
vide an aesthetic evaluation for the generated outputs [23, 40]. By 
harnessing recent advancements in machine learning, a variety of 
systems have already been implemented across several domains. 
Examples include computational systems for material discovery [9], 
molecular design [66], and more broadly, for virtual laboratories 
[36]; but also models for generating textual artefacts [52], images 
[58, 61], and even recipes [62] from a variety of prompts. 

In the music domain, data-driven generative systems based on 
deep learning methods have achieved impressive results on sym-
bolic music [7], and they can also produce realistic outputs when 
trained on the raw audio [21]. The variety of computationally cre-
ative methods for music is quite broad and diversifed, and has al-
ready enabled the exploration of novel forms of artistic co-creation 
[33]. These range from the automatic generation, completion, and 
alteration of chord progressions and melodies, to the creation of 
mashups, and audio snippets from textual prompts [2]. Due to their 
success, some of these systems have already been integrated into 
commercial software, such as Aiva1 and Amper 2 – allowing users 
to generate full music pieces based on their desiderata. 

1.1 Fundamental concerns of music AI systems 
Nonetheless, having a system that can fully generate realistic music 
raises ethical concerns – especially when those systems are made 
commercial and can potentially replace artists, rather than aug-
menting their possibilities [65]. Indeed, research can open highly 

1https://www.aiva.ai 
2https://www.ampermusic.com 
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Figure 1: Overview of the main steps for the creation of Harmory, from the encoding of chord progressions in the Tonal Pitch 
Space (TPS) and their segmentation, to the emergence of harmonic patterns through similarity and the creation of the KG. 

lucrative business opportunities given the low cost of non-human 
musicians and “their inability to organise in unions to protest against
unfair treatment” [48].

In addition, computationally creative models that fully learn mu-
sic representations from the data by maximising a learning objective 
(e.g. autoregressive, masked prediction, generative modelling) are 
often criticised for lacking accountability, explainability, and musi-
cal plausibility. The former is related to the challenge of keeping
track of where the model picks up while generating new musical 
content. As the model is unaware of its infuences while composing, 
this may prevent giving recognition to real artists, which has direct 
implication on copyright and revenue sharing [22]. Similarly, the 
lack of explainability represents a technological barrier for users, 
as there is little or no understanding of the creative process under-
neath. Explainability is a desirable component for computationally 
creative systems, as it facilitates the interaction with artists, and 
particularly, the ability to control/steer the system based on domain 
knowledge [6, 8]. Finally, the “creative space” learned by data-driven 
systems is often criticised by musicologists and music experts in re-
gard to musical plausibility [30], meaning that, solutions generated 
from these models may violate common notions of music theory. 
This fundamentally hampers a potential dialogue and synergies 
between music experts and AI researchers. 

In sum, most music AI systems cannot yet be deemed trustworthy 
by design (accountability, explainability, ethics, etc.) [26], which 
raises serious concerns related to their large scale adoption. 

1.2 Our contribution 
Instead of replacing artists, we believe that research should focus 
on leveraging the generative capabilities of these systems to design 
novel solutions that can support, enhance and augment the creative 
potential of composers as a human-machine collaboration [11]. 

Inspired by research in music psychology [37], here we present 
the Harmonic Memory (Harmory) – a Knowledge Graph (KG) of
harmonic patterns aimed to support creative applications in a fully 
transparent, accountable, and musically plausible way. 

We leverage a cognitive model of Western tonal harmony to 
project chord progressions into a musically meaningful space, and 
signal processing methods to segment the resulting sequences into 
meaningful harmonic structures. The latter are then compared with 

each other, across all progressions and via harmonic similarity, 
to reveal common/recurring harmonic patterns. Finally, a KG is 
created to semantically establish relationships between patterns, 
based on: (i) temporal links, connecting two patterns if they are
observed consecutively in the same progression; and (ii) similarity
links among highly-similar patterns. Trivially, identical patterns do
not need connections, as they are mapped to the same entity. 

By traversing the KG, and moving across patterns via temporal 
and similarity links, new progressions can be created in a combina-
tional settings; but also, unexpected and surprising relationships 
can be found among pieces and composers of diferent genre, style, 
and historical period. This is also enabled by the scale and diversity 
of Harmory, which is built from ChoCo [16] – the largest existing 
collection of harmonic annotations. 

Our main contributions can be summarised as follows. 

• The Harmonic Memory (Harmory), a large, diversifed, and
musically meaningful KG of harmonic patterns aimed to
support applications of trustworthy machine creativity.

• Underpinning Harmory, we also contribute and validate em-
pirically: (i) a novel method for harmonic structure analysis
in the symbolic domain, that leverages cognitive and musi-
cological models of tonal harmony; (ii) and a state of the art
algorithm for harmonic similarity.

• Examples of possible applications for trustworthy machine
creativity implemented on top of Harmory, focusing on
knowledge discovery and human-machine chord generation.

2 RELATED WORK 
To the best of our knowledge, most machine learning systems are 
explorative. Starting from diferent prompts, such as a priming mu-
sic to continue, an incomplete passage, or a textual query, these 
models can generate convincing outputs by sampling from the 
learned distribution. These include methods based on recurrent 
[64], self-attention [34], and convolutional neural networks [32]. 
Instead, current combinational systems are dominated by varia-
tional autoencoders, which can create new ideas by interpolating 
between two musical passages in a latent space [60]. Transforma-
tive approaches for music have been implemented by “hacking” the
former methods based on the idea of brain transplant, to provide 
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additional artistic stimulation [12]. These range from gentler inter-
ventions mixing up corpora, to splicing neural networks, jointly 
training with interference, and Frankensteinian hybrid models [67]. 

As pointed out before, most of these works lack trustworthy 
features to support and protect creative professionals. Recently, 
Explainable Computational Creativity (XCC) systems have been 
proposed, to promote a bidirectional interaction between system 
and user [44]. This interaction is communicative, enabling the ex-
change of decisions and ideas in a format that can be understood 
by both humans and machines. Examples of explainable systems 
also include [14] – presenting a real-time human-machine interac-
tion for artwork creation: the system provides explanations for its 
decisions, while users can guide the creative process. 

Semantic Web technologies have also been used to make creative 
systems more explainable. An example is [55], which proposes a 
system for creating innovative food combinations using a knowl-
edge graph that describes compounds and ingredients. However, to 
the best of our knowledge, no such systems have been proposed in 
the musical domain. A notable exception is the work by Meerwaldt 
et al., enabling the generation of mashups by leveraging Semantic 
Web technologies for machine creativity [40]. Our work difers sub-
stantially in the broader intent and creative applications it enables, 
the musicological and cognitive basis, the scope/granularity of the 
interconnected musical content (patterns vs full pieces). 

3 HARMORY: THE HARMONIC MEMORY 
The main steps for the creation of Harmory are illustrated in Fig-
ure 1, and encompass four stages: (i) projection of harmonic se-
quences in the Tonal Pitch Space; (ii) novelty-based segmentation of 
harmonic sequences; (iii) pattern identifcation through similarity-
based linking of harmonic segments; and (iii) KG creation. 

Our workfow is defned from the harmonic analysis of a piece, 
which contains a sequence of chords in Harte notation [31], their 
onsets, and the associated local keys. Formally, let c = {�1, . . . , �� }
denote a chord sequence of length � , where each chord fgure �� is 
drawn from the Harte chordal set H . Similarly, k = {�1, . . . , �� }
denotes the corresponding local keys of c, s.t. each �� is a tonic-mode 
tuple defned from T × M, where T = {��, �, �#, ��, . . . ,�#} is the 
set of all possible tonic notes, and M = {major, dorian, . . . , locrian}
is the set of all possible modes in Western tonal music. 

For simplicity, chords are expected to be temporally aligned with 
their onsets, meaning that �� ends when ��+1 starts, ∀� ∈ � − 1. 
Hence, onsets are defned as a (� + 1)-th dimensional vector t ∈ 
R� +1 to compensate for the end time of the last chord (�� +1 is the 
end of �� ). Onsets are given in seconds for harmonic analyses on 
audio music; or as global beats for symbolic music. For example, c = 
[G, B:min, E:min7, . . . ], k = [(G, major), (G, major), (G, major), . . . ], 
and t = [1, 3, 5, . . . ] are the frst three occurrences of such vectors 
for a “A Day in the Life” by The Beatles. 

3.1 Encoding chords in the Tonal Pitch Space 
Given a harmonic analysis H = {c, k, t}, the frst step is to encode 
c and k as a numerical stream, so as to allow the processing of 
similarity/distance operations. This is necessary because chords 
(c) and tonalities (k) are complex elements to process, and come in 
symbolic format. More specifcally, a chord label is a convention 

for describing intervals built on a root note. For example, the label 
of a C major seventh chord (C:maj7) represents the intervals of a 
major quadriad with a minor seventh built on the note � , which is 
equivalent to the note set {�, �, �, ��}. Also, the harmonic function 
of a chord is contextual to the global (and local) key [1]. 

One option here is to leverage Representation Learning methods 
on symbolic music to learn harmonic embeddings from a large 
corpus of chord sequences [39, 41]. These include static embed-
ding methods, such as Word2Vec [47] and Glove [53], as well as 
sequence models for contextualised representations, such as ELMo 
[54] and BERT [20] – which have proved their efcacy on a variety 
of natural language processing tasks. Nonetheless, in the music 
domain, representation learning methods have recently started to 
gain success for audio music [35], whereas little attention has been 
given to symbolic music. This is exacerbated by the challenge of 
fnding musicological interpretability of the resulting embeddings, 
requiring new probing and evaluation methods for music [30]. 

We aim for an encoding of harmony that is well established, per-
ceptually and musicologically plausible, and explainable by design. 
Hence, we rely on the Tonal Pitch Space [42] – a cognitive model of 
tonality used in music psychology and computational musicology. 

The tonal pitch space 
The Tonal Pitch Space (TPS) model [42] provides a scoring mech-
anism that predicts the proximity between musical chords. It is 
based on the Generative Theory of Tonal Music [43] and designed 
to make explicit music theoretical and cognitive intuitions about 
tonal organisation. The model works by comparing any possible 
chord to an arbitrary key, by means of the basic space. The basic 
space is constituted by fve diferent levels, ordered from the most 
stable to the least stable: (i) the Root level; (ii) the Fifths level; (iii) the 
Triadic level; (iv) the Diatonic level; and (v) the Chromatic level. 

Each level holds one or more notes, indexed from 0 (�) to 11 (�). 
The Root level holds the root of a chord (0 for C-major), while the 
Fifths level adds the ffth (0, 7 for C-major). The Triadic level has 
all the notes in the chord (0, 4, 7 for C major). The Diatonic level 
depends on the chord’s key as it holds all the notes of the diatonic 
scale of the key (0, 2, 4, 5, 7, 9, 11 for the C major key). Finally, the 
Chromatic level holds the chromatic scale (0-11). 

The distance between two chords �� , � � in keys �� , � � is calculated 
using the basic spaces of the chords. The basic space is set to match 
the key of the pieces (level ��), and their levels (�-���) are adapted 
to match the chords to be compared. The Chord distance rule is 
applied to calculate the distance. The Chord distance rule is defned 
as � (�,�) = � + � , where � (�,�) is the distance between chord 
� and chord �; � is the minimum number of Circle-of-Fifths rule 
applications to shift � into �, and � is the number of non-common 
pitch classes divided by 2 in the levels (�-��) of the basic spaces of � 
and �. The Circle-of-Fifths rule consists in moving the levels (�-���) 
four steps to the right or left on level �� . 

For each comparison between two chords, the TPS returns a 
value in [0, 13]. TPS has been demonstrated to be sound both musi-
cologically and perceptually [18, 19], and in this work, it is used to 
encode and compare chord-key pairs. 

3875



WWW ’23, April 30–May 04, 2023, Austin, TX, USA de Berardinis et al. 

0 20 40 60 80 100 120 140 160
Time (s)

0

20

40

60

80

100

120

140

160

Ti
m

e 
(s

)

Figure 2: Example of Harmonic SSM resulting from the appli-
cation of Equation 1 on the TPS signal of “Crazy Litle Things 
Called Love” by Queen, using a sampling rate �� = 1. Four 
main block-like structures are visible, correlating with the 
musical form of the piece. Smaller, nested harmonic struc-
tures of lower granularity are observed withing these blocks. 

3.2 Novelty-based harmonic segmentation 
The projection of chord-key pairs (�� , �� ) in the TPS is a funda-
mental requirement to perform harmonic segmentation. First, the 
given harmonic annotation H is used to sample a signal X of length 
� = �� +1 · �� , where harmonic observation (�� , �� ) is consecutively 
repeated �� · �� times (its duration), according to a sampling rate 
�� . Each element �� ∈ X now encodes an input for the TPS model, 
containing the harmonic content at the �-th sample. 

The resulting signal allows for the computation of two harmonic 
descriptors, i.e., the Harmonic Profle (or TPS time series), and the 
Harmonic self-similarity matrix (SSM) – the entry point for segmen-
tation. The former is defned as a vector q ∈ R� � .� . �� = tps(�� , �1), 
holding the TPS distance between each harmonic observation �� 
and the global key �1 of the piece (assumed as the frst key occur-
rence). Similarly, the Harmonic SSM is a matrix S ∈ R� ×� s.t. 

tps(��, �� )S(�,�) = 1 − , (1)13 
where �� ∈ X is a column vector; �,� ∈ [0 : � − 1]; 13 is a 
normalisation factor (the maximum TPS value); and the subtraction 
from 1 is used to obtain a similarity score from a distance measure. 

Self-similarity matrices have been extensively used for structure 
analysis, due to their ability to reveal nested structural elements 
[17, 27] As can be seen from Figure 2, block-like structures are ob-
served when the underlying sequence shows homogeneous features 
over the duration of the corresponding segment. Often, such a ho-
mogeneous segment is followed by another homogeneous segment 
that stands in contrast to the previous one. 

To identify the boundary between two homogeneous but con-
trasting segments (2D corner points), we slide a checkerboard kernel 
K along the main diagonal of the SSM and sum up the element-wise 

product of K and S. A checkerboard kernel can be simply defned 
as a box kernel K� ∈ Z� ×� where � = 2� + 1 is the size of the 
kernel, defned by K� = ���(�) · ���(�) ∀�, � ∈ [−�, �], where ��� 
is the sign function. This yields a novelty function Δ������ (�) for 
each index � ∈ [1 : �] of X as follows: ∑ 

Δ������ (�) = K(�, �) · S(� + �, � + �) (2) 
�,� ∈[−�,�] 

for � ∈ [� + 1 : � − �]. When K is located within a relatively 
uniform region of S, the positive and negative values of the product 
tend to sum to zero (small novelty). Conversely, when K is at the 
crux of a checkerboard-like structure of S, the values of the product 
are all positive and sum up to a large value (high novelty) [50]. 

Local maxima of the novelty curve are then used to detect the 
boundaries of neighbouring segments that correspond to contrast-
ing harmonic parts. For this, we use a pick peaking method that 
applies a smoothing flter to the novelty function (to reduce the 
efect of noise-like fuctuations) and uses adaptive thresholding 
to select a peak when novelty exceeds a local average [51]. The 
detected segment boundaries are used to split X and the correspond-
ing q into a number of non-overlapping harmonic structures. This 
yields q̄ = q̄1 , . . . , q̄� , where � denotes the number of structures. 

3.3 Linking harmonic segments via similarity 
Each harmonic structure q̄� is then considered for harmonic simi-
larity. Since q̄� is still a time series (a partition of q, the Harmonic 
Profle), we formulate the harmonic similarity between two har-
monic structures by comparing their time series. This is done using 
Dynamic Time Warping (DTW) – an algorithm for comparing 
time series, which has been widely used across various domains, 
including speech recognition [49], pattern recognition [63], and 
bioinformatics [71]. In our case, DTW has desirable properties, as 
it is invariant to time shifts, and robust to local variations. 

Vanilla DTW compares two time series by calculating the cu-
mulative distances between each point/observation. It allows for 
non-linear alignment between the time series by considering the 
local warping path. The cost matrix, holding the cumulative dis-
tance between each corresponding point, is constructed using the 
Euclidean distance, and is formalised as: √ ∑ 

���� (q̄� , p̄ � ) = | |�̄�� + �̄�� | |2 (3) 
(�,� )�� 

where � is the optimal warping path – the shortest cumulative 
distance between the time series ( found via dynamic programming). 

As the computational complexity of vanilla DTW is quadratic in 
the sequence length, here we use the Sakoe-Chiba variant. The latter 
achieves linear complexity O(� · �), by constraining the warping 
path within a window of size � , rather than using all points (� ). 

Prior to the computation of similarities, time series are nor-
malised are resampled to meet the same length, and standardised to 
zero mean and unit variance. This has the efect of comparing time 
series by looking at their shapes in an amplitude-invariant manner 
– which brings us closer to the identifcation of harmonic patterns. 

The latter emerge after retrieving the � most similar structures 
for each segment q̄� , and applying a fltration to retain only those 
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Figure 3: Illustration of the Harmory Ontology. The diagram uses the Grafoo notation, where yellow boxes are classes, blue/green 
arrows are object/datatype properties, green polygons are datatypes, and purple circles are individuals. 

� ) is below a given threshold. Struc- chords, using the class mf:Chord. Each segment is linked to its cor-
tures sharing the same (normalised) TPS time series (���� = 0) 

� structures ¯� whose ���� (¯ , p̄qp 
responding har:SegmentPattern – an abstraction of the TPS pat-

defne a distinct harmonic pattern; whereas segments with similar 
time series can be grouped within the same pattern family/cluster. 

3.4 Knowledge graph creation 
An ontology, called Harmory Ontology, was developed for the cre-
ation of the Knowledge Graph (KG). The ontology re-uses the Core 
module from the Polifonia Ontology Network (PON) [10], a network 
of ontologies for the semantic annotation of musical content. This 
allows to link Harmory to ChoCo3 [16]. We also align to the Music 
Ontology [59] – a widely used ontology model in the music domain. 
The ontology was realised by applying the eXtreme Design method-
ology [56], which relies on Ontology Design Patterns (ODP) and 
on the iterative testing of the produced model against a predefned 
set of Competency Questions (CQs). 

For each piece, the ontology allows to: (i) store its metadata, such 
as title, genre, and artist; (ii) hold the harmonic segmentation (see 
Section 3.2); and (iii) relate similar segments (see Section 3.3). This 
enables semantic access to the aforementioned data via SPARQL. 

The model is illustrated in Figure 3, using the Grafoo notation4. A 
piece of music is expressed by means of the class har:MusicalWork, 
which is aligned with mo:MusicalWork in the Music Ontology. The 
metadata of a work is stored via core:hasTitle, core:hasGenre, 
and core:hasArtist, which describe the title, musical genre and 
composer or performer of the piece, respectively. 

A musical work has a har:SegmentationSituation – a spe-
cialisation of the Situation Pattern [28] describing a segmentation 
performed by a specifc har:SegmentationAlgorithm that pro-
duces one or more has:Segments. In this context, a harmonic se-
quence is split/partitioned into a number of segments, with their 
ordering allowing for reconstruction. Each sequence also holds its 

3ChoCo SPARQL endpoint: https://polifonia.disi.unibo.it/choco/sparql 
4Grafo Notation: https://essepuntato.it/grafoo/ 

tern normalised on the temporal axis. Hence, several har:Patterns 
may have the same har:SegmentPattern. Similarity relations are 
expressed via the class har:SegmentPatternSimilarity, which 
relates two Segment Patterns and holds their similarity value via 
the datatype property har:hasSimilarityValue. 

4 EXPERIMENTS 
To validate Harmory, we tested the efcacy of the two central com-
ponents underpinning its creation: the DTW harmonic similarity 
(Section 3.3), and the harmonic segmentation (Section 3.2). 

4.1 Evaluation of harmonic similarity 
We evaluated the DTW harmonic similarity by comparing our im-
plementation with other algorithms for the cover song detection task 
– a common benchmark for similarity algorithms in the symbolic 
music domain [18, 19]. 

In this comparison, performance is evaluated using two standard 
metrics: First Tier and Second Tier. The former measures the ratio of 
correctly retrieved songs within the top (�� −1) matches to (�� −1), 
where �� is the size of the song class (e.g. the same composition, or 
performance) for track � . The First Tier can be formalised as: 

�∑ 1 | |� | (�� −1) | ∩ �� | | 
��������� (� ) = , (4)

� | | (�� − 1) | | 
� =0 

where � is the set of all tracks in the dataset having at least a 
“cover”, and �(�� −1) denotes the list of matches for track � ranked 
by similarity – where only the frst (�� − 1) occurrences are consid-
ered. Similarly, the Second Tier is defned as the ratio of correctly 
retrieved songs within the best (2�� − 1) matches to (�� − 1). 

�∑ 1 | |� | (2�� −1) | ∩ �� | | 
���������� (� ) = (5)

� | | (�� − 1) | | 
� =0 
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Schubert CASD Schubert+CASD 

Algorithm TPS Mode Stretch Constraint Normalise 
TPSD ofset - - -
TPSD profle - - -
DTW ofset stretch - -
DTW profle stretch - -
DTW ofset stretch sakoe_chiba -
DTW profle stretch sakoe_chiba 
DTW ofset stretch itakura - 0.96 0.99 
DTW profle stretch sakoe_chiba 
LCSS ofset - sakoe_chiba - 0.38 0.61 0.03 0.07 0.14 0.24 
LCSS ofset - itakura - 0.7 0.8 0.14 0.23 0.31 0.41 

SoftDTW ofset stretch - - 0.93 0.97 0.55 0.69 0.67 0.77 
SoftDTW profle stretch sakoe_chiba - 0.98 0.99 0.62 0.73 0.73 0.81 

Table 1: Performance of similarity algorithms on cover song detection. The highlighted lines denote the best performing 
algorithms, while results in bold indicate the best performance obtained for the First Tier and Second Tier, respectively. 

First Tier Second Tier 
0.49 0.63 
0.53 0.74 
0.94 0.98 
0.97 0.99 
0.96 0.99 

- 0.97 0.99 

yes 0.97 0.99 

Methods. We compare our DTW similarity (c.f. Section 3.3) with 
the following algorithms for harmonic and time series similarity: 

• Tonal Pitch Step Distance (TPSD) [18, 19], a state of the art 
method that measures the diference between the Harmonic 
Profles (see q in Section 3.2) of the given harmonic sequences. 
The diference is determined as the minimal area between 
the two time series, after considering all possible horizontal 
shifts. TPSD can handle sequences of diferent length, and 
has a time complexity of O(�� log(� + �)), where � and � 
denote the length of the compared chord sequences [3]; 

• Longest Common Subsequence (LCSS) [68], a method 
expressing time series similarity based on their longest com-
mon subsequence. Similarity is calculated as the relative 
length of the longest common subsequence compared to 
the length of the shortest time series, thus ranging in [0, 1]. 
Using 2 dynamic programming, LCSS is bounded in O(� ); 

• Soft Dynamic Time Warping (Soft DTW) [15], a variant 
of DTW that allows for non-binary (fuzzy) alignments be-
tween time series, by using a sof-constraint. Soft DTW can 
be computed with quadratic time/space complexity. 

All experiments are performed on the Harmonic Profle, in ad-
dition to an alternative formulation of the TPS time series, called 
ofsets, where �� = tps(�� , �� −1) (chord ofset distance). 

For DTW, LCSS and Soft DTW, two types of constraints were also 
tested: Sakoe-Chiba and Itakura. Analogously to Sakoe-Chiba, the 
Itakura constraint sets a maximum distance for each point in the 
time series, making the algorithm more efcient, and reducing the 
risk of being trapped in local minima. Several parameter settings for 
the Sakoe-Chiba radius and Itakura band were tested, and the best 
results were obtained by setting them to 5 and 4, respectively. This 
parametrisation turned out to be optimal across all our experiments. 

Each method was tested on sequences of original length (no-
stretch) and after resampling to the shortest sequence. We also 
experimented with normalised time series (Section 3.3). 

Dataset. We two subsets of ChoCo [16] containing cover tracks: 
Schubert Winterreise [69] and Chordify Annotator Subjectivity Dataset 
(CASD) [38]. The former provides harmonic annotations for each of 
the 9 diferent performances of the same musical piece by Schubert. 
Similarly, CASD contains four annotations of the same performance, 

First Tier Second Tier First Tier Second Tier 
0.62 0.68 0.58 0.67 
0.76 0.83 0.69 0.8 
0.53 0.67 0.66 0.76 
0.6 0.69 0.71 0.78 
0.62 0.7 0.72 0.79 
0.69 0.77 0.77 
0.55 0.65 0.68 
0.7 0.76 0.79 

0.84 
0.75 
0.83 

contributed by four diferent annotators. Chords from Isophonics 
Dataset [45] and Jazz Audio-Aligned Harmony (JAAH) [25] are 
also added to the reference dataset in order to add heterogeneity 
(diferent genres) and increase the complexity of the task. 

Results. Table 1 shows the results of this comparison and high-
lights the best performing algorithms. Results are presented for 
Schubert and CASD separately, and also in a third merged setup 
(Schubert+CASD). Notably, the performance of the DTW algo-
rithm is signifcantly better for Schubert (one piece, multiple perfor-
mances), while for CASD (one performance, multiple annotations), 
TPSD performs slightly better. The best results for the third setup 
are obtained using the Sakoe-Chiba DTW, using normalisation and 
resampling on the shortest sequence. It is also worth remarking 
that our implementation, besides being the most accurate overall, 
is also the most efcient approach, due to its linear complexity. 

4.2 Structural coverage of known patterns 
To validate our harmonic segmentation (Section 3.2), we measure 
the overlap between the resulting structures with a collection of 
well-known chordal patterns. This exemplifes the hypothesis that 
a good segmentation would maximise the “reuse” of harmonic 
patterns – as building blocks that can be found in other pieces.

1= q 
q 

qqq � � Given a segmentation ¯ ¯ , . . . , ¯ of a piece, with each ¯ 
containing a TPS time series, the overlap of ¯ 
known harmonic patterns P is computed as: 

with a dataset of 

q 
�∑ 1 

�� (¯ min q 

q 

� �DTW (¯ 

� �DTW (¯ , p), 

(6)) = , p),
� p∈P 

�=1

qq 
q�� (¯ 

¯� ∈ ̄  

which difer in the aggregation function. The former measures 
the average pattern distance contributed by each structure in the 
segmentation; the latter, instead, only retains the distance of the 
most similar pattern that was matched to one of the structures. 
When �� = 0, all segments are fully matched/found in P; whereas 
�� is minimal when at least a segment matches a pattern in P. 

Methods. We compare our method (denoted as harmov) to fast 
low-cost unipotent semantic segmentation (FLUSS) [29] – a state of 
the art algorithm for time series segmentation defned on the Matrix 

= min min (7)) 
p∈P 
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Figure 4: Structural coverage of known patterns for each segmentation method, using Equation 4 (lef), and Equation 5 (right). 
Results are reported as distances averaged per pattern group (a group contains known harmonic patterns of the same length). 

Profle [70]. FLUSS annotates the time series with information 
about the likelihood of a regime change (a segment boundary); 
and is parameterised by a fxed window size �, and the number 
of segments to detect � . We also include a baseline splitting a time 
series in � uniform segments. Both methods operates on the TPS 
Profle of h, and are optimised via grid search. 

Datasets. We compute and evaluate the harmonic segmenta-
tions on a dataset comprising 320 chord progressions, obtained 
from randomly sampling 40 pieces per audio partition in ChoCo 
(isophonics, billboard, casd, schubert-winterreise, rwc-pop, 
uspop-2002, jaah, robbie-williams). This yields a diversifed 
(several genres, durations, etc.) yet representative sample of Har-
mory (≈ 2% of ChoCo); which prevents larger partitions from bi-
asing the overall results. For P, we assembled a dataset of known 
harmonic patterns from Impro-Visor [57], which is available on 
GitHub5. After fltration of trivial occurrences (e.g. chord uni-grams, 
sequences with repeated chord occurrences, etc.), the dataset counts 
300 unique patterns spanning from 3 to 10 chord occurrences per 
pattern (the length of a chordal pattern). 

Results. The structural coverage, computed for each segmen-
tation method and aggregated for all known harmonic patterns of 
the same length, is reported in Figure 4. For both measures �� , �� , 
the segmentations produced by our method (harmov) produce the 
lowest distances – meaning that they show the highest overlap with 
the known harmonic patterns in P. This behaviour is preserved for 
all pattern groups (the x-axis), and the gap with the other methods 
increases with pattern’s length. The second performing method 
is FLUSS, using � = 14 split regions and a window size of � = 3. 
However, for longer patterns, the latter performs comparably with 
a fxed sequence split (the other baseline). Finally, it is worth re-
marking that results for all baselines are frst optimised on a grid 
search; whereas we use the default parameterisation for harmov. 

5 AVENUES FOR MACHINE CREATIVITY 
We envisage various applications of Harmory across diferent tasks 
and use cases, ranging from music information retrieval and com-
putational musicology, to creativity support for artistic workfows. 
The latter is the main focus of this work. However, we do not aim 

5https://github.com/Impro-Visor/Impro-Visor 

at improving the state of the art in music generation, but rather to 
provide a transparent system to support creative workfows [11]. 

Here, we show examples of trustworthy applications for pat-
tern discovery, human-machine chord generation, and harmonic 
similarity. The latter is more of musicological interest, whereas 
the former are both creative use cases. Each application is demon-
strated through a set of Prompts, expressed in natural language, 
which correspond to SPARQL query templates to interrogate the 
KG (Section 3). The latter are fully available on our repository6. 

5.1 Pattern discovery 
The traversal of the Harmonic Memory makes it possible to obtain 
granular information of the harmonic structure of songs. In partic-
ular, it possible to explore the harmonic segments of each song, the 
patterns related to each segment, and the similarities with other 
patterns/segments found in other pieces. 

A composer may start with a harmonic pattern mind, and initiate 
a creative exploration of the KG by leveraging music and metadata. 

Prompt 1 For a given pattern, which are the tracks (titles, artists 
and genres) in which the pattern can be found? 

Prompt 2 Given a music genre, what are the most frequent patterns? 

To support creative exploration, more complex prompts can be 
formulated in order to narrow down the search, and eventually 
discover surprising or unexpected outputs, if present. 

Prompt 3 Which harmonic patterns are used in “Michelle” by The 
Beatles, but also in a classical composition? 

Prompt 4 Which patterns used by The Beatles in “Michelle” but not 
in “Hey Jude” contain at least a B fat major seventh chord? 

In the Harmory KG, we have included known patterns (as de-
scribed in Section 4.2), which are labelled in such a way as to 
indicate their origin, mood, or harmonic function within the pro-
gression. These labelled harmonic fragments can be used as input 
for a query, e.g. for searching songs that contain them: 

Prompt 5 Which tracks include a dominant cycle in seven steps? 

6SPARQL queries: https://github.com/smashub/harmory/tree/main/queries 
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Figure 5: Example of a generated chord progression using a pattern-based prompt. Given a frst segment, each segment is 
chosen according to similarity to the subsequent one in the original sequence, and fltered according to arbitrary criteria. The 
second segment is taken from a song that has “hip-hop” as genre, while the next two segments are chosen by artist. 

5.2 Human-machine chord generation 
Harmory also enables combinational creativity use cases. New pro-
gressions are generated by moving across patterns through tempo-
ral and similarity links, based on the given creative requirements. 
At generation time, this has the advantage of giving recognition to 
all artists that contributed to the new creation, as shown in Figure 5. 

First, it can provide statistical information regarding variations 
of a given harmonic sequence. As these variations come from real 
pieces, it is also possible to leverage metadata for controlling the 
generation. To do this, a prompt can be formulated from a given 
(possibly new) harmonic sequence (or a part of it), to retrieve all 
the all harmonic sequences using the same pattern. 
Prompt 6 Given a chord sequence, which are its variations, and 

which tracks these variations belong to? 
Similarly, it is also possible to query the most similar (or most 

distant) harmonic sequences to a given one: 
Prompt 7 Given a chord sequence, which are its most similar chord 

sequences, sorted by similarity? 
These simple constructs already allow to generate new harmonic 

sequences, starting from either a known harmonic idea/pattern, 
or a full progression. If starting from a full progression, one way 
is to identify the frst harmonic segment that makes it up. From 
this point, transitions can be made using similarity relations, while 
taking into account the order of the diferent segments (temporal 
connections) and their tonality. For example, starting from the frst 
harmonic segment of a song (a priming sequence), one can then 
generate a continuation by identifying similar sequences to the next 
sequence, fltering them by tonality (or/and by artist, genre, title) 
and repeat this process recursively for a number of steps, criteria, 
or with the supervision/control of the user. 
Prompt 8 Create a progression starting with “Michelle” by The Bea-

tles, continuing with a segment found in a classical piece of 
music, and then continuing with another by Chet Baker. 

5.3 Harmonic similarity 
From a musicological perspective, the KG can also be used to anal-
yse similarity relations between tracks – by leveraging the local 

information relating harmonic structures. This also allows for the 
formal defnition of similarity functions (depending on a genre- or 
task- specifc notions) by using logical operators (SPARQL syntax) 
over harmonic segments/patterns. An example is given below. 
Prompt 9 Given a track, which tracks contain patterns with a dis-

tance of less than 0.2, each having the same order? 

As expected, the results of this query are almost exclusively cover 
songs of the given track. Nevertheless, a similarity function can be 
defned to be less strict, and hence more explorative. For instance, 
the similarity function below uses a higher similarity threshold for 
patterns, and does not constrain on the order of segments. 
Prompt 10 Given a track, which tracks contain patterns with a dis-

tance of less than 0.5, regardless of their order? 

6 CONCLUSIONS 
Our work contributes a Web resource aimed to support the design 
of trustworthy systems for computational music creativity. This is 
a central requirement for the large scale adoption of these systems, 
which is often neglected in generative machine learning research. 
To this vision, we leverage a corpus of harmonic annotations on the 
Web, to design the Harmonic Memory (Harmory) – a Knowledge 
Graph of interconnected chordal patterns which is perceptually 
and musicologically grounded. After demonstrating the validity of 
our framework, we showed how Harmony can enable transparent, 
explainable, and accountable applications for human-machine cre-
ativity – ranging from pattern discovery and chord generation, to 
harmonic similarity. Future work includes linking Web resources 
with musical pieces in Harmory, to achieve the alignment to other 
ontologies and Knowledge Graphs in the music domain. We also 
envisage the inclusion of heterogeneous data to enrich and com-
plement the harmonic information, such as perceptual metadata, 
musical content (melodies), and complexity measures. 
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