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Abstract 

Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak 

outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas 

(PDAC). PDAC is a cancer which is difficult to effectively treat as it is often detected late in the 

disease process. Almost all PDACs (over 90%) have activating mutations in the GTPase gene 

KRAS. These mutations result in constitutive KRas activation and the mobilization of 

downstream pathways such as the Raf/MEK/ERK pathway. Small molecule inhibitors of key 

components of the KRas/Raf/MEK/ERK pathways as well as monoclonal antibodies (MoAbs) 

specific for upstream growth factor receptors such insulin like growth factor-1 receptor (IGF1-R) 

and epidermal growth factor receptors (EGFRs) have been developed and have been evaluated 

in clinical trials. An additional key regulatory gene frequently mutated (~75%) in PDAC is the 

TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell 

cycle progression, apoptosis, metabolism, cancer progression and other growth regulatory 

processes. Small molecule mutant TP53 reactivators have been developed which alter the 

structure of mutant TP53 protein and restore some of its antiproliferative activities. Some mutant 

TP53 reactivators have been examined in clinical trials with patients with mutant TP53 genes. 

Inhibitors to the TP53 negative regulator Mouse Double Minute 2 (MDM2) have been developed 

and analyzed in clinical trials. Chloroquine and hydroxychloroquine are established anti-malarial 

and anti-inflammatory drugs that also prevent the induction of autophagy which can have effects 

on cancer survival. Chloroquine and hydroxychloroquine have also been examined in various 

clinical trials. Recent studies are suggesting effective treatment of PDAC patients may require 

chemotherapy as well as targeting multiple pathways and biochemical processes.   
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1. Introduction 

Pancreatic cancer accounts for many deaths world-wide (Muniraj et al., 2013; Siegel et 

al., 2013). The survival rate for pancreatic cancer is very poor. Pancreatic cancers are usually 

diagnosed late in the disease process often after metastasis to other sites. Pancreatic cancer is 

predicted to be one of the top five cancers resulting in death of the affected patient (Hu et al., 

2021). Most (~85%) of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC) 

(Orth et al., 2019).  

1.1  Treatment of PDAC 

Treatment options for PDAC patients are limited. One common therapy for PDAC is 

surgical removal of the diseased portion of the pancreas (Kommalapati et al., 2018). However, 

this is usually an ineffective therapy as the tumor frequently reappears and to complicate 

matters, the tumor may have metastasized to other organs. PDAC patients have a poor life 

expectancy after being diagnosed. Recent analysis has indicated that PDAC patients are 

predicted to have a short survival of less than a half a year and a 5-year median survival rate of 

approximately 10% (Ilic and Ilic, 2016). Upon transcriptomic analysis of PDAC patients with a 

different survival rates, the higher scoring patients, had more malignant tumors that contained 

mutations at TP53. The more malignant tumors were associated with unfavorable tumor 

microenvironment (TME) which included, lower infiltration of CD8-positive T cells and dendritic 

cells (Katsuta et al 2021). 

Treatment with chemotherapeutic drugs is an effective approach to treat certain types of 

cancer patients. However, a common problem is the development of drug resistance. 

Sometimes treatment of certain cancers with chemotherapeutic drugs leads to the selection of 

drug resistance cancer stem cells (CSCs) from the initial tumor (McCubrey et al., 2008; Davis et 

al., 2014; Zhang et al., 2016; McCubrey et al., 2017). The CSCs may be less sensitive to 

chemotherapeutic drugs than the initial tumor cells. Chemotherapy is used to treat certain 

PDAC patients. However, treatment of PDAC patients with chemotherapy is usually a palliative 
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approach as opposed to curative approach and only some patients respond (Ruarus et al., 

2018; Müller et al., 2021).  

The base analogues gemcitabine and 5-fluorouracil (5FU) are two commonly used drugs 

to treat PDAC patients. In addition, the drug paclitaxel (currently, nab-paclitaxel which has 

albumin attached to it to increase the delivery of paclitaxel to the tumor), interacts with the 

microtubules during cellular division, is sometimes used. Many of these drugs slow tumor 

growth and relieve the pain in the PDAC patients caused by growth of the tumors. A summary of 

the chemotherapeutic drugs, immunotherapies, signal transduction inhibitors and repurposing of 

other drugs and vitamins examined in clinical trials with PDAC patients is presented in Table I. 

1.2. Genes frequently mutated in PDAC. 

Two of the most frequently mutated genes in PDAC are KRAS (~95%) and TP53 (~75%) 

(Pu et al., 2019; Qian et al., 2020). Most KRAS oncogene mutations result in a constitutively 

active KRas protein which leads to stimulation of Raf/MEK/ERK, PI3K/PTEN/Akt/ERK and other 

pathways that can promote uncontrolled cell growth (Davis et al., 2014; Waters & Der., 2018). 

Altered TP53 tumor suppressor activity can also lead to loss of cell cycle regulation, resistance 

to chemotherapeutic drugs and multiple biochemical pathways which also effect cell growth 

(Grant et al., 2016; Nakamura et al., 2016; Hayashi et al., 2019; McCubrey et al., 2022a).  

Some TP53 point mutations result in novel activities for the TP53 protein. This class of 

mutations are referred to as gain of function (GOF) mutations. An additional class of TP53 

mutations in PDAC results in deletion (either partial or full deletion) in one or both TP53 alleles 

and the full length TP53 protein is not expressed. Certain mutant TP53 proteins with GOF 

properties will activate oncogenic Ras signaling (Escobar-Hoyos et al., 2020). Thus, the 

mutations at TP53 and KRAS can conspire to result in uncontrolled proliferation of PDAC as 

well as other cancer types.  

In addition, there are many other genes mutated or deregulated in PDAC. Two of the 

more commonly effected genes include SMAD4 which encodes the small mothers against 
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decapentaplegic homolog 4 protein, which is a transcription factor and CDKN2A which encodes 

the cyclin-dependent kinase inhibitor 2A gene (the CDKN2A locus encodes both the p16 

(INK4A) and the p14 (ARF) tumor suppressor proteins) (McCubrey et al., 2022a). 

1.3. Combining Chemotherapy with Targeted Therapy 

 Many different signal transduction inhibitors have been evaluated to treat PDAC patients 

(Furuse and Nagashima. 2017; Qian et al., 2020). These approaches are usually ineffective as 

single agents. BRAF is also mutated in some PDAC patients. The effects of combining RAF 

inhibitors with chemotherapeutic drugs have been examined in PDAC patients which are mutant 

at BRAF and wild-type KRAS. MEK1 lies downstream of Ras and BRAF in the pathway. There 

is a case report which examined the effects of the MEK inhibitor cobimetinib on PDAC patients 

who had been previously treated with chemotherapeutic drugs: fluorouracil, leucovorin, 

irinotecan, and oxaliplatin (FOLFIRINOX) (Ardalan et al., 2021). One patient was reported to 

have a complete response (CR) to the chemotherapeutic drugs combination and cobimetinib for 

at least 16 months. 

 There have been clinical trials examining the effects of combining chemotherapeutic 

drugs such as gemcitabine and oxaliplatin and the monoclonal antibody cetuximab (an 

epidermal growth factor receptor (EGFR) inhibitor) (Kullmann et al., 2011). A recent review 

summarizes the effects of many clinical trials of chemotherapy and various MoAb (Arias-Pinilla 

et al., 2011). Unfortunately, most of the clinical trials were not successful.   

Chloroquine is an anti-malarial drug also used in the treatment of certain other diseases 

such as rheumatoid arthritis and sarcoidosis (Varisli et al., 2020). Chloroquine has been shown 

to block autophagy which has important effect on cancer cell survival (Candido et al., 2018). 

Autophagy has been proposed to be a therapeutic target in PDAC (Piffoux et al., 2021).  

Autophagy is an important and complex process related to recycling of critical cell 

components and nutrients. It is especially important in the hostile tumor microenvironment where 

nutrients are limiting (Piffoux et al., 2021). Some studies have indicated that suppression of 
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autophagy can have anti-cancer effects while other studies suggest that induction of autophagy 

can have tumor promoting effect (Jung et al., 2016; Clark et al., 2017; Yun et al., 2020; Tracey et 

al., 2020).  

There have been approximately twenty-two clinical trials with chloroquine and cancer 

patients (Pascolo, 2016). In some studies, the effect of treatment of PDAC patients with 

chloroquine and the chemotherapeutic drug gemcitabine have been examined in a clinical trial 

(Samaras et al., 2017). There are some clinical trials with MEK inhibitors and chloroquine. Two 

phase I/II trials have been performed with melanoma patients, that are mutated at the BRAF gene 

with chloroquine in combination with BRAF and MEK inhibitors (Mehnert et. al., 2022; Awada et 

al., 2022; Amaravadi., 2020). 

Chloroquine may interact with mutant KRas in PDAC (Morgan et al 2014). Mutant KRas 

can influence autophagic flux in some cancers. The effects of combining chloroquine with 

chemotherapy and targeted therapy have been recently reviewed (Salimi-Jeda et al., 2022). 

There have been twenty-three clinic trials with chloroquine and cancer patients. Chloroquine has 

been combined with various chemotherapeutic drugs, signal transduction therapies and 

immunotherapies. In one trial with glioblastoma patients, chloroquine was combined with surgery, 

radiotherapy, chemotherapy and treated patients had a longer survival than untreated patients. 

Two patients had tumor remission for over two years while untreated patients did not survive 

longer than 22 months (Briceño et al., 2003; Sotelo et al., 2006).  One study was performed with 

chloroquine and hydroxychloroquine and cabergoline (a natural product used to treat 

hyperprolactinemia) in pituitary tumors (Lin et al., 2017).  

One clinical trial examined the effects of combining chloroquine and gemcitabine and 

chloroquine in PDAC patients (Samaras et al., 2017). This small exploratory study with nine PDAC 

patients examined the effects of chloroquine and gemcitabine. It was observed that the 

combination was well tolerated, and some positive effects were observed.   
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The effects of MEK inhibitors have been examined in seventeen clinical trials in patients 

with PDAC. Often MEK inhibitors were combined with the chemotherapeutic drug gemcitabine. 

Unfortunately, some studies have indicated no clinical benefit of the addition of the MEK inhibitors 

(Infante et al., 2014; Chung et al., 2017; Van Cutsem et al., 2018). 

The effects of IGF-1R inhibitors (usually MoAbs) in combination with chemotherapeutic 

drugs (usually gemcitabine) have been examined in PDAC patients in five clinical trials (Abdel-

Wahab et al., 2018). The effects of targeting the EGFR/HER2 have been examined with both 

MoAbs directed to EGFR/HER2 and kinase inhibitors in approximately 21 clinical trials with PDAC 

patients. 

1.4. Emerging Approaches to Potentially Treat PDAC Patients 

Until relatively recently there were limited approaches to effectively treat the mutant 

KRas and TP53 proteins and they were often referred to as undruggable targets (Huang et al., 

2021; Sallman., 2020; Sallman et al., 2021). Recently, novel of mutant KRas inhibitors have 

been developed and are being examined in clinical trials especially with colorectal cancer 

patients (Canon et al., 2019; Hallin et al., 2020). Mutant TP53 reactivators have been developed 

which have been examined in certain cancer types, especially myelodysplastic syndromes 

(MDS) and acute myeloid leukemia (AML) patients with mutant TP53 (Sallman et al., 2021; 

Cluzeau et al., 2021). Mutant TP53 reactivators have also been examined on PDAC cells 

(McCubrey et al., 2022b). 

Mouse double minute 2 (MDM2) is a ubiquitin ligase which will target the TP53 protein 

for proteasomal degradation which results in destabilization of TP53 protein. MDM2 inhibitors 

result in the stabilization of the TP53 protein and have been examined in clinical trials with 

certain cancer types (Tisato et al., 2017; Konopleva et al., 2020; Shen et al., 2021). MDM2 

inhibitors could synergize with topoisomerase II inhibitors such as etoposide to induce TP53-

independent death in PDAC cells in vitro (Conradt et al., 2013). MDM2 inhibitors will induce the 

genetic reprogramming of pancreatic stellate cells which in turn alters the hostile PDAC 
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microenvironment and suppresses PDAC progression (Saison-Ridinger et al., 2017). There are 

twenty-seven listed clinical trials with MDM2 inhibitors and cancer patients. One clinical trial will 

be performed with pancreatic cancer patients. 

Recently the combination of treatment cells with chloroquine and MEK inhibitors have 

shown promise in treatment of KRAS-mutant PDAC cells (Bryant et al., 2019; Kinsey et al., 2019). 

Additional studies have shown that combinations of ERK and IGF-1R inhibitors will synergize with 

chloroquine and inhibit the proliferation of PDAC in cell lines and tumor models in mice xenografts 

(Stalnecker et al., 2022). 

Chloroquine also potentiates the effects of PI3K/Akt inhibitors in triple negative breast 

cancer (TNBC) cells and overcomes the resistance that these cells have to PI3K/Akt inhibitor 

(Cocco et al., 2022). TNBC is a difficult breast cancer to effectively treat. In the above study it was 

demonstrated that chloroquine in combination with the chemotherapeutic drug paclitaxel could 

overcome the resistance of the TNBC to PI3K/Akt inhibitors. PI3K/Akt inhibitors can induce 

autophagy in TNBC cells, which results in drug resistance. In contrast, chloroquine can repress 

the induction of autophagy in TNBC cells, and this led to sensitization of the breast cancer cells 

to PI3K/Akt inhibitors and paclitaxel. 

Chloroquine also has effects on the TP53 protein. TP53 can activate AMP-activated 

protein kinase (AMPK) and tuberous sclerosis proteins 1 and 2 (TSC1/TSC2) and inhibition of 

mechanistic target of rapamycin complex 1 (mTORC1) (Kondo and Kondo., 2006) which 

promotes autophagy. Chloroquine induced the stabilization of the TP53 protein in glioma cancer 

cells. This resulted in the induction of apoptosis. It also induced the transcription of the TP53 gene 

(Kim et al., 2010). Chloroquine can have effects on various cancer cells in TP53-dependent and 

TP53-independent fashions (Kim et al., 2010; Geng et al., 2010; Liu et al., 2014). The potential of 

re-purposing chloroquine in cancer therapies has been proposed (Weyerhäuser et al., 2018). The 

effects of chloroquine have been examined in 23 clinical trials patients having with different types 

of cancer. 
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Chloroquine also has effects on the immune system in mouse models of melanoma and 

hepatocellular cancer (Chen et al., 2018). Chloroquine was observed to shift the presence of 

tumor associated macrophages (TAMs) of the M2 phenotype in M1 macrophages which are more 

tumoricidal. The M1 macrophages induced by chloroquine improved the tumor immune 

microenvironment The immunosuppressive infiltration of myeloid-derived suppressor cells and 

Treg cells were reduced, and improved ant-tumor was observed. Mechanistically, chloroquine 

was observed to induce the p38MAPK kinase and NF-B transcription factor and some other 

regulatory molecules which stimulated the conversion of M2 into M1 macrophages. 

Another key pathway which is involved in autophagy is the mTORC1 pathway. The 

mTORC1 pathway. mTORC1 is a suppressor of autophagy. mTORC1 inhibitors such as 

rapamycin and rapamycin analogues (rapamycin) induce autophagy (Kim and Guan, 2015). The 

effects of mTORC1 inhibitors have been examined in approximately 30 clinical trials with PDAC 

patients. 

Chloroquine is different type of inhibitor as it suppresses a biochemical process as 

opposed to a single protein. Hydroxychloroquine is a derivative, and it is the more commonly used 

form of chloroquine now as it is more water soluble (Browning, 2014). It has been used in the 

treatment of multiple diseases. Chloroquine inhibits autophagy and can suppress cancer growth 

(Bryant 2019; Piffoux et al., 2021), although in some studies it has been shown that chloroquine 

can promote tumor growth. Chloroquine has been proposed as an anti-cancer drug (Manic et al., 

2014; Zhang et al., 2015). A recent study indicated that palmitoyl-protein thioesterase 1 (PPT1) 

is a molecular target of chloroquine in cancer (Rebecca et al., 2019).  

There have been approximately 102 studies with hydroxychloroquine and patients with 

various types of cancer. In this group of studies, 14 focused on PDAC. In one trial with 

hydroxychloroquine as the single agent, no improvement was observed in terms of survival in 

terms of untreated patients (Wolpin et al., 2014).  
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The effects of hydroxychloroquine and gemcitabine and nab-paclitaxel were determined 

in a clinical trial, the combination did not appear to improve the survival of PDAC patients at the 

12-month survival point (Karasic et al., 2019). Previously, the effects of hydroxychloroquine and 

gemcitabine and nab-paclitaxel were determined in cells from gemcitabine and nab-paclitaxel 

treated PDAC patients and mouse orthotopic tumor studies. It was observed that 

hydroxychloroquine reduced the formation of neutrophil extracellular traps and hypercoagulability 

(Boone et al., 2018). The effects hydroxychloroquine and gemcitabine and nab-paclitaxel have 

been examined in approximately five other clinical trials.  

Both the MEK1 and ERK1,2 enzymes lay downstream of KRas which is frequently 

mutated in PDAC. The effects of hydroxychloroquine and MEK1 or ERK1,2 inhibitors in PDAC 

patients are being examined in approximately four clinical trials.  

There are many other concepts that are being investigated in PDAC in combination with 

hydroxychloroquine. One clinical trial will examine the effects of radiation and capecitabine 

(capecitabine is metabolized to 5-FU which has been used for decades in the treatment of PDAC 

patients). Another clinical trial will examine the effects of folfirinox and chlorpensin carbamate (a 

muscle relaxant). The effects of a vitamin D analogue paricalcitol and either gemcitabine and nab-

paclitaxel in one clinical trial. The effects of paricalcitol, losartan (an angiotensin II receptor II 

blocker), nab-paclitaxel, gemcitabine and cisplatin are being examined in another clinical trial with 

hydroxychloroquine. Obviously, many different approaches are being examined as attempts to 

treat PDAC patients.  

2. Discussion 

 There are few effective therapies for PDAC which remains one of the deadliest cancers. 

PDAC is frequently diagnosed late in the course of the disease progression which makes 

effective therapy difficult to near impossible. Unfortunately, the expression of many genes is 

altered in PDAC. Two of the most common mutations in PDAC are the TP53 and KRAS genes. 

Effective targeting of these proteins encoded genes has proven difficult and they were 
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considered undruggable proteins. Recently, novel KRas inhibitors have been developed as well 

as compounds which will reactivate mutant TP53 and are being evaluated in the treatment of 

certain cancers (Canon et al., 2019; Hallin et al., 2020; Hong et al., 2020; Sallman et al., 2021). 

The KRas inhibitors and the mutant TP53 reactivators are in clinical trials with colon cancer and 

leukemia patients respectively, but not currently in clinical trials with PDAC patients.   

Although the effects of chloroquine and hydroxychloroquine have been more established 

on diseases such as malaria, chloroquine and hydroxychloroquine are now being repurposed as 

anticancer drugs (De Lellis et al., 2021). Chloroquine can inhibit autophagy which is important in 

cancer survival in the hostile tumor microenvironment. Recent studies suggest that the anti-

cancer effects of chloroquine and hydroxychloroquine maybe increased in certain cancers by 

the co-addition of inhibitors which target signal transduction proteins such as MEK, ERK, BRAF 

and IGF-1R.  
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Table 1. Clinical Trials with Pancreatic Cancer Patients (Total listed 1562)1 

Chemotherapy 
(N = 1192) 

Other Therapeutic 
Approaches 
(N = 1512) 

Targeted Therapy 
(N = 397)  

Repurposing of other 
drugs/vitamins 

(N = 78) 

Drug # of Trials Therapeutic 
approach 

# of Trials Target # of 
Trials 

Drug/vitamin # of 
Trials 

Gemcitabine 925 Surgical Resection PARP 40 Metformin 23 

Nab-paclitaxel 338 Surgery 618 mTORC1 33 Vitamin C 19 

Oxaliplatin 286 Radiotherapy MET 23 Vitamin D 19 

5-Fluorouracil 272 Radiation 574 EGFR 21 Statins 6 

Cisplatin 102 Photodynamic Therapy MEK 17 Fish Oil 4 

Docetaxel 47 Photodynamic 6 COX2 15 Curcumin 4 

Doxorubicin 19 Immunotherapy VEGFR1 15 Aspirin 3 

Temozolomide 18 Various MoAbs 179 Proteasome 9 

5-Azacytidine 7 Checkpoint 
Inhibitors 

91 Ras 7 

Etoposide 6 CAR-T Cells 44 PI3K 7 

Daunorubicin 1 BRAF 7 

Hedgehog 6 

NOTCH 4 

FGFR 3 

AMPK 3 

GSK-3 3 

Akt 2 

1Data obtained from clinicaltrials.gov as of September 19, 2022. 
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