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This PDF includes:
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• MCTDH-spectroscopy implementation: practical notes;

• SPEC: line-shape functions;

• Unshifted LA spectra;
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S1 Explicit expressions: T̂ab and V̂ab(Q)

The explicit expressions for the kinetic (T̂ab) and the potential (V̂ab(Q)) operators in the

diabatic basis are here reported.

Tab =
1

2
PTΩP · δab (S1)

Vaa(Q) = E0
a + λTaaQ +

1

2
qTΩQ, (S2)

Vab(Q) = λTabQ (S3)

P is the associated momenta of normal coordinates Q, δab is Kronecker delta function,

E0
a is the vertical excitation energy of ath excited-state at the g equilibrium geometry, λaa

represents the intra-state coupling (gradients) of state a, λab the inter-state coupling between

states a and b 6= a and finally, Ω is the diagonal matrix of the vibrational frequencies which

in the LVC model are defined identical to those of state g.

As described in the main text, λab was considered exclusively for the e set of states and

zero otherwise. On the contrary, λaa were computed for both e and f sets.

S2 LVC: additional details

The Linear Vibronic Coupling (LVC) Hamiltonian for quantum dynamics was setup for

pyrene as documented by some of the authors in reference 1, but with two main differences.

On one hand, the number of electronic states was enlarged to include in the model the f mani-

fold (which consists of states S11, S14, S15, S18 and S33 at the SS-RASPT2/RASSCF(4,8|0,0|4,16)/ANO-

L-VDZP level of theory) that were added to the S1-S7 states. On the other hand, the im-

plementation of wavepacket overlap calculations along the dynamics was only possible for

MCTDH (and not for its multilayer version ML-MCTDH), and this imposed to reduce the

number of nuclear coordinates: after analysis of our previous dynamics1 we selected a group

of 15 MP2/ANO-L-VDZP pyrene normal modes (Table S1) that showed diabatic S1-S7 cou-
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plings and/or gradients in the final Hamiltonian higher than 0.08 eV in absolute value. It is

noteworthy that this might lead to the exclusion of some modes bearing a significant com-

ponent of the gradient for the second excitation manifold states, however, we decided to give

a higher priority to the states responsible for the non-adiabatic dynamics (i.e., S1-S7).

Table S1: Normal modes of pyrene included in the LVC model.

Mode D2h irred. repr. Frequency (cm−1) Red. mass (AMU)
8 Ag 405.5 8.0252
26 Ag 798.9 5.7383
37 Ag 1079.3 2.0432
47 Ag 1271.4 2.6830
52 Ag 1456.1 8.1436
62 Ag 1668.6 7.9339
20 B2u 690.9 6.9743
27 B2u 814.6 4.5545
53 B2u 1488.9 6.0788
6 B3u 350.4 4.5443
15 B3u 539.1 7.0622
54 B3u 1506.7 8.5694
55 B1g 1514.0 6.0195
56 B1g 1519.5 5.3331
60 B1g 1627.7 8.2909

The MP2/ANO-L-VDZP S0 minimum was identified as reference geometry for the pa-

rameterization and the corresponding adiabatic states used as reference states for the subse-

quent maximum-overlap diabatization procedure (i.e., adiabatic states at displaced geome-

tries were rotated so as to maximize their overlap with the reference states). The S0-S7

states were parameterized along the selected modes using single-state (SS) and multi-state

(MS) RASPT2/RASSCF/ANO-L-VDZP calculations exactly as described in reference 1

(see corresponding main text and supplementary material for computational details, sym-

metry arguments and a graphical representation of the active space orbitals). In contrast,

states in the second excitation manifold S11, S14, S15, S18 and S33 were assumed to be un-

coupled (i.e., all the corresponding off-diagonal terms in the Hamiltonian were set to zero

and the diabatic and adiabatic representations coincide at all geometries), therefore they

were only parameterized according to their vertical excitation energy and gradient at the
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reference geometry. Vertical excitations and gradients of all states were calculated at the

SS-RASPT2/RASSCF(4,8|0,0|4,16)/ANO-L-VDZP/D2h level of theory.The possible overes-

timation/underestimation of state energies even for small displacements (as a consequence of

mixing/crossing of the reference RASSCF states) could be mitigated by application of MS-

RASPT2 variations, however, this would be computationally very demanding, and RASSCF

gradients were used as a first approximation.

Table S2: Selected normal mode and their frequency for reduced dimensionality LVC model
for the MS parametrization.

MS
Modes Frequency Modes number

in 49 model
01 350.361 1
02 405.550 2
03 539.117 6
04 698.871 8
05 798.881 10
06 814.609 11
07 1079.300 14
08 1271.414 24
09 1456.125 29
10 1488.876 30
11 1506.719 31
12 1513.975 32
13 1519.488 33
14 1627.737 37
15 1668.564 39
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S3 MCTDH population dynamics: full vs reduced di-

mensionality model

0 100 200 300

Times (fs)

0

0.2

0.4

0.6

0.8

1

P
op

ul
at

io
n

S1
S2
S3
S4
S5
S6
S7

Full Dimensionality

0 100 200 300 400

Reduced Dimensionality

Figure s1: Dynamics of the populations of the diabatic electronic states obtained by ini-
tially exciting the wavepacket on S2 (1B2u) for the MCTDH(7st) parameterization for full
dymentionality on the left and reduced dimensionality on the right panels.

S4 MCTDH-spectroscopy implementation: practical notes

Consider Eq. 20 in the main text. It reads (in a bit more compact notation):

R
(1)
MCTDH(t) =

(
i

~

)
θ(t)|µgS2

|2c∗g(t)cS2→S2(t)e
−t2/2σ2

t 〈χg(0) |χS2→S2(t)〉 (S4)

First, as already noted in the main text, the wave-packet overlap terms obtained in MCTDH

equals the product of the electronic amplitudes c∗g(t)cS2→S2(t) with the nuclear wave-function

overlap 〈χg(0) |χS2→S2(t)〉. Therefore we can rename the actual quantity extracted from

the MCTDH dynamics as ΞgS2(t) = θ(t)c∗g(t)cS2→S2(t) 〈χg(0) |χS2→S2(t)〉 (where we have

included also the Heaviside theta function, as ΞgS2(t) is computed from t = 0 on). Eq. S4

can be rewritten as:

R
(1)
MCTDH(t) =

(
i

~

)
|µgS2

|2e−t2/2σ2
t ΞgS2(t) (S5)
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At this point, R(1)
MCTDH(t) is processed via the FT step. We recall that, in order to reduce

the sampling frequency, a uniform (vertical) shift of the potential energy surfaces can be

applied to reduce the g − S2 energy gap by a factor ω̄S2g. The correct energy gap can

be reintroduced by shifting the FT of the same ω̄S2g factor. This corresponds to perform

(without any approximation):

S(1)(Ω) = =
∫
R

(1)
MCTDH(t)ei(Ω−ω̄S2g

)tdt

∝ |µS2g|
2<
∫

ΞS2g(t)e
i(Ω−ω̄S2g

)t−t2/2σ2
t dt (S6)

Similar steps can be repeated for the third-order response, leading to the final equation.

S(3)(Ω, t2) = +|µS2g|
4<
∫

ΞGSB
S2g

(t3)ei(Ω−ω̄S2g
)t3−t23/2σ2

t dt3

+|µS2g|
4<
∫

ΞSE
S2→S2;g(t2, t3)ei(Ω−ω̄S2g

)t3−t23/2σ2
t dt3

−
∑
e,f

|µgS2
|2|µef |2<

∫
ΞESA
S2→e;f (t2, t3)ei(Ω−ω̄fe)t3−t23/2σ2

t dt3 (S7)

In practice, the ω̄ab shifts correspond to the vertical transition energy. The t time of the

first-order response and the t3 time of the third-order one were sampled every 0.5 fs, while

the t2 time was sampled every 2 fs. The integrals were performed numerically by means of

the trapezoidal rule.
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S5 SPEC: line-shape functions

ϕcba(τ4, τ3, τ2, τ1) are the multidimensional phase-functions encoding the overlaps of WP mov-

ing on different adiabatic surfaces at different times. These are given by:

ϕcba(τ4, τ3, τ2, τ1) = −gcc(τ43)− gbb(τ32)− gaa(τ21)

−gcb(τ42) + gcb(τ43) + gcb(τ32)

−gca(τ41) + gca(τ42) + gca(τ31)− gca(τ32)

−gba(τ31) + gba(τ32) + gba(τ21) (S8)

where τij = τi − τj. In the above expression gab(t) are the so called line-shape functions

which are integral transformation of the autocorrelation function describing the undamped

oscillatory dynamics on the k-th normal mode harmonic potential with frequency ωk and

relative displacement with respect to the ground state equilibrium d̃ak and d̃bk in the a-th

and b-th electronic state, respectively.

gab(t) =
1

2π

∑
k

ωkd̃a,kd̃b,k
2

[
coth

~ωk
2kBT

(1− cosωkt) + i sinωkt− iωkt
]

(S9)

As d̃g,k = 0 by definition (i.e. GS equilibrium is at the origin) only the term −ge′e′(t3)

survives in the phase function for the GSB thus demonstrating that this pathway is t2-

independent and has a line shape resembling that of the linear absorption signal. The

expressions for the SE and ESA signals are more complicated and carry the memory of the

correlations between vibrational WP residing on different electronic states along each given

mode during the intervals t2 and t3.

The state-specific line shape functions gab(t) are parametrized employing similar inputs

to the ones needed for the LVC model Hamiltonian: the normal mode frequencies ωk and

displacements d̃ik. In practice, all these quantities can be obtained through QM calculations

at one or more reference geometries.2
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In the SPEC expressions the dephasing induced signal broadening is implemented via the

line shape function of the overdamped Brownian oscillator (OBO) in the high temperature

limit3,4

gOBOab (t) =
λab
Λ

(
2kBT

~Λ
(e−Λt + Λt− 1)

)
(S10)

with λab and Λ the system-environment coupling strength and the fluctuation time scale.

Thus, the total line shape function contains two components, one describing the vibrational

structure of the signal (eq. S9) and a second one responsible for the solvent-induced homo-

geneous broadening (eq. S10).

S6 Unshifted LA spectra
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Figure s2: Comparison of the (unshifted) LA spectra obtained at different levels of theory:
MCTDH(7st) (black), MCTDH(3st) (red), MCTDH∗(7st) (dashed blue) and SPEC (gray).
The spectra are normalized. The shifts between the fundamental bands of the different
spectra with respect to the MCTDH(7st) level of theory are: 0.04 eV, 0.06 eV and 0.06 eV,
for MCTDH(3st), MCTDH∗(7st) and SPEC, respectively.
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S7 Overlaps comparison
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Figure s3: Comparison of the overlaps (damped with the the Gaussian dephasing factor, here
set in the weak dephasing limit, σt = 176.8 fs) at different levels of theory: a) MCTDH(7st),
b) MCTDH(3st) and c) MCTDH∗(7st). Both real (black) and imaginary (red) parts of the
overlaps are reported. Note that here the reported overlap also absorbs the ca(t) electronic
coefficients.
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