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PRECISELY MONOTONE SETS IN STEP-2 RANK-3

CARNOT ALGEBRAS

DANIELE MORBIDELLI AND SÉVERINE RIGOT

Abstract. A subset of a Carnot group is said to be precisely monotone if the restriction
of its characteristic function to each integral curve of every left-invariant horizontal vector
field is monotone. Equivalently, a precisely monotone set is a h-convex set with h-convex
complement. Such sets have been introduced and classified in the Heisenberg setting by
Cheeger and Kleiner in the 2010’s. In the present paper, we study precisely monotone
sets in the wider setting of step-2 Carnot groups, equivalently step-2 Carnot algebras. In
addition to general properties, we prove a classification in terms of sublevel sets of h-affine
functions in step-2 rank-3 Carnot algebras that can be seen as a generalization of the one
obtained by Cheeger and Kleiner in the Heisenberg setting. There is however a significant
difference here as it is known that, unlike the Heisenberg setting, there are sublevel sets
of h-affine functions on the free step-2 rank-3 Carnot algebra that are not half-spaces.

1. Introduction

Monotone sets have been first introduced by Cheeger and Kleiner in [6] where the proof
of the non biLipschitz embeddability of the first Heisenberg group into L1 is reduced to the
classification of its monotone subsets, see also [7]. Later on, this classification together with
related notions of monotonicity/non-monotonicity appeared in a crucial way in several works
related to geometric measure theory issues in the Heisenberg setting, see for instance [17],
[8], [18], [23].

In the perspective of a further analysis along these lines of research in more general
settings, we study here precisely monotone sets in more general Carnot groups, see for
instance [21, Section 2.1] and the references therein for an introduction to Carnot groups.
Besides their relevance in the aforementioned questions, let us stress that monotone sets
have also their own interest. They can for instance be proved to be local minimizers for the
intrinsic perimeter, see [23, Proposition 3.9] and Proposition 2.9. Let us also mention that
sets with constant horizontal normal, widely studied in connection with the theory of sets
with locally finite intrinsic perimeter, are examples of monotone sets, see the pioneering
works [10], [11], and [1], [13], [4].

A subset E of a Carnot group is said to be precisely monotone if the restriction of its
characteristic function to each integral curve of every left-invariant horizontal vector field
is monotone when seen as a function from R to R. In other words, the image of any such
curve intersects both E and its complement Ec in a connected set, equivalently, both E and
Ec are h-convex, see for instance [20], [3], [5], [16], for more details about h-convex sets.

2020 Mathematics Subject Classification. 20F18, 15A75, 53C17, 43A80.
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2 DANIELE MORBIDELLI AND SÉVERINE RIGOT

Despite the simplicity of their definition, precisely monotone sets turn out to be rather
difficult to describe.

On the one hand, a classification of precisely monotone sets is known so far only in some
particular settings. Namely, it has been proved in [6] that if E is a non empty precisely
monotone strict subset of the first Heisenberg group H then there is an open half-space
C such that C ⊂ E ⊂ C. This classification has been generalized to higher dimensional
Heisenberg groups in [17] and to Carnot groups of Métiver’s type and the direct product
H × R in [16]. These are, at least to our knowledge, the only cases where a classification
for precisely monotone sets has been established. On the other hand, there are plenty
of examples of Carnot groups, such as the free one of step-2 and rank-3, where such a
classification in terms of half-spaces is known to be false, as we will explain below.

Going back to arbitrary Carnot groups, we say that a real-valued function is horizontally
monotone, h-monotone in short, if it is monotone along all integral curves of left-invariant
horizontal vector fields when seen as a function from R to R. It follows from the very
definitions that sublevel sets of h-monotone functions are precisely monotone. It is then
natural to ask whether a classification of precisely monotone sets can be given in terms
of sublevel sets of h-monotone functions. Note that the one obtained in [6, 17, 16] fits
such a classification as an open half-space can always be written as a sublevel set of some
affine function and since affine functions on step-2 Carnot groups are h-affine and hence
h-monotone.

In the present paper we consider step-2 Carnot groups, identified with step-2 Carnot
algebras, see Section 2 for our convention about the natural identification between step-2
Carnot groups and algebras. We first prove general properties of precisely monotone subsets
of arbiratry step-2 Carnot algebras. They strongly rely on Cheeger-Kleiner’s classification
in the Heisenberg case together with the fact that integral curves of left-invariant horizontal
vector fields in step-2 Carnot algebras are 1-dimensional affine subspaces, called horizontal
lines. We next classify measurable precisely monotone subsets of step-2 rank-3 Carnot
algebras in terms of sublevel sets of h-affine functions, see Theorems 1.1 and 1.2. We recall
that if g is a step-2 Carnot algebra, a function φ : g → R is said to be horizontally affine,
h-affine in short, if its restriction to every horizontal line is affine (see [12]). Obviously h-
affine functions are h-monotone. Therefore Theorems 1.1 and 1.2 give a positive answer to
the question of the classification of measurable precisely monotone sets in terms of sublevel
sets of h-monotone functions in the step-2 rank-3 cases that actually involves a a priori
smaller class of functions. We stress that the free step-2 rank-3 case is an example of a
Carnot algebra where there are h-affine functions that are not affine (see (1.2) and [12] for a
complete description of such examples) whose sublevel sets are not half-spaces and where a
classification of precisely monotone sets in terms of half-spaces can therefore not hold. This
creates in particular significant differences compared to the settings considered in [6, 17, 16].

In the free step-2 rank-3 Carnot algebra f2,3 = Λ1
R
3⊕Λ2

R
3 equipped with the Lie bracket

for which the only non trivial relations are given by [θ, τ ] := θ ∧ τ for θ, τ ∈ Λ1
R
3 and the

induced group law given by (θ + ω) · (τ + ζ) := θ + τ + ω + ζ + [θ, τ ] for θ, τ ∈ Λ1
R
3,

ω, ζ ∈ Λ2
R
3 (see Section 2), the classification reads as follows.
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Theorem 1.1. Let E ⊂ f2,3 be precisely monotone and measurable. Then either E = ∅,
E = f2,3, or there is a non constant h-affine function φ : f2,3 → R such that

(1.1) Int(E) = {x ∈ f2,3 : φ(x) < 0} and E = {x ∈ f2,3 : φ(x) ≤ 0} .

More explicitly, we prove that given a non empty measurable precisely monotone strict
subset E of f2,3 and given ν ∈ Λ3

R
3\{0} there is (η0, η1, η2, η3) ∈ Λ0

R
3×Λ1

R
3×Λ2

R
3×Λ3

R
3

with (η0, η1, η2) 6= (0, 0, 0) such that (1.1) holds true with φ given by

(1.2) φ(θ + ω)ν = η3 + η2 ∧ θ + η1 ∧ ω + η0θ ∧ ω

for θ ∈ Λ1
R
3, ω ∈ Λ2

R
3. Such a quadratic function can easily be seen to be h-affine. In

addition, let us mention that we will also get from our arguments that Int(E) = {x ∈ f2,3 :
φ(x) < 0} and Int(Ec) = {x ∈ f2,3 : φ(x) > 0} are the two connected components of
(∂E)c = {x ∈ f2,3 : φ(x) 6= 0}.

Next, writing a step-2 rank-3 Carnot algebra as a quotient of f2,3 and using the fact that
h-affine functions on a proper quotient of f2,3 are affine (see [12]) we shall deduce from
Theorem 1.1 the following classification in nonfree step-2 rank-3 Carnot algebras.

Theorem 1.2. Let g be a step-2 rank-3 Carnot algebra and assume that g is not isomorphic

to f2,3. Let E ⊂ g be precisely monotone and measurable. Then either E = ∅, E = g, or

there is an open half-space C such that C ⊂ E ⊂ C.

Note that a step-2 rank-3 Carnot algebra g that is not isomorphic to f2,3 is either isomor-
phic to H×R or to f2,3/i where i is an ideal in f2,3 generated by an element in Λ2

R
3 \ {0}.

If g is isomorphic to H × R, we recover the classification proved in [16]. If g is isomorphic
to f2,3/i with i an ideal in f2,3 generated by an element in Λ2

R
3 \ {0} then we need to make

use of Theorem 1.1 to get the classification given by Theorem 1.2, as it can indeed not be
deduced from the previously known cases studied in [6, 17, 16].

Before we give a sketch of the proof of Theorem 1.1 and discuss possible generalizations
to step-2 Carnot algebras of higher rank, let us say a few words about the step-3 or higher
setting. It should be noticed that integral curves of left-invariant horizontal vector fields in
step-3 or higher Carnot algebras are not necessarily 1-dimensional affine subspaces. Among
other things, this is expected to create significant differences compared to the step-2 setting.
Examples given in [4], see the discussion in [2], suggest that there may be step-3 Carnot
algebras where one cannot classify precisely monotone sets in terms of sublevel sets of
h-affine functions (note however that in [2] only locally integrable h-affine functions are
considered). To our knowledge, the question of a classification in terms of sublevel sets of
h-monotone functions in step-3 or higher remains however open, and we shall not pursue in
this direction here.

Going back to the free step-2 rank-3 framework, let us now explain, without entering the
technical details, the main ideas behind the proof of Theorem 1.1. It will be articulated
into two main steps. First, we will prove that (1.1) holds true locally near noncharacter-
ictic points of the boundary, see (2.5) for the definition of noncharacteristic points and
Proposition 3.1 for a precise statement. The argument is based on a local representation
proved in [16] of the boundary ∂E of a precisely monotone set E as an intrinsic graph in the
sense of [9] near non characteristic points. Making use of Cheeger-Kleiner’s classification in
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suitable Heisenberg subalgebras of f2,3, we show through a careful analysis that this local
representation can be written as a level set of some h-affine function. In a second step,
we use monotonicity more globally to upgrade the local representation into a global one,
showing that ∂E is the zero level set of some function φ : f2,3 → R of the form (1.2). Both
inclusions φ−1(0) ⊂ ∂E and ∂E ⊂ φ−1(0) are nontrivial and require a careful analysis.

Concerning a possible generalization of our strategy to free step-2 Carnot algebras of
higher rank, although some of our arguments extend to this more general framework, it is
however not entirely clear to us whether the whole strategy does. To give an idea of some
of the issues in higher rank, let us mention that in the free step-2 rank-n Carnot algebra
the horizontal space at some given point is a n-dimensional affine subspace, whereas the
dimension of the whole space is n(n + 1)/2 and hence increases quadratically with respect
to n. As a consequence, lying on some horizontal line for a pair of points (this obviously
plays a key role for our purposes) becomes a more and more rare circumstance as the rank
increases. We however plan to devote future works to step-2 higher rank cases. We also
refer to Remark 2.2 for the relationship between precisely monotone and monotone sets.

The rest of this paper is organized as follows. In Section 2 we prove several properties of
precisely monotone subsets of step-2 Carnot algebras. In Sections 3 to 5 we focus on the
free step-2 rank-3 case. As already explained we first prove in Section 3 a local description
of the boundary of a precisely monotone subset of f2,3 near noncharacteristic points. In
Section 4 we upgrade this local statement into a global one and we conclude the proof of
Theorem 1.1. Properties of level and sublevel sets of h-affine functions on f2,3 that may
have their own interest and play a major role in Sections 3 and 4 are proved in Section 5.
The final Section 6 is devoted to the proof of Theorem 1.2 that will be obtained as a rather
easy consequence of Theorem 1.1.

Acknowledgements. The authors are grateful to E. Le Donne for several useful discussions.

2. Precisely monotone sets in step-2 Carnot algebras

In this section we establish several properties of precisely monotone subsets of step-2
Carnot algebras. Most of these properties will be used in the next sections to study precisely
monotone subsets of the free step-2 rank-3 Carnot algebra.

We recall that a Lie algebra g – always assumed to be real and finite dimensional in this
paper – is said to be nilpotent of step 2 if the derived algebra g2 := [g, g] is non trivial,
i.e., g2 6= {0}, and central, i.e., [g, g2] = {0}. Here, given U, V ⊂ g, we denote by [U, V ] the
linear subspace of g generated by elements of the form [u, v] with u ∈ U and v ∈ V . A step-2
Carnot algebra g is a Lie algebra nilpotent of step 2 that is equipped with a stratification,
namely, g = g1 ⊕ g2 where g1 is a linear subspace of g that is in direct sum with g2. Note
that [g1, g1] = g2. The rank of g is defined as rank g := dim g1. Such a Lie algebra is
naturally endowed with the group law given by x · y := x+ y+[x, y] for x, y ∈ g that makes
it a step-2 Carnot group. It is actually well known that any step-2 Carnot group can be
realized in this way. We shall therefore view a step-2 Carnot algebra both as a Lie algebra
and group.

We fix from now on in this section a step-2 Carnot algebra g = g1 ⊕ g2. Given a scalar
t ∈ R and an element x ∈ g, we set xt := tx. We say that a set ℓ ⊂ g is a horizontal line
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if there are x ∈ g and y ∈ g1 \ {0} such that ℓ = {x · yt ∈ g : t ∈ R}. Note that since
x · yt = x+ t(y + [x, y]), horizontal lines are 1-dimensional affine subspaces of g.

Definition 2.1. A set E ⊂ g is said to be precisely monotone if every horizontal line

intersects both E and Ec in a connected set.

Remark 2.2. Monotone sets are defined in the same way as precisely monotone sets except
that the condition given in Definition 2.1 is required to hold true only for almost every
horizontal line ℓ, and up to a null set within ℓ. For simplicity, we restrict ourselves in the
present paper to precisely monotone sets, whose study should be sufficient to give the key
ideas towards a classification of monotone sets (see for instance [6, Sect.4-5]).

Note that E is precisely monotone if and only if Ec is precisely monotone. Note also that
if E is precisely monotone and x ∈ g then x ·E is precisely monotone. We first recall some
known facts.

Proposition 2.3 ([6, Proposition 4.6][16, Proposition 3.3]). Let E ⊂ g be precisely mono-

tone. If x ∈ ∂E and y ∈ g1\{0} are such that x·y ∈ Int(E) then {x·yt ∈ g : t > 0} ⊂ Int(E)
and {x · yt ∈ g : t < 0} ⊂ Int(Ec). The same statement holds true with the role of E and

Ec exchanged.

Lemma 2.4 ([6, Lemma 4.8][16, Lemma 3.4]). Let E ⊂ g be precisely monotone. If ℓ is a

horizontal line such that ℓ ∩ ∂E contains more than one point then ℓ ⊂ ∂E.

We say that a Lie algebra is a Heisenberg algebra if it is a step-2 rank-2 Carnot algebra.

Theorem 2.5 ([6, Theorem 4.3]). Let h be a Heisenberg algebra and E ⊂ h be precisely

monotone. Then either E = ∅, E = h, or there is an open half-space C such that C ⊂ E ⊂
C. In particular ∂E is either empty or a 2-dimensional affine subspace of h.

We define the horizontal space at a point x ∈ g as Horx := x · g1. In other words, Horx
is the union of all horizontal lines in g containing x. Note that Horx can also easily be seen
to be an affine subspace of g of dimension equal to rank g. In the next lemma we prove
that the precise monotonicity of a set E induces a structure of affine subspace on Horx ∩∂E
when x ∈ ∂E. In the lemma below and in the rest of this paper, given A ⊂ B ⊂ g, we
denote by IntB(A) and ∂BA the relative interior and boundary in B of a subset A of B
with respect to the induced topology.

Lemma 2.6. Let E ⊂ g be precisely monotone and x ∈ ∂E. Then Horx ∩∂E is an affine

subspace of Horx.

Proof. Taking Lemma 2.4 into account, we need to prove that if ℓ1 and ℓ2 are horizontal
lines, ℓ1 6= ℓ2, such that ℓ1 ∪ ℓ2 ⊂ ∂E and x ∈ ℓ1 ∩ ℓ2 then the affine subspace generated by
ℓ1∪ ℓ2 is contained in ∂E. Using a left-translation, we can assume with no loss of generality
that x = 0, ℓi = {yti ∈ g : t ∈ R} for some linearly independent yi ∈ g1 \ {0} for i = 1, 2,
and we shall prove that

(2.1) ℓ1 ⊕ ℓ2 ⊂ ∂E .
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If [y1, y2] = 0 then every point in ℓ1 ⊕ ℓ2 = ℓ1 · ℓ2 lies on a horizontal line that intersects
both ℓ1 \ {0} and ℓ2 \ {0}. Namely,

ℓ1 · ℓ2 =
⋃

t6=0

(ℓt ∪ ℓ̃t)

where ℓt := yt1 · {(y1 · y2)
s ∈ g : s ∈ R} and ℓ̃t := yt1 · {(y

−1
1 · y2)

s ∈ g : s ∈ R}. For every

t 6= 0 we have yt1 ∈ ℓt∩ ℓ̃t∩ (ℓ1 \{0}), y
−t
2 ∈ ℓt∩ (ℓ2 \{0}), and y

t
2 ∈ ℓ̃t∩ (ℓ2 \{0}). Therefore,

both ℓt and ℓ̃t intersect ∂E in at least two points and (2.1) follows from Lemma 2.4.

If [y1, y2] 6= 0, we denote by h := span{y1, y2} ⊕ span{[y1, y2]} the Lie subalgebra of g
generated by y1 and y2 and we consider the family of horizontal lines

ℓb := yb2 · ℓ1 ⊂ h .

where b ∈ R. We distinguish two cases.

Case 1. If there is b 6= 0 such that ℓb ⊂ ∂E then the horizontal lines ℓ0 = ℓ1 and ℓb

are parallel with distinct projection in the Heisenberg algebra h in the sense of [6] and
both contained in ∂E. Then Lemma 2.4 together with [6, Lemma 4.10] applied to the set
G := h ∩ ∂E implies that h ⊂ ∂E. Then (2.1) follows since ℓ1 ⊕ ℓ2 ⊂ h.

Case 2. If Case 1 does not hold, since yb2 ∈ ℓ2 ∩ ℓ
b ⊂ ∂E, we get from Proposition 2.3 that

for every b 6= 0 either

(2.2) ℓb+ ⊂ Int(E) ∩ h ⊂ Inth(E ∩ h) and ℓb− ⊂ Int(Ec) ∩ h ⊂ Inth(E
c ∩ h)

or

(2.3) ℓb− ⊂ Int(E) ∩ h ⊂ Inth(E ∩ h) and ℓb+ ⊂ Int(Ec) ∩ h ⊂ Inth(E
c ∩ h)

where ℓb+ := yb2 · {y
t
1 ∈ g : t > 0} and ℓb− := yb2 · {y

t
1 ∈ g : t < 0}. It follows that for every

b 6= 0

{yb2} = ℓb+ ∩ ℓb− ⊂ ∂h(E ∩ h) .

Since ∂h(E ∩ h) is a closed subset of h, we get that ℓ2 ⊂ ∂h(E ∩ h). Since E ∩ h is a
monotone subset of the Heisenberg algebra h, it follows from Theorem 2.5 that ∂h(E ∩ h)
is a 2-dimensional linear subspace of h that contains ℓ2, i.e., there is (p, q) ∈ R

2 \ {(0, 0)}
such that

(2.4) ∂h(E ∩ h) = {sy1 + ty2 + u[y1, y2] ∈ h : s, t, u ∈ R, ps+ qu = 0} .

We now verify that pq = 0. We argue by contradiction and assume that p 6= 0 and q 6= 0.
Then (2.4) implies that ℓp/q = {sy1 + q−1py2 − sq−1p[y1, y2] ∈ h : s ∈ R} ⊂ ∂h(E ∩ h)
which contradicts both (2.2) and (2.3) for b = p/q. Therefore pq = 0. If p = 0, we get
from (2.4) that ∂h(E ∩ h) = ℓ1 ⊕ ℓ2 and (2.1) follows since ∂h(E ∩ h) ⊂ ∂E. If q = 0, we
get from (2.4) that ℓ2 ⊕ R[y1, y2] = ∂h(E ∩ h) ⊂ h ∩ ∂E. In particular the horizontal line
ℓ := [y1, y2] · {y

t
2 ∈ g : t ∈ R} is contained in h ∩ ∂E. It follows that ℓ and ℓ1 are skew

lines in the sense of [6] that are contained in h ∩ ∂E. Then Lemma 2.4 together with [6,
Lemma 4.10] applied to the set G := h ∩ ∂E implies that h ⊂ ∂E. Therefore (2.1) follows
since ℓ1 ⊕ ℓ2 ⊂ h. �
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Given S ⊂ g we set

(2.5) Char(S) := {x ∈ S : Horx ∩S = Horx} and Nonchar(S) := S \ Char(S) .

Note that if S is closed then Char(S) is closed and in such a case Nonchar(S) is therefore
a relatively open subset of S.

In the next proposition, we upgrade Lemma 2.6 proving that for x ∈ Nonchar(∂E) we
have dim(Horx ∩∂E) = dimHorx−1.

Proposition 2.7. Let E ⊂ g be precisely monotone. Then

Nonchar(∂E) = {x ∈ ∂E : Horx ∩∂E is a codimension-1 affine subspace of Horx} .

Proof. We know from Lemma 2.6 that for every x ∈ ∂E the set Horx ∩∂E is an affine
subspace of Horx. To prove the proposition, we shall verify that for every x ∈ ∂E we have

dim(Horx ∩∂E) ≥ dimHorx−1 .

We argue by contradiction and assume that there is x ∈ ∂E such that dim(Horx ∩∂E) ≤
dimHorx−2. Using a left-translation, we can assume with no loss of generality that x = 0.
Then let V denote a linear subspace of Hor0 that is in direct sum with Hor0 ∩∂E. We have
dimV ≥ 2 and it follows from [16, Lemma 3.5] that V ∩∂E contains a horizontal line which
gives a contradiction and concludes the proof of the proposition. �

We say that a subset of g is measurable to mean that it is µ-measurable where µ is
some, equivalently any, Haar measure on g when seen as an outer measure. The following
proposition, ensuring in particular existence of noncharacteristic points in the boundary of
non empty measurable precisely monotone strict subsets, will play a key role in the next
sections. It is not clear to us whether the measurability assumption can be removed from
Proposition 2.8 and it is the reason that led us to include it in Theorems 1.1 and 1.2.

Proposition 2.8. Let E ⊂ g be precisely monotone and measurable. Then Int(∂E) = ∅
and Nonchar(∂E) is a relatively dense subset of ∂E.

Proof. We assume that E 6∈ {∅, g} since otherwise ∂E = ∅ and there is nothing to prove.
We first verify that Int(∂E) = ∅. Recall that both E and Ec are h-convex. Denoting by µ
a Haar mesure on g we get from [20, Lemma 6.4] that there is c > 0 such that

min {µ(B(x, r) ∩E), µ(B(x, r) ∩ Ec)} ≥ c µ(B(x, r))

for all x ∈ ∂E and r > 0. Here B(x, r) denotes the open ball with center x and radius r
with respect to some given intrinsic metric (we follow here the terminology used in [20] to
which we refer for the definition such metrics). Since E is assumed to be µ-measurable, we
know that µ-a.e. point in g has µ-density 1 for either E or Ec and it follows that µ(∂E) = 0,
which implies in turn that Int(∂E) = ∅.

To prove that Nonchar(∂E) is relatively dense in ∂E, let U ⊂ g be open and such that
U ∩ ∂E 6= ∅ and let us prove that U ∩ Nonchar(∂E) 6= ∅. Using a left-translation we can
assume with no loss of generality that 0 ∈ U ∩ ∂E. By [14, Proposition 5.1] there is a
positive integer p such that the map Γ : (g1)

p → g defined by

Γ(y1, . . . , yp) := y1 · · · yp
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is open at 0. Since Γ is continuous, there is ε > 0 such that Ω := {(y1, . . . , yp) ∈ (g1)
p :

‖yi‖ < ε for i = 1, . . . , p} ⊂ Γ−1(U). Here ‖ · ‖ denotes some norm on g1. Then there is
an open neighborhood U ′ of 0 in g such that U ′ ⊂ Γ(Ω) ⊂ U . Since Int(∂E) = ∅, one can
find (y1, . . . , yp) ∈ Ω such that Γ(y1, . . . , yp) 6∈ ∂E. Since 0 ∈ ∂E and Γ(y1, . . . , yp) 6∈ ∂E
can be joined by a continuous curve γ ⊂ Γ(Ω) obtained as a concatenation of horizontal
segments, we get from Proposition 2.3 that there is x ∈ γ, and therefore x ∈ U , such that
x ∈ Nonchar(∂E), which concludes the proof of the proposition. �

For the sake of completeness, we include below a minimizing property of measurable
precisely monotone sets. We refer to [21, Section 3.5] and the references therein for the
notion of intrinsic perimeter that gives an analogue of the classical perimeter in Euclidean
spaces.

Proposition 2.9. Let E ⊂ g be precisely monotone and measurable. Then E has locally

finite intrinsic perimeter. Furthermore E is a local minimizer for the intrinsic perimeter,

which means that for any open set Ω ⊂ g such that Per(E,Ω) < +∞ we have Per(E,Ω) ≤
Per(F,Ω) for any measurable set F ⊂ g such that E△F ⋐ Ω.

Proof. The fact that E has locally finite intrinsic perimeter whenever E is precisely mono-
tone and measurable follows from [19, Theorem 5.6] since precisely monotone sets are h-
convex. Then the fact that a measurable precisely monotone set is a local minimizer for the
intrinsic perimeter follows from the kinematic formula that relates the intrinsic perimeter
to perimeter on horizontal lines, see [15]. We omit the proof that can be done imitating the
proof of [23, Proposition 3.9] that can be verbatim extended to our more general setting,
noting that the convexity assumption on Ω can easily be relaxed. �

We recall now the notion of horizontally affine functions that has been introduced in [12]
and to which we refer for an exhaustive study of such a class of functions.

Definition 2.10. We say that φ : g → R is horizontally affine, h-affine in short, if for

every x ∈ g, y ∈ g1, the function t ∈ R 7→ φ(x · yt) is affine.

Clearly, affine functions on g seen as a vector space are h-affine. However h-affine functions
may not be affine. Several equivalent characterizations of step-2 Carnot algebras where h-
affine functions are affine can be found in [12]. We recall below a consequence of these
characterizations that will be the only result about h-affine functions needed in the present
paper.

Theorem 2.11 ([12, Theorems 3.2, 1.2, 1.4]). If g is a Heisenberg Carnot algebra or a

step-2 rank-3 Carnot algebra that is not isomorphic to the free step-2 rank-3 Carnot algebra

then h-affine functions on g are affine.

Clearly, sublevel sets of h-affine functions are precisely monotone. As explained in Sec-
tion 1, we are interested in the present paper in classifying all precisely monotone subsets
of a given step-2 Carnot algebra using sublevel sets of h-affine functions. Our main result
Theorem 1.1 concerns the case of the free step-2 rank-3 Carnot algebra f2,3 that can be
realized as follows.
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Given k ∈ {1, 2, 3} we denote by ΛkR3 the set of alternating k-multilinear forms over R3

and we set Λ0
R
3 := R. The free step-2 rank-3 Carnot algebra is given by

f2,3 := Λ1
R
3 ⊕ Λ2

R
3

equipped with the Lie bracket for which the only non trivial relations are given by

[θ, τ ] := θ ∧ τ for θ, τ ∈ Λ1
R
3

and with the induced group law

(θ + ω) · (τ + ζ) := θ + τ + ω + ζ + θ ∧ τ for θ, τ ∈ Λ1
R
3, ω, ζ ∈ Λ2

R
3 .

Given ν ∈ Λ3
R
3 \{0} it can easily be verified from the very definitions that if φ : f2,3 → R

is given by (1.2) for some (η0, η1, η2, η3) ∈ Λ0
R
3 × Λ1

R
3 × Λ2

R
3 × Λ3

R
3 then φ is h-affine.

Although we will not need the following fact in the present paper, let us mention that it
has been proved in [12, Theorem 1.1] that all h-affine functions on f2,3 are of this form.

3. Local description in the free step-2 rank-3 Carnot algebra

Our first step towards the proof of Theorem 1.1 is the following local description near
noncharacteristic points.

Proposition 3.1. Let E ⊂ f2,3 be precisely monotone and x ∈ Nonchar(∂E). Then there

is an open neighborhood Ux of x and there is a non constant h-affine function φx : f2,3 → R

such that

(3.1)





Ux ∩ Int(E) = {y ∈ Ux : φx(y) < 0}

Ux ∩ ∂E = Ux ∩ Sx

Ux ∩ Int(Ec) = {y ∈ Ux : φx(y) > 0} .

where Sx := {y ∈ f2,3 : φx(y) = 0}.

This section is devoted to the proof of Proposition 3.1. For notational convenience we
will throughout this section identify f2,3 with Λ1

R
3 × Λ2

R
3 and write elements in f2,3 as

x = (θ, ω) ∈ Λ1
R
3 × Λ2

R
3. Given a basis (e1, e2, e3) of Λ1

R
3, we set eij := ei ∧ ej for

1 ≤ i < j ≤ 3 so that (e12, e13, e23) is a basis of Λ2
R
3. We shall use coordinates in these

bases, writing θ = θ1e1 + θ2e2 + θ3e3 and ω = ω12e12 +ω13e13 +ω23e23 with θi, ωij ∈ R. We
denote by 〈·, ·〉 the scalar product on Λ1

R
3 that makes (e1, e2, e3) an orthonormal basis and

we set e⊥1 := span{e2, e3}.

From now on in this section, we let E /∈ {∅, f2,3} denote a precisely monotone subset
of f2,3 and, using a left-translation, we assume with no loss of generality that x = (0, 0) ∈
Nonchar(∂E).

3.1. The boundary as a graph near noncharacteristic points. Since we have (0, 0) ∈
Nonchar(∂E), one can find e1 ∈ Λ1

R
3 \ {0} such that (e1, 0) ∈ Int(E). We show in this

section, see Proposition 3.2, that for any choice of such an e1 and any choice of e2, e3 ∈ Λ1
R
3

so that (e1, e2, e3) is a basis of Λ1
R
3, one can write ∂E as a graph over e⊥1 × Λ2

R
3 near

the origin. More importantly, we also get information about the structure of the graph
function, see (3.3), that will play a key role later on.
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Proposition 3.2. Let (e1, e2, e3) be a basis of Λ1
R
3 such that (e1, 0) ∈ Int(E). There is

δ > 0 and there are continous functions Ai : (−δ, δ) → R, i = 2, 3, Bi : (−δ, δ) → R,

i = 1, 2, 3, and C : (−δ, δ) → R such that the following holds true. Set W := {(τ, ζ) ∈
e⊥1 × Λ2

R
3 : |τi| < δ, i = 2, 3, |ζij | < δ, 1 ≤ i < j ≤ 3} and O := {(se1 + τ, ζ) ∈ f2,3 : s ∈

(−1, 1), (τ, ζ) ∈W}. Then

(3.2)





O ∩ ∂E = {(f(τ, ζ)e1 + τ, ζ) ∈ O : (τ, ζ) ∈W}

O ∩ Int(E) = {(se1 + τ, ζ) ∈ O : (τ, ζ) ∈W, f(τ, ζ) < s < 1}

O ∩ Int(Ec) = {(se1 + τ, ζ) ∈ O : (τ, ζ) ∈W, −1 < s < f(τ, ζ)}

where f : W → (−1, 1) is given by

(3.3) f(τ, ζ) := A3(ζ23)τ2 −A2(ζ23)τ3 −B1(ζ23)−B3(ζ23)ζ12 +B2(ζ23)ζ13

+ C(ζ23)τ2ζ13 − C(ζ23)τ3ζ12 .

Our starting point to prove Proposition 3.2 is given by [16, Theorem 3.7] from which we
know that near the origin ∂E is a so-called intrinsic graph. Namely, set ℓ1 := {(se1, 0) ∈
f2,3 : s ∈ R} and ℓ+1 := {(se1, 0) ∈ f2,3 : s > 0}, ℓ−1 := {(se1, 0) ∈ f2,3 : s < 0}. By [16,

Theorem 3.7] we know that there is ε > 0 such that, setting U := {(θ, ω) ∈ e⊥1 × Λ2
R
3 :

|θ2|, |θ3|, |ωij | < ε, 1 ≤ i < j ≤ 3} and Θ := U · ℓ1, the following holds true. There is a
continuous function g : U → R such that g(0, 0) = 0 and

(3.4)





Θ ∩ ∂E = {(θ, ω) · (g(θ, ω)e1, 0) : (θ, ω) ∈ U}

Θ ∩ Int(E) = (Θ ∩ ∂E) · ℓ+1

Θ ∩ Int(Ec) = (Θ ∩ ∂E) · ℓ−1 .

We first use Theorem 2.5 and Proposition 2.7 to get information about the structure of
the map g together with a set constructed from Θ ∩ ∂E that is contained in ∂E.

Lemma 3.3. There are continuous functions q0, q2, q3 : {θ ∈ e⊥1 : |θ2|, |θ3| < ε}× (−ε, ε) →
R such that

(3.5) g(θ, ω) = q0(θ, ω23) + q2(θ, ω23)ω12 + q3(θ, ω23)ω13

for all (θ, ω) ∈ U and there is a map n : U → e⊥1 such that

(3.6) (θ, ω) · (g(θ, ω)e1, 0) · {(〈n(θ, ω), ξ〉 + 〈q(θ, ω23), ξ
′〉)e1 + ξ, e1 ∧ ξ

′) ∈ f2,3 :

ξ, ξ′ ∈ e⊥1 , ξ ∧ ξ
′ = 0} ⊂ ∂E .

for all (θ, ω) ∈ U , where q(θ, ω23) := q2(θ, ω23)e2 + q3(θ, ω23)e3.

Proof. Let (θ, ω) ∈ U and set x := (θ, ω
)
·
(
g(θ, ω)e1, 0). First, note that we know from (3.4)

that x ∈ Nonchar(∂E) with x · (e1, 0) 6∈ ∂E. By Proposition 2.7, it follows that Horx ∩∂E
is a 2-dimensional affine subspace of Horx that does not contain x · (e1, 0), i.e., there is
n(θ, ω) ∈ e⊥1 such that

(3.7) Horx ∩∂E = x · {(〈n(θ, ω), ξ〉e1 + ξ, 0) ∈ f2,3 : ξ ∈ e⊥1 } .
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Next, set F := x−1 · E. Let ξ ∈ e⊥1 \ {0} and let h := span{e1, ξ} × span{e1 ∧ ξ} denote
the Lie subalgebra of f2,3 generated by e1 and ξ. Then F ∩ h is a precisely monotone subset
of the Heisenberg algebra h. Furthermore, we know from (3.4) that

ℓ+1 ⊂ Int(F ) ∩ h ⊂ Inth(F ∩ h) and ℓ−1 ⊂ Int(F c) ∩ h ⊂ Inth(F
c ∩ h) .

Therefore F ∩ h 6∈ {∅, h}. By Theorem 2.5, it follows that ∂h(F ∩ h) is a 2-dimensional
linear subspace of h that does not contain ℓ1 and Inth(F ∩ h) and Inth(F

c ∩ h) are the open
half-spaces in h bounded by ∂h(F ∩ h). Since Inth(F ∩ h) ⊂ F and Inth(F

c ∩ h) ⊂ F c, it
follows that ∂h(F ∩ h) ⊂ ∂F and therefore there are αθ,ω,ξ, βθ,ω,ξ ∈ R such that

(3.8) x · {((αθ,ω,ξ s+ βθ,ω,ξ t)e1 + sξ, te1 ∧ ξ) ∈ f2,3 : s, t ∈ R} ⊂ ∂E .

Then it follows from (3.7) that

(3.9) αθ,ω,ξ = 〈n(θ, ω), ξ〉 .

We have

x · (βθ,ω,ξ te1, te1 ∧ ξ) = (θ, ω + te1 ∧ ξ) · ((g(θ, ω) + βθ,ω,ξ t)e1, 0) .

Since any point in f2,3 can be uniquely written as x′ · y′ with x′ ∈ e⊥1 ×Λ2
R
3 and y′ ∈ ℓ1, it

follows from (3.4) and (3.8) that for every t ∈ R small enough so that (θ, ω + te1 ∧ ξ) ∈ U
we have

(3.10) g(θ, ω + te1 ∧ ξ) = g(θ, ω) + βθ,ω,ξ t .

This implies that there are functions q0, q2, q3 : {θ ∈ e⊥1 : |θ2|, |θ3| < ε} × (−ε, ε) → R such
that (3.5) holds true. Since g is continuous, we also get that the functions q0, q2, q3 are
continuous. Going back to (3.10), we get that for all (θ, ω) ∈ U , all ξ ∈ e⊥1 , and all t ∈ R

small enough,

g(θ, ω) + βθ,ω,ξ t = q0(θ, ω23) + q2(θ, ω23)(ω12 + tξ2) + q3(θ, ω23)(ω13 + tξ3)

= g(θ, ω) + t〈q(θ, ω23), ξ〉

where q(θ, ω23) := q2(θ, ω23)e2 + q3(θ, ω23)e3. Therefore

(3.11) βθ,ω,ξ = 〈q(θ, ω23), ξ〉

and (3.6) follows from (3.8) together (3.9) and (3.11). �

Lemma 3.4. There is an open neighborhood V ⊂ U of the origin in e⊥1 × Λ2
R
3 such that

for every (τ, ζ) ∈ V there is a unique s ∈ (−1, 1) such that

(3.12) s = g(τ, ζ − sτ ∧ e1) .

Namely, denoting by f(τ, ζ) ∈ (−1, 1) the unique solution of (3.12), we have

(3.13) f(τ, ζ) =
g(τ, ζ)

1− 〈q(τ, ζ23), τ〉
.

Proof. The lemma is a straightforward consequence of (3.5) letting V be a small enough open
neighborhhod of the origin in e⊥1 ×Λ2

R
3 choosen in such a way that for all (τ, ζ) ∈ V we have

(τ, ζ−sτ ∧e1) ∈ U for all s ∈ (−1, 1), 1−〈q(τ, ζ23), τ〉 6= 0, and (1−〈q(τ, ζ23), τ〉)
−1g(τ, ζ) ∈

(−1, 1). Note that such a V does exist by continuity of the functions g and q. �
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Lemma 3.5. There are open neighborhoods U ′ ⊂ U and V ′ ⊂ V of the origin in e⊥1 ×Λ2
R
3

such that the map Γ : U ′ → V ′ defined by Γ(θ, ω) := (θ, ω+g(θ, ω)θ∧e1) is a homeomorphism

from U ′ to V ′ = Γ(U ′). Furthermore we have g = f ◦ Γ on U ′.

Proof. We know that the map Γ given by Γ(θ, ω) := (θ, ω + g(θ, ω)θ ∧ e1) is well-defined
and continuous on U . We let U ′ ⊂ U be a small enough open neighborhood of the origin
in e⊥1 × Λ2

R
3 choosen in such a way that for all (θ, ω) ∈ U ′ we have g(θ, ω) ∈ (−1, 1) and

Γ(θ, ω) ∈ V where V is given by Lemma 3.4. Let (θ, ω) ∈ U ′ and set (τ, ζ) := Γ(θ, ω).
We have g(θ, ω) ∈ (−1, 1) and g(θ, ω) = g(τ, ζ − g(θ, ω)τ ∧ e1). Therefore it follows from
Lemma 3.4 that g(θ, ω) = f(τ, ζ). In other words, we have g = f ◦ Γ on U ′.

To conclude the proof of the lemma, let us verify that Γ : U ′ → e⊥1 ×Λ2
R
3 is injective. Let

(θ, ω), (θ′, ω′) ∈ U ′ be such that Γ(θ, ω) = Γ(θ′, ω′). On the one hand, by definition of Γ, we
have θ = θ′ and ω+ g(θ, ω)θ ∧ e1 = ω′ + g(θ′, ω′)θ′ ∧ e1. On the other hand, since g = f ◦ Γ
on U ′, we have g(θ, ω) = g(θ′, ω′) and all together it follows that (θ, ω) = (θ′, ω′). Therefore
Γ : U ′ → e⊥1 ×Λ2

R
3 is a continuous and injective map which implies that V ′ := Γ(U ′) is an

open neighborhood of the origin in e⊥1 × Λ2
R
3 and Γ : U ′ → V ′ is a homeomorphism. �

We now use the change of variables provided by Lemma 3.5 to write ∂E as a graph, in
the usual sense, over e⊥1 × Λ2

R
3 in a neighborhood of the origin. We stress that in general

it is not true that an intrinsic graph can be written as a standard graph, see for instance
[3, Section 4.1].

Lemma 3.6. There is an open neighborhood V ′′ ⊂ V ′ of the origin in e⊥1 ×Λ2
R
3 such that

setting Ω := {(se1 + τ, ζ) ∈ f2,3 : s ∈ (−1, 1), (τ, ζ) ∈ V ′′}, we have

(3.14)





Ω ∩ ∂E =
{
(f(τ, ζ)e1 + τ, ζ) ∈ Ω : (τ, ζ) ∈ V ′′

}

Ω ∩ Int(E) =
{
(se1 + τ, ζ) ∈ Ω : (τ, ζ) ∈ V ′′, f(τ, ζ) < s < 1

}

Ω ∩ Int(Ec) =
{
(se1 + τ, ζ) ∈ Ω : (τ, ζ) ∈ V ′′, −1 < s < f(τ, ζ)

}

where f : V ′′ → (−1, 1) is given by Lemma 3.4. Furthermore, setting m := n◦Γ−1 : V ′′ → e⊥1
where n is given by Lemma 3.3, we have

(3.15) (f(τ, ζ)e1 + τ, ζ) · {
((
〈m(τ, ζ), ξ〉 + 〈q(τ, ζ23), ξ

′〉
)
e1 + ξ, e1 ∧ ξ

′
)
∈ f2,3 :

ξ, ξ′ ∈ e⊥1 , ξ ∧ ξ
′ = 0} ⊂ ∂E

for all (τ, ζ) ∈ V ′′, where the function q is given by Lemma 3.3.

Proof. Let (τ, ζ) ∈ V ′ and set (θ, ω) := Γ−1(τ, ζ) ∈ U ′. By Lemma 3.5 we have (τ, ζ) =
(θ, ω + g(θ, ω)θ ∧ e1) and f(τ, ζ) = g(θ, ω). Therefore

(3.16) (f(τ, ζ)e1 + τ, ζ) = (g(θ, ω)e1 + θ, ω + g(θ, ω)θ ∧ e1) = (θ, ω) · (g(θ, ω)e1, 0) .

Then it follows from (3.4) that

(3.17)
{
(f(τ, ζ)e1 + τ, ζ) ∈ f2,3 : (τ, ζ) ∈ V ′

}
⊂ ∂E .

Now let V ′′ ⊂ V ′ be a small enough open neighborhood of the origin in e⊥1 ×Λ2
R
3 choosen

in such a way that for all (τ, ζ) ∈ V ′′ we have (τ, ζ − sτ ∧ e1) ∈ U ′ for all s ∈ (−1, 1).
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Set Ω := {(se1 + τ, ζ) ∈ f2,3 : s ∈ (−1, 1), (τ, ζ) ∈ V ′′} and let us verify that the first line
in (3.14) holds true. Taking into account (3.17) we only need to verify that

(3.18) Ω ∩ ∂E ⊂
{
(f(τ, ζ)e1 + τ, ζ) ∈ f2,3 : (τ, ζ) ∈ V ′′

}
.

Let s ∈ (−1, 1), (τ, ζ) ∈ V ′′, and assume that (se1 + τ, ζ) ∈ ∂E. By choice of V ′′ we have
(se1 + τ, ζ) = (τ, ζ − sτ ∧ e1) · (se1, 0) ∈ U ′ · ℓ1. Therefore it follows from (3.4) that there
is (θ, ω) ∈ U ′ such that (se1 + τ, ζ) = (θ, ω) · (g(θ, ω)e1, 0). Then it follows from (3.16)
that (se1 + τ, ζ) = (f(τ ′, ζ ′)e1 + τ ′, ζ ′) where (τ ′, ζ ′) := Γ(θ, ω). This implies in turn that
(τ, ζ) = (τ ′, ζ ′) and s = f(τ ′, ζ ′) = f(τ, ζ) which proves (3.18). To conclude the proof
of (3.14), note that the first line in (3.14) together with the continuity of f implies that
either {

(se1 + τ, ζ) ∈ f2,3 : (τ, ζ) ∈ V
′′, f(τ, ζ) < s < 1

}
⊂ Int(E)

or {
(se1 + τ, ζ) ∈ f2,3 : (τ, ζ) ∈ V ′′, f(τ, ζ) < s < 1

}
⊂ Int(Ec) .

If ζ ∈ Λ2
R
3 is such that (0, ζ) ∈ V ′′ then Γ−1(0, ζ) = (0, ζ) and we know from (3.4) that

for all s > f(0, ζ) = g(0, ζ) we have (se1, ζ) = (0, ζ) · (se1, 0) ∈ Int(E). Therefore we have
{
(se1 + τ, ζ) ∈ f2,3 : (τ, ζ) ∈ V ′′, f(τ, ζ) < s < 1

}
⊂ Int(E) .

By similar arguments, we also have
{
(se1 + τ, ζ) ∈ f2,3 : (τ, ζ) ∈ V ′′, −1 < s < f(τ, ζ)

}
⊂ Int(Ec) .

Recalling the first line of (3.14), we finally get that these inclusions are actually equalities
which concludes the proof of (3.14).

To conclude the proof of the lemma, note that for (τ, ζ) ∈ V ′′ we have Γ−1(τ, ζ) = (τ, ω)
where ω ∈ Λ2

R
3 is such that ω23 = ζ23. Therefore q ◦ Γ−1(τ, ζ) = q(τ, ζ23) where q is

given by Lemma 3.3. Letting m(τ, ζ) := n(Γ−1(τ, ζ)), we then get (3.15) from (3.6) and
Lemma 3.5. �

We shall now use (3.14) and (3.15) to get further information about the structure of the
function f , see Lemma 3.8. We start in the next lemma with a property of the map m.

Lemma 3.7. There is δ > 0 and there are maps “m0,“m2,“m3 : (−δ, δ) → e⊥1 such that

(3.19) m(0, ζ) = “m0(ζ23) + “m2(ζ23)ζ12 + “m3(ζ23)ζ13

for all ζ ∈ Λ2
R
3 such that |ζ12|, |ζ13|, |ζ23| < δ.

Proof. We first note that shrinking U if necessary the map n : U → e⊥I given by Lemma 3.3

is bounded. Indeed otherwise there is a sequence (θk, ωk) converging to (0, 0) in e⊥1 ×Λ2
R
3

and such that 〈n(θk, ωk), n(θk, ωk)〉 goes to infinity. Then we get from (3.7) that

xk := (θk, ωk) · (g(θk, ωk)e1, 0) · (e1 + ξk, 0) ∈ ∂E

where ξk := 〈n(θk, ωk), n(θk, ωk)〉
−1n(θk, ωk). Since xk → (e1, 0) and ∂E is closed, it follows

that (e1, 0) ∈ ∂E which gives a contradiction. Therefore the map m = n ◦ Γ−1 is bounded
as well.

Since f is continuous and m is bounded, one can find δ > 0 such that for all (ξ, ζ) ∈
e⊥1 ×Λ2

R
3 such that |ξ2|, |ξ3| < δ and |ζ12|, |ζ13|, |ζ23| < δ, we have (ξ, ζ+f(0, ζ)e1∧ξ) ∈ V ′′
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and f(0, ζ) + 〈m(0, ζ), ξ〉 ∈ (−1, 1). For any such (ξ, ζ) ∈ e⊥1 × Λ2
R
3, we get from (3.15)

that

(f(0, ζ)e1, ζ) · (〈m(0, ζ), ξ〉e1 + ξ, 0)

= ((f(0, ζ) + 〈m(0, ζ), ξ〉) e1 + ξ, ζ + f(0, ζ)e1 ∧ ξ) ∈ Ω ∩ ∂E

and (3.14) implies in turn that f(0, ζ) + 〈m(0, ζ), ξ〉 = f(ξ, ζ + f(0, ζ)e1 ∧ ξ), i.e.,

(3.20) 〈m(0, ζ), ξ〉 = f(ξ, ζ + f(0, ζ)e1 ∧ ξ)− f(0, ζ) .

Setting ξi := 2−1δei for i = 2, 3, we get that

m(0, ζ) =

3∑

i=2

〈m(0, ζ), ei〉ei = 2δ−1
3∑

i=2

(
f(ξi, ζ + f(0, ζ)e1 ∧ ξ

i)− f(0, ζ)
)
ei

and then (3.19) follows from (3.13) and (3.5). �

We set

F0(τ, ζ23) := (1− 〈q(τ, ζ23), τ〉)
−1 q0(τ, ζ23)

F2(τ, ζ23) := (1− 〈q(τ, ζ23), τ〉)
−1 q3(τ, ζ23)

F3(τ, ζ23) := − (1− 〈q(τ, ζ23), τ〉)
−1 q2(τ, ζ23)

where the functions qk and q are given by Lemma 3.3 so that (3.13) writes as

(3.21) f(τ, ζ) = F0(τ, ζ23)− F3(τ, ζ23)ζ12 + F2(τ, ζ23)ζ13 .

Lemma 3.8. Shrinking δ if necessary, there are continuous functions Ai : (−δ, δ) → R,

i = 2, 3, Bi : (−δ, δ) → R, i = 1, 2, 3, and C : (−δ, δ) → R such that

(3.22)





F0(τ, ζ23) = A3(ζ23)τ2 −A2(ζ23)τ3 −B1(ζ23)

F2(τ, ζ23) = B2(ζ23) + C(ζ23)τ2

F3(τ, ζ23) = B3(ζ23) + C(ζ23)τ3

for all τ ∈ e⊥1 such that |τ2|, |τ3| < δ and all ζ23 ∈ R such that |ζ23| < δ.

Proof. Set F (τ, ζ23) := −F3(τ, ζ23)e2 + F2(τ, ζ23)e3. Since the function ζ23 7→ F (0, ζ23)
is continuous, shrinking δ > 0 if necessary, we can assume with no loss of generality that
1+〈F (0, ζ23), τ〉 6= 0 for all τ ∈ e⊥1 such that |τ2|, |τ3| < δ and all ζ23 ∈ R such that |ζ23| < δ.

We first prove that there are maps D0,D2,D3 : (−δ, δ) → e⊥1 such that for k = 0, 2, 3,
τ ∈ e⊥1 such that |τ2|, |τ3| < δ and ζ23 ∈ R such that |ζ23| < δ,

(3.23) Fk(τ, ζ23) = Fk(0, ζ23) + 〈Dk(ζ23), τ〉 − Fk(0, ζ23)R(τ, ζ23)

where

R(τ, ζ23) :=
−τ2〈D3(ζ23), τ〉 + τ3〈D2(ζ23), τ〉

1 + 〈F (0, ζ23), τ〉
.

In other words we first verify that the functions Fk admit a first-order Taylor expansion
with respect to the variable τ . To prove this claim, let ζ23 ∈ R be fixed such that |ζ23| < δ.

For k = 0, 2, 3, set Fk(τ) := Fk(τ, ζ23), F (τ) := F (τ, ζ23), “Fk := Fk(0, ζ23), “F := F (0, ζ23),
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“mk := “mk(ζ23). On the one hand, we know from (3.19) that for all τ ∈ e⊥1 such that
|τ2|, |τ3| < δ and ζ12, ζ13 ∈ R such that |ζ12|, |ζ13| < δ,

〈m(0, ζ), τ〉 = 〈“m0, τ〉+ 〈“m2, τ〉ζ12 + 〈“m3, τ〉ζ13 .

where ζ := ζ12e12 + ζ13e13 + ζ23e23. On the other hand, routine computions give

f(τ, ζ + f(0, ζ)e1 ∧ τ)− f(0, ζ) =F0(τ)− “F0 (1− 〈F (τ), τ〉)

+
Ä
−(1− τ2“F3)F3(τ)− τ3“F3F2(τ) + “F3

ä
ζ12

+
Ä
−τ2“F2F3(τ) + (1 + τ3“F2)F2(τ)− “F2

ä
ζ13 .

Then it follows from (3.20) that

(3.24) F0(τ)− “F0 (1− 〈F (τ), τ〉) = 〈“m0, τ〉

and ®
−(1− τ2“F3)F3(τ)− τ3“F3F2(τ) = −“F3 + 〈“m2, τ〉

−τ2“F2F3(τ) + (1 + τ3“F2)F2(τ) = “F2 + 〈“m3, τ〉

for all τ ∈ e⊥1 such that |τ2|, |τ3| < δ. We then get from the above linear system

F3(τ) =
“F3 − 〈“m2, τ〉 − τ3(“F3〈“m3, τ〉+ “F2〈“m2, τ〉)

1 + 〈“F , τ〉

F2(τ) =
“F2 + 〈“m3, τ〉 − τ2(“F3〈“m3, τ〉+ “F2〈“m2, τ〉)

1 + 〈“F , τ〉

and inserting these expressions in (3.24) we get

F0(τ) = 〈“m0, τ〉+ “F0
1− (τ2〈“m2, τ〉+ τ3〈“m3, τ〉)

1 + 〈“F, τ〉
.

Then (3.23) follows setting D0 := “m0 − “F0
“F , D2 := “m3 − “F2

“F and D3 := −“m2 − “F3
“F .

We next prove that there is a function C : (−δ, δ) → R such that

(3.25) D2(ζ23) = C(ζ23)e2 and D3(ζ23) = C(ζ23)e3

for all ζ23 ∈ R such that |ζ23| < δ. To prove (3.25) let ζ23 ∈ R be fixed such that |ζ23| < δ.
Using the same notational conventions as before, omitting the dependence on ζ23, we have

f(0, ζ23e23) = “F0. By (3.19) we have m(0, ζ23e23) = “m0. Setting q̂ := q(0, ζ23), we then get
from (3.15) that

(“F0e1, ζ23e23) · ([s〈“m0, ξ〉+ t〈q̂, ξ〉] e1 + sξ, te1 ∧ ξ)

=
Äî“F0 + s〈“m0, ξ〉+ t〈q̂, ξ〉

ó
e1 + sξ, ζ23e23 +

Ä
t+ “F0s

ä
e1 ∧ ξ

ä
∈ ∂E
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for all ξ ∈ e⊥1 and all s, t ∈ R. Then (3.14) implies that for all ξ ∈ e⊥1 and all s, t ∈ R small
enough

“F0 + s〈“m0, ξ〉+ t〈q̂, ξ〉 = f(sξ, ζ23e23 + (t+ “F0s)e1 ∧ ξ)

= F0(sξ)− F3(sξ)(t+ “F0s)ξ2 + F2(sξ)(t+ “F0s)ξ3

= F0(sξ) + “F0s〈F (sξ), ξ〉+ t〈F (sξ), ξ〉 .

It follows that for all ξ ∈ e⊥1 and all s ∈ R small enough, 〈F (sξ), ξ〉 = 〈q̂, ξ〉. In other words,

the function s 7→ 〈F (sξ), ξ〉 is constant and therefore 〈“F , ξ〉 = 〈F (sξ), ξ〉 for all s ∈ R small
enough. Since we have from (3.23)

〈F (sξ), ξ〉 = 〈“F, ξ〉+ (−〈D3, ξ〉ξ2 + 〈D2, ξ〉ξ3)s− 〈“F , ξ〉−〈D3, ξ〉ξ2 + 〈D2, ξ〉ξ3

1 + s〈“F, ξ〉
s2 ,

we finally get that

0 =

Ç
1−

s〈“F, ξ〉
1 + s〈“F, ξ〉

å
(−〈D3, ξ〉ξ2 + 〈D2, ξ〉ξ3) =

−〈D3, ξ〉ξ2 + 〈D2, ξ〉ξ3

1 + s〈“F, ξ〉

for all ξ ∈ e⊥1 which implies (3.25).

To conclude the proof of the lemma, note that (3.25) implies that R(τ, ζ23) = 0. Then we
set A2(ζ23) := −〈D0(ζ23), e3〉, A3(ζ23) := 〈D0(ζ23), e2〉, B1(ζ23) := −F0(0, ζ23), B2(ζ23) :=
F2(0, ζ23), and B3(ζ23) := F3(0, ζ23) to get (3.22). Note that the continuity of the functions
Ai, Bi and C follows from the continuity of the functions Fi. �

The proof of Proposition 3.2 is now complete. Indeed (3.2) follows from (3.14) and (3.3)
from (3.21) and (3.22).

3.2. The boundary as a level set of a h-affine function near noncharacteristic

points. To complete the proof of Proposition 3.1 we choose in this section a basis (e1, e2, e3)
of Λ1

R
3 such that (ei, 0) ∈ Int(E) for i = 1, 2, 3. Such a basis does exist. Indeed, recall that

(0, 0) ∈ Nonchar(∂E). Therefore one can find e1 ∈ Λ1
R
3 \ {0} such that (e1, 0) ∈ Int(E).

One can then choose e2, e3 close enough to e1 in such a way that (ei, 0) ∈ Int(E) for i = 2, 3
and such that e1, e2, e3 are linearly independent. We then get from Proposition 3.2 that
near the origin ∂E can be written as a graph over e⊥1 × Λ2

R
3 as well as a graph over

e⊥2 ×Λ2
R
3 and e⊥3 ×Λ2

R
3 and each one of the graph functions has a structure given by (3.3)

as explicitly stated in the next proposition.

Proposition 3.9. There is δ > 0 and there are continuous functions Aij : (−δ, δ) → R,

i, j = 1, 2, 3, i 6= j, Bi
j : (−δ, δ) → R, i, j = 1, 2, 3, Ci : (−δ, δ) → R, i = 1, 2, 3, such that the

following holds true. Set U := {(τ, ζ) ∈ f2,3 : |τi| < δ, i = 1, 2, 3, |ζij | < δ, 1 ≤ i < j ≤ 3}.
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For every (τ, ζ) ∈ U , the following four conditions are equivalent :

(τ, ζ) ∈ ∂E ,(3.26a)

τ1 −A1
3(ζ23)τ2 +A1

2(ζ23)τ3 +B1
1(ζ23) +B1

3(ζ23)ζ12 −B1
2(ζ23)ζ13

−C1(ζ23)τ2ζ13 + C1(ζ23)τ3ζ12 = 0 ,
(3.26b)

τ2 −A2
1(ζ13)τ3 +A2

3(ζ13)τ1 +B2
2(ζ13) +B2

1(ζ13)ζ23 +B2
3(ζ13)ζ12

+C2(ζ13)τ3ζ12 + C2(ζ13)τ1ζ23 = 0 ,
(3.26c)

τ3 −A3
2(ζ12)τ1 +A3

1(ζ12)τ2 +B3
3(ζ12)−B3

2(ζ12)ζ13 +B3
1(ζ12)ζ23

+C3(ζ12)τ1ζ23 − C3(ζ12)τ2ζ13 = 0 .
(3.26d)

Recall that since (0, 0) ∈ U ∩ ∂E we have

(3.27) B1
1(0) = B2

2(0) = B3
3(0) = 0 .

Recall also that (0, 0) ∈ Nonchar(∂E). Therefore we know from Proposition 2.7 that
Hor(0,0) ∩∂E = (Λ1

R
3×{0})∩∂E is a 2-dimensional linear subspace of Λ1

R
3×{0}. By choice

of e1, e2, e3, we also have (ei, 0) 6∈ ∂E for i = 1, 2, 3. Therefore there are a12, a13 ∈ R \ {0}
and a23 < 0 such that

(Λ1
R
3 × {0}) ∩ ∂E = {(τ, 0) ∈ f2,3 : a23τ1 − a13τ2 + a12τ3 = 0} .

We also know from Proposition 3.9 and (3.27) that

(Λ1
R
3 × {0}) ∩ U ∩ ∂E = {(τ, 0) ∈ U : τ1 −A1

3(0)τ2 +A1
2(0)τ3 = 0}

= {(τ, 0) ∈ U : τ2 −A2
1(0)τ3 +A2

3(0)τ1 = 0}

= {(τ, 0) ∈ U : τ3 −A3
2(0)τ1 +A3

1(0)τ2 = 0} .

Therefore

(3.28)





A1
3(0) =

a13
a23

, A1
2(0) =

a12
a23

,

A2
1(0) =

a12
a13

, A2
3(0) = −

a23
a13

,

A3
2(0) = −

a23
a12

, A3
1(0) = −

a13
a12

.

Lemma 3.10. There are c ∈ R and b1 ∈ R such that for all ζ23 small enough

(3.29)





A1
2(ζ23) =

a12
a23 + cζ23

,

A1
3(ζ23) =

a13
a23 + cζ23

,

B1
1(ζ23) =

b1ζ23
a23 + cζ23

.

Proof. We first look at (span{e1} × span{e23}) ∩ U ∩ ∂E. We know from Proposition 3.9
and (3.27) that (span{e1} × span{e23}) ∩ U ∩ ∂E 6= ∅. Since A3

2(0)A
2
3(0) 6= 0, see (3.28),
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we also know from −A3
2(0)× (3.26c), A2

3(0)× (3.26d) and (3.27) that for all (τ1e1, ζ23e23) ∈
U ∩ ∂E the following two equivalent conditions hold true :

−A3
2(0)

[
A2

3(0)τ1 +B2
1(0)ζ23 + C2(0)τ1ζ23

]
= 0 ,

A2
3(0)

[
−A3

2(0)τ1 +B3
1(0)ζ23 + C3(0)τ1ζ23

]
= 0 .

Set φ(τ, ζ) := −A3
2(0)[A

2
3(0)τ1 + B2

1(0)ζ23 + C2(0)τ1ζ23] and ψ(τ, ζ) := A2
3(0)[−A

3
2(0)τ1 +

B3
1(0)ζ23 + C3(0)τ1ζ23]. These non constant functions φ,ψ : f2,3 → R are h-affine with

φ(0, 0) = ψ(0, 0) and we know from the previous argument that {(τ, ζ) ∈ U : φ(τ, ζ) =
0} = {(τ, ζ) ∈ U : ψ(τ, ζ) = 0}. Then it follows from Corollary 5.5 that −A3

2(0)B
2
1(0) =

A2
3(0)B

3
1(0) and −A3

2(0)C
2(0) = A2

3(0)C
3(0). Taking into account (3.28) we get that

−a13B
2
1(0) = a12B

3
1(0) and −a13C

2(0) = a12C
3(0). Using two consecutive permutations of

the coordinates, we then get the following relations :

−a13B
2
1(0) = a12B

3
1(0) =: b1 ,(3.30)

a12B
3
2(0) = a23B

1
2(0) =: b2 ,(3.31)

a23B
1
3(0) = −a13B

2
3(0) =: b3 ,(3.32)

−a13C
2(0) = a12C

3(0) = a23C
1(0) =: c .(3.33)

Next let ζ23 ∈ R be fixed small enough so that A1
2(ζ23) 6= 0 (recall that A1

2(0) 6= 0,
see (3.28), and A1

2 is continous) and so that (Λ1
R
3 × {ζ23e23}) ∩ U ∩ ∂E 6= ∅, see Propo-

sition 3.9. Using (3.26b), A1
2(ζ23)× (3.26d) and (3.27), we know that for all τ ∈ Λ1

R
3

such that |τi| < δ for i = 1, 2, 3, we have (τ, ζ23e23) ∈ ∂E if and only if the following two
equivalent conditions hold true :

τ1 −A1
3(ζ23)τ2 +A1

2(ζ23)τ3 +B1
1(ζ23) = 0 ,

A1
2(ζ23)

[
(−A3

2(0) + C3(0)ζ23)τ1 +A3
1(0)τ2 + τ3 +B3

1(0)ζ23
]
= 0 .

This implies that

A1
2(ζ23)(−A

3
2(0) + C3(0)ζ23) = 1 ,

A1
2(ζ23)A

3
1(0) = −A1

3(ζ23) ,

A1
2(ζ23)B

3
1(0)ζ23 = B1

1(ζ23) .

and (3.29) follows taking into account (3.28), (3.30) and (3.33). �

Lemma 3.11. For all ζ23 small enough, we have

(3.34)





C1(ζ23) =
c

a23 + cζ23
,

B1
2(ζ23) =

b2
a23 + cζ23

,

B1
3(ζ23) =

b3
a23 + cζ23

,

where c is given by Lemma 3.10, and b2, b3 are given by (3.31) and (3.32).
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Proof. Let ζ12, ζ23 ∈ R be fixed small enough so that (span{e2, e3} × {ζ12e12 + ζ23e23}) ∩
U ∩ ∂E 6= ∅, see Proposition 3.9, and so that A1

3(ζ23) 6= 0 (recall that A1
3(0) 6= 0, see (3.28),

and A1
3 is continuous). Using (3.26b), −A1

3(ζ23)× (3.26c) and (3.27), we know that for all
τ2, τ3 ∈ (−δ, δ) we have (τ2e2 + τ3e3, ζ12e12 + ζ23e23) ∈ ∂E if and only if the following two
equivalent conditions hold true :

−A1
3(ζ23)τ2 + (A1

2(ζ23) + C1(ζ23)ζ12)τ3 +B1
1(ζ23) +B1

3(ζ23)ζ12 = 0 ,

−A1
3(ζ23)

[
τ2 − (A2

1(0)− C2(0)ζ12)τ3 +B2
1(0)ζ23 +B2

3(0)ζ12
]
= 0 .

Considering the coefficients in front of τ3, this implies that (A1
2(ζ23) + C1(ζ23)ζ12) =

A1
3(ζ23)(A

2
1(0)− C2(0)ζ12). Therefore

C1(ζ23)ζ12 = A1
3(ζ23)(A

2
1(0)− C2(0)ζ12)−A1

2(ζ23)

and the form of C1(ζ23) follows from (3.28), (3.29) and (3.33). Considering the constant
terms, we get that B1

1(ζ23) +B1
3(ζ23)ζ12 = −A1

3(ζ23)(B
2
1(0)ζ23 +B2

3(0)ζ12). Therefore

B1
3(ζ23)ζ12 = −A1

3(ζ23)(B
2
1(0)ζ23 +B2

3(0)ζ12)−B1
1(ζ23)

and the form of B1
3(ζ23) follows from (3.29), (3.30) and (3.32).

To get the form of B1
2(ζ23) we argue in a similar way considering (span{e3} × {ζ13e13 +

ζ23e23}) ∩ U ∩ ∂E. Namely, let ζ13, ζ23 ∈ R be fixed small enough so that (span{e3} ×
{ζ13e13 + ζ23e23}) ∩ U ∩ ∂E 6= ∅, see Proposition 3.9, and so that A1

2(ζ23) 6= 0 (recall that
A1

2(0) 6= 0, see (3.28), and A1
2 is continuous). Using (3.26b), A1

2(ζ23)× (3.26d) and (3.27),
we know that for all τ3 ∈ (−δ, δ) we have (τ3e3, ζ13e13 + ζ23e23) ∈ ∂E if and only if the
following two equivalent conditions hold true :

A1
2(ζ23)τ3 +B1

1(ζ23)−B1
2(ζ23)ζ13 = 0 ,

A1
2(ζ23)

[
τ3 −B3

2(0)ζ13 +B3
1(0)ζ23

]
= 0 .

This implies that B1
1(ζ23)−B1

2(ζ23)ζ13 = A1
2(ζ23)(−B

3
2(0)ζ13 +B3

1(0)ζ23). Therefore

B1
2(ζ23)ζ13 = B1

1(ζ23) +A1
2(ζ23)(B

3
2(0)ζ13 −B3

1(0)ζ23)

and the form of B1
2(ζ23) follows from (3.29), (3.30) and (3.31). �

To conclude the proof of Proposition 3.1, we set η0 := c ∈ R = Λ0
R
3, η1 := b1e1 + b2e2 +

b3e3 ∈ Λ1
R
3, η2 := a12e12 + a13e13 + a23e23 ∈ Λ2

R
3 \ {0} and we let φ : f2,3 → R be the non

constant h-affine function given by

(3.35) φ(τ, ζ)ν := η2 ∧ τ + η1 ∧ ζ + η0 τ ∧ ζ

where ν := e1 ∧ e2 ∧ e3. By (3.29) and (3.34) we have for ζ23 small enough

φ(τ, ζ) = (a23 + cζ23)(τ1 −A1
3(ζ23)τ2 +A1

2(ζ23)τ3 +B1
1(ζ23) +B1

3(ζ23)ζ12

−B1
2(ζ23)ζ13 − C1(ζ23)τ2ζ13 + C1(ζ23)τ3ζ12).

Therefore, shrinking U if necessary, we get from (3.26a) and (3.26b) that

U ∩ ∂E = {(τ, ζ) ∈ U : φ(τ, ζ) = 0} .
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Since we have choosen a23 < 0, we also get from the last two lines in (3.2) that

U ∩ Int(E) = {(τ, ζ) ∈ U : φ(τ, ζ) < 0}

U ∩ Int(Ec) = {(τ, ζ) ∈ U : φ(τ, ζ) > 0}

which concludes the proof of (3.1).

4. Classification in the free step-2 rank-3 Carnot algebra

In this section we upgrade the local statement given by Proposition 3.1 into a global one,
that will in turn imply Theorem 1.1.

We set

Σ :=
⋃

ξ,τ∈Λ1
R
3

ξ∧τ 6=0

Lie(ξ, τ)

where Lie(ξ, τ) := span{ξ, τ} ⊕ span{ξ ∧ τ} denotes the Lie subalgebra of f2,3 generated by
ξ and τ . We start with the following preliminary step.

Lemma 4.1. Let E ⊂ f2,3 be precisely monotone and x ∈ Nonchar(∂E). Let Ux be an open

neighborhood of x and φx : f2,3 → R be a non constant h-affine function for which (3.1)
holds true. Then Sx ∩ (x · Σ) ⊂ ∂E where Sx := {y ∈ f2,3 : φx(y) = 0}.

Proof. Using a left-translation, we can assume with no loss of generality that x = 0. We
set U := U0, φ := φ0, and S := S0. Let ξ, τ ∈ Λ1

R
3 be given such that ξ ∧ τ 6= 0. Set

h := Lie(ξ, τ) and let us prove that S ∩ h ⊂ ∂E.

The restriction φ|h : h → R of the function φ to h is h-affine on the Heisenberg algebra h

and such that φ|h(0) = 0. Therefore it follows from Theorem 2.11 that φ|h is a linear form
on h.

If Kerφ|h = h, we get from (3.1) that U ∩ h ⊂ ∂E. We fix s 6= 0 close enough to 0

so that sξ ∧ τ ∈ U and we consider the horizontal lines ℓ1 := {ξt ∈ h : t ∈ R} ⊂ h and
ℓ2 := (sξ∧ τ) · { τ t ∈ h : t ∈ R} ⊂ h. On the one hand, we have U ∩ ℓj ⊂ ∂E for j = 1, 2 and
it follows from Lemma 2.4 that ℓ1 ∪ ℓ2 ⊂ ∂E. On the other hand ℓ1 and ℓ2 are skew lines
in h in the sense of [6]. Since they are contained in h ∩ ∂E, Lemma 2.4 together with [6,
Lemma 4.10] applied to the set G := h ∩ ∂E implies that h ⊂ ∂E.

If Kerφ|h 6= h then Kerφ|h is a 2-dimensional linear subspace of h. If Kerφ|h = span{ξ, τ}
then Kerφ|h is a linear subspace of Hor0. We also know that Hor0 ∩∂E is a linear subspace of
Hor0 (see Proposition 2.7) that contains U ∩Kerφ|h (see (3.1)). This implies that Kerφ|h ⊂
Hor0 ∩∂E and therefore S ∩ h ⊂ ∂E. If Kerφ|h 6= span{ξ, τ}, there is θ ∈ span{ξ, τ} such
that φ(θ) 6= 0. Then we get from (3.1) that for all s > 0 small enough either sθ ∈ Int(E)∩h

and −sθ ∈ Int(Ec)∩ h, or, −sθ ∈ Int(E)∩ h and sθ ∈ Int(Ec)∩ h. It follows that E ∩ h is a
precisely monotone subset of h that is neither ∅ nor h. Therefore ∂h(E ∩ h) is 2-dimensional
linear subspace of h by Theorem 2.5. We also know from (3.1) that U ∩ ∂h(E ∩ h) ⊂
U ∩ ∂E ∩ h = U ∩Kerφ|h. This implies that the 2-dimensional linear subspaces Kerφ|h and
∂h(E ∩ h) coincide and therefore S ∩ h = ∂h(E ∩ h) ⊂ ∂E. �
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For the rest of this section, we fix a precisely monotone measurable subset E of f2,3
such that E /∈ {∅, f2,3}. By Proposition 2.8 we know that Nonchar(∂E) 6= ∅. Using
a left-translation, we can assume with no loss of generality 0 ∈ Nonchar(∂E). We set
U := U0, φ := φ0, and S := {x ∈ f2,3 : φ(x) = 0}, where U0 is an open neighborhood of
0 and φ0 : f2,3 → R is a non constant h-affine function given by Proposition 3.1 so that
0 ∈ Nonchar(S) and

(4.1)





U ∩ Int(E) = {y ∈ U : φ(y) < 0}

U ∩ ∂E = U ∩ S

U ∩ Int(Ec) = {y ∈ U : φ(y) > 0} .

Since Nonchar(∂E) is a relatively open subset of ∂E, shrinking U if necessary, we also
assume with no loss of generality that

(4.2) U ∩ Char(∂E) = ∅ .

The proof of Theorem 1.1 will proceed in the following steps:

(1) Lemma 4.2: S ∩ (x · Σ) ⊂ ∂E for all x ∈ Nonchar(∂E) ∩ U , in particular, S ∩ Σ ⊂ ∂E.

(2) Lemma 4.5: S \ Σ ⊂ ∂E.

(3) Lemma 4.7: ∂E ⊂ S.

(4) Lemma 4.8: Int(E) = {y ∈ f2,3 : φ(y) < 0} and E = {y ∈ f2,3 : φ(y) ≤ 0}.

Lemma 4.2. We have S ∩ (x · Σ) ⊂ ∂E for all x ∈ Nonchar(∂E) ∩ U . In particular

(4.3) S ∩ Σ ⊂ ∂E .

Proof. If x ∈ Nonchar(∂E) ∩ U then Ux := U and φx := φ are an open neighborhood
of x, respectively, a non constant h-affine function, for which (3.1) holds true. Therefore
S ∩ (x · Σ) ⊂ ∂E by Lemma 4.1. �

We give in Lemma 4.3 below a condition on points in S \Σ that ensures that they belong
to ∂E. To prove that S \Σ ⊂ ∂E, see Lemma 4.5, we shall next verify thanks to Lemma 4.4
that this condition holds true on a relatively dense subset of S \Σ.

From now on in this section, we identify f2,3 with Λ1
R
3 ×Λ2

R
3. We recall for further use

that

(4.4) Σ = {(θ, ω) ∈ f2,3 : θ ∧ ω = 0} .

We also recall that given ν ∈ Λ3
R
3 \ {0}, there are η0 ∈ Λ0

R
3, η1 ∈ Λ1

R
3, and η2 ∈

Λ2
R
3 \ {0} such that the function φ showing up in (4.1) is given by

(4.5) φ(θ, ω)ν = η2 ∧ θ + η1 ∧ ω + η0 θ ∧ ω

for all (θ, ω) ∈ f2,3, see (3.35). For j = 1, 2 we denote by φj : ΛjR3 → R the linear form
defined as the restriction of φ to ΛjR3. In other words, φ1 : Λ

1
R
3 → R is the non constant

linear form on Λ1
R
3 given by φ1(θ) := φ(θ, 0) and φ2 : Λ2

R
3 → R is the linear form on

Λ2
R
3 given by φ2(ω) := φ(0, ω).

We recall that given ω ∈ Λ2
R
3 the space of exterior annihilators of ω of order 1 is defined

as
Anh(ω) := {ξ ∈ Λ1

R
3 : ω ∧ ξ = 0} .
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We also recall that if ω ∈ Λ2
R
3 \ {0} then Anh(ω) is a 2-dimensional linear subspace of

Λ1
R
3 and for every ξ ∈ Anh(ω) \ {0} there is τ ∈ Anh(ω) such that ω = ξ ∧ τ .

Lemma 4.3. Let (θ, ω) ∈ S \ Σ. Assume there are ξ, τ ∈ Anh(ω) and p, q ∈ R such that

ω = ξ ∧ τ ,

(4.6) φ(ξ, θ ∧ ξ)p+ φ(τ, θ ∧ τ)q = −φ2(ω) ,

and such that for any ε > 0 there are r ∈ R \ {1} and u, v ∈ (−ε, ε) such that

−rqu+ rpv = 1− r ,(4.7)

φ2(ξ ∧ θ)u+ φ2(τ ∧ θ)v = 0 .(4.8)

Then (θ, ω) ∈ ∂E.

The geometric idea underlying Lemma 4.3 is that (4.6), (4.7) and (4.8) ensure that there
is a horizontal line containing (θ, ω) and meeting ∪x∈Nonchar(∂E)S ∩ (x · Σ) ⊂ ∂E in two
distinct points.

Proof. Let (θ, ω) ∈ S \Σ. Let ξ, τ ∈ Anh(ω) and p, q ∈ R be such that ω = ξ ∧ τ and (4.6)
holds true. Let ε > 0 be fixed small enough so that (0, sξ∧θ+tτ∧θ) ∈ U for all s, t ∈ (−ε, ε)
and let r ∈ R \ {1}, u, v ∈ (−ε, ε) be such that (4.7) and (4.8) hold true. Since θ 6∈ Anh(ω),
we have pξ + qτ − θ ∈ Λ1

R
3 \ {0} and we consider the horizontal line γ(R) where

γ(t) := (θ, ω) · (t(pξ + qτ − θ), 0)

for t ∈ R. We will verify that γ(1) ∈ ∂E and γ(r) ∈ ∂E. This will imply by Lemma 2.4
that γ(R) ⊂ ∂E and therefore γ(0) = (θ, ω) ∈ ∂E as wanted.

We have γ(1) = (pξ + qτ, ω + pθ ∧ ξ + qθ ∧ τ) ∈ Lie(ξ + qθ, τ − pθ) and hence γ(1) ∈ Σ.
Since φ(θ′, ω′) = φ1(θ

′) + φ2(ω
′) for all (θ′, ω′) ∈ Σ, it follows from (4.6) that

φ(γ(1)) = φ1(pξ + qτ) + φ2(ω + pθ ∧ ξ + qθ ∧ τ)

= p(φ1(ξ) + φ2(θ ∧ ξ)) + q(φ1(τ) + φ2(θ ∧ τ)) + φ2(ω)

= pφ(ξ, θ ∧ ξ) + qφ(τ, θ ∧ τ) + φ2(ω) = 0 ,

i.e., γ(1) ∈ S. Therefore γ(1) ∈ S ∩ Σ and it follows from (4.3) that γ(1) ∈ ∂E.

To prove that γ(r) ∈ ∂E, we set x := (0, uξ ∧ θ + vτ ∧ θ) and we first verify that

(4.9) γ(r) ∈ S ∩ (x · Σ) .

Since γ(0) = (θ, ω) ∈ S, γ(1) ∈ S, and since S is the boundary of a precisely monotone
subset of f2,3, we get from Lemma 2.4 that γ(r) ∈ S. We have x−1 · γ(r) = (θ, ω) where

θ = (1− r)θ + r(pξ + qτ) , ω = ω + (rp+ u)θ ∧ ξ + (rq + v)θ ∧ τ ,

and θ ∧ ω = (1 − r − rpv + rqu) θ ∧ ω. Therefore it follows from (4.7) that θ ∧ ω = 0, i.e.,
(θ, ω) ∈ Σ (see (4.4)). Therefore γ(r) ∈ x · Σ, which concludes the proof of (4.9).

We next verify that

(4.10) x ∈ Nonchar(∂E) ∩ U .

By (4.7) we have φ(x) = φ(0, uξ ∧ θ + vτ ∧ θ) = uφ2(ξ ∧ θ) + vφ2(τ ∧ θ) = 0, i.e., x ∈ S.
Then (4.10) follows from our choice of ε together with (4.1) and (4.2). Using Lemma 4.2,
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we get that S ∩ (x · Σ) ⊂ ∂E and hence (4.9) implies that γ(r) ∈ ∂E, which concludes the
proof of the lemma. �

Lemma 4.4. We set F1 := {(θ, ω) ∈ S \ Σ : φ(ξ, θ ∧ ξ) = 0 for all ξ ∈ Anh(ω)}. We

also set F2 = {(θ, ω) ∈ S \ Σ : φ2(ω) = 0} if φ2 6= 0 and F2 = ∅ otherwise. Then

IntS\Σ(F1 ∪ F2) = ∅.

Proof. We will prove that IntS\Σ(F1) = IntS\Σ(F2) = ∅. Since F2 is a relatively closed
subset of S \ Σ, this will imply IntS\Σ(F1 ∪ F2) = ∅, as wanted. For j = 1, 2 we denote by
ψj : f2,3 → R the h-affine functions given by ψ1(θ, ω) := φ(θ, 0) = φ1(θ) and ψ2(θ, ω) :=
φ(0, ω) = φ2(ω). Note for further use that ψ2 6= φ.

To prove that IntS\Σ(F1) = ∅, we distinguish two cases.

Case 1. If φ = ψ1 then F1 ⊂ (Kerφ1 × (Kerφ1 ∧Kerφ1)) \ Σ. Since φ1 6= 0, we know that
Kerφ1 is a 2-dimensional linear subspace of Λ1

R
3. Therefore there are ξ, τ ∈ Λ1

R
3 such

that ξ ∧ τ 6= 0 and Kerφ1 × (Kerφ1 ∧ Kerφ1) = Lie(ξ, τ) ⊂ Σ. This implies that F1 = ∅
and therefore IntS\Σ(F1) = ∅.

Case 2. If φ 6= ψ1, we consider (θ, ω) ∈ F1, an open neighborhood O of (θ, ω), and we shall
verify that O∩S \ (Σ∪F1) 6= ∅. Since Σ is closed, we can assume with no loss of generality

that O ∩Σ = ∅. Then we claim that there is (θ̂, ω̂) ∈ S ∩O such that ψ1(θ̂, ω̂) 6= 0. Indeed
otherwise {(θ, ω) ∈ O : φ(θ, ω) = 0} ⊂ {(θ, ω) ∈ O : ψ1(θ, ω) = 0} and Corollary 5.5

implies φ = ψ1, which gives a contradiction. If (θ̂, ω̂) 6∈ F1, we are done. If (θ̂, ω̂) ∈ F1,

let us consider the linear form L2 : ω ∈ Λ2
R
3 7→ φ(θ̂, ω̂ + ω). Let ξ̂, τ̂ ∈ Anh(ω̂) be such

that ω̂ = ξ̂ ∧ τ̂ . Since θ̂ 6∈ Anh(ω̂), we have dim(span{θ̂ ∧ ξ̂, θ̂ ∧ τ̂}) = 2 and therefore

KerL2 ∩ span{θ̂ ∧ ξ̂, θ̂ ∧ τ̂} 6= {0}. In other words there is (u, v) ∈ R
2 \ {(0, 0)} such that

L2(uθ̂ ∧ ξ̂ + vθ̂ ∧ τ̂) = 0. For all s ∈ R we have

ω̂ + s(uθ̂ ∧ ξ̂ + vθ̂ ∧ τ̂) = (ξ̂ + svθ̂) ∧ (τ̂ − suθ̂)

and therefore φ(θ̂, (ξ̂ + suθ̂) ∧ (τ̂ − svθ̂)) = sL2(uθ̂ ∧ ξ̂ + vθ̂ ∧ τ̂) = 0, i.e.,

(θ̂, (ξ̂ + suθ̂) ∧ (τ̂ − svθ̂)) ∈ S .

Let us now consider the linear form L1 : θ ∈ Λ1
R
3 7→ φ(θ, θ̂∧θ). By definition of F1 we have

L1(ξ) = 0 for all ξ ∈ Anh(ω̂). Since L1(θ̂) = ψ1(θ̂, ω̂) 6= 0, it follows that L1(ξ + sθ̂) 6= 0
for all ξ ∈ Anh(ω̂) and all s ∈ R \ {0}. Since (u, v) 6= (0, 0), we get that for all s ∈ R \ {0}

either L1(ξ̂ + suθ̂) 6= 0 or L1(τ̂ − svθ̂) 6= 0, i.e.,

(θ̂, (ξ̂ + suθ̂) ∧ (τ̂ − svθ̂)) 6∈ F1 .

Then choosing s 6= 0 small enough, we get that (θ̂, (ξ̂+suθ̂)∧ (τ̂ −svθ̂)) ∈ O∩S \F1, which
proves that IntS\Σ(F1) = ∅, as wanted.

To prove that IntS\Σ(F2) = ∅ we only need to consider the case where φ2 6= 0, otherwise

the claim is obvious. If φ2 6= 0, we consider (θ, ω) ∈ F2 and an open neighborhood O of
(θ, ω). Since Σ is closed, we can assume with no loss of generality that O ∩ Σ = ∅. Then

we claim that there is (θ̂, ω̂) ∈ S ∩ O such that φ2(ω̂) = ψ2(θ̂, ω̂) 6= 0. Indeed otherwise



24 DANIELE MORBIDELLI AND SÉVERINE RIGOT

{(θ, ω) ∈ O : φ(θ, ω) = 0} ⊂ {(θ, ω) ∈ O : ψ2(θ, ω) = 0} and Corollary 5.5 implies φ = ψ2,
which gives a contradiction. This shows that IntS\Σ(F2) = ∅ and concludes the proof of the
lemma. �

Lemma 4.5. We have S \ Σ ⊂ ∂E.

Proof. By Lemma 4.4 and since ∂E is closed, we only need to prove that S \ (Σ∪F1∪F2) ⊂
∂E. We thus consider (θ, ω) ∈ S \(Σ∪F1∪F2) and we claim that Lemma 4.3 can be applied
to (θ, ω), and therefore (θ, ω) ∈ ∂E, as wanted. To prove this claim, we let ξ ∈ Anh(ω) be
such that φ(ξ, θ ∧ ξ) 6= 0 and τ ∈ Anh(ω) be such that ω = ξ ∧ τ . Since φ(ξ, θ ∧ ξ) 6= 0, the
set V := {(p, q) ∈ R

2 : (4.6) holds true} is a 1-dimensional affine subspace of R2. We then
distinguish two cases.

Case 1. If φ2(ξ ∧ θ) = φ2(τ ∧ θ) = 0, we let (p, q) ∈ V \ {(0, 0)}. Then, given ε > 0, one can
choose r ∈ R \ {1} close enough to 1 so that there are u, v ∈ (−ε, ε) such that (4.7) holds
true. Since φ2(ξ ∧ θ) = φ2(τ ∧ θ) = 0 (4.8) holds true trivially and this concludes the proof
in this first case.

Case 2. If (φ2(ξ ∧ θ), φ2(τ ∧ θ)) 6= (0, 0) then φ2 6= 0. Since (θ, ω) 6∈ F2, we have φ2(ω) 6= 0
and therefore the 1-dimensional affine subspace V of R2 does not contain the origin. On the
other side, the 1-dimensional affine subspaceW := {(p, q) ∈ R

2 : φ2(ξ∧θ)p+φ2(τ∧θ)q = 0}
of R

2 contains the origin. Therefore V \ W 6= ∅ and we let (p, q) ∈ V \ W . We set
δ := φ2(ξ∧θ)p+φ2(τ ∧θ)q. Then, given r ∈ R\{0, 1}, there is a unique solution (u, v) ∈ R

2

to (4.7) and (4.8) given by

u = −(1− r)(δr)−1φ2(τ ∧ θ) and v = (1− r)(δr)−1φ2(ξ ∧ θ) .

It follows that given ε > 0, one can choose r ∈ R \ {1} close enough to 1 so that the
solution (u, v) ∈ R

2 to (4.7) and (4.8) belongs to (−ε, ε)2, which concludes the proof of the
lemma. �

Putting together (4.3) and Lemma 4.5 we get S ⊂ ∂E. Using left-translations, we also
get the following corollary.

Corollary 4.6. Let x ∈ Nonchar(∂E). Then there is a non constant h-affine function

φx : f2,3 → R such that x ∈ Nonchar(Sx) and Sx ⊂ ∂E where Sx := {y ∈ f2,3 : φx(y) = 0}.

Lemma 4.7. We have ∂E ⊂ S.

Proof. We know from (4.3) and Lemma 4.5 that S ⊂ ∂E. We also know from Proposition 2.8
that Nonchar(∂E) is a relatively dense subset of ∂E. Since S is closed, it is therefore
sufficient to prove that Nonchar(∂E) ⊂ S. We argue by contradiction and assume that
Nonchar(∂E) \ S 6= ∅. We fix ν ∈ Λ3

R
3 \ {0} and we let η0 ∈ Λ0

R
3, η1 ∈ Λ1

R
3, and

η2 ∈ Λ2
R
3 \ {0} be such that φ is given by (4.5).

We first claim that one can find x = (θ, ω) ∈ Nonchar(∂E)\S in such a way that η1+η0θ 6=
0 whenever η0 6= 0. Indeed, if x′ ∈ Nonchar(∂E) \ S, we know from Proposition 2.7 that
Horx′ ∩∂E is a codimension-1 affine subspace of Horx′ . We also know that Nonchar(∂E)\S
is an open subset of ∂E. Therefore, if η0 6= 0, one can find x = (θ, ω) close enough to x′
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such that x ∈ Nonchar(∂E) \ S and η1 + η0θ 6= 0, as wanted. We then let φ̃ : f2,3 → R be

given by Corollary 4.6 applied to x so that φ̃ is a non constant h-affine function, S̃ := {y ∈

f2,3 : φ̃(y) = 0} ⊂ ∂E, and x ∈ Nonchar(S̃) \ S.

We next claim that one can find x̃ ∈ Nonchar(S̃) \ S in such a way that Horx̃ ∩S 6= ∅.

Indeed, since S̃ is the boundary of a precisely monotone subset of f2,3, we know that there

is a 2-dimensional linear subspace V of Hor0 such that x · V ⊂ S̃. We then let Ω denote an

open neighborhood of the origin in V such that x ·Ω ⊂ Nonchar(S̃) \S. Given ξ, τ ∈ Λ1
R
3,

we have (θ, ω) · (ξ, 0) · (τ, 0) ∈ S if and only if

φ ((θ, ω) · (ξ, 0) · (τ, 0)) ν =
{
η2 ∧ θ + η1 ∧ ω + η0θ ∧ ω + [η2 + η1 ∧ θ + η0ω] ∧ ξ

}

+
{
η2 + η1 ∧ θ + η0ω + [η1 + η0θ] ∧ ξ

}
(∗)

∧ τ = 0

To prove the claim, we shall now verify that one can find ξ ∈ Ω such that {· · · }(∗) 6= 0 in

Λ2
R
3. Indeed, if η0 = 0 then {· · · }(∗) = η2 + η1 ∧ θ + η1 ∧ ξ. Since η2 6= 0 and dimV = 2,

given any η1 ∈ Λ1
R
3, one can find ξ ∈ Ω such that {· · · }(∗) 6= 0. If instead η0 6= 0, by choice

of x = (θ, ω), we have η1 + η0θ 6= 0. Therefore, using once again the fact that dimV = 2,
one can also find in such a case ξ ∈ Ω such that {· · · }(∗) 6= 0. Next, for such a choice of

ξ, the function τ ∈ Λ1
R
3 7→ φ ((θ, ω) · (ξ, 0) · (τ, 0)) is surjective. Therefore one can find

τ ∈ Λ1
R
3 such that φ ((θ, ω) · (ξ, 0) · (τ, 0)) = 0. Then, setting x̃ := (θ, ω) · (ξ, 0), we have

x̃ ∈ Nonchar(S̃) \ S and x̃ · (τ, 0) ∈ Horx̃ ∩S which concludes the proof of the claim.

We now claim that Horx̃ ∩Nonchar(S) \ S̃ 6= ∅. First, note that Horx̃ ∩Char(S) = ∅.
Indeed, since y ∈ Horx̃ if and only if x̃ ∈ Hory, if there is y ∈ Horx̃ ∩Char(S) then
x̃ ∈ Hory ⊂ S, which gives a contradiction. Next, assume there is τ ∈ Λ1

R
3 such that

x̃ · (τ, 0) ∈ Nonchar(S)∩ S̃. Since x̃ ∈ Horx̃·(τ,0) \S, the horizontal line ℓτ := {x̃ · (tτ, 0) : t ∈
R} intersects the smooth 5-dimensional submanifold Nonchar(S) transversally at x̃ · (τ, 0),
see Lemma 5.7. It follows that for all τ ′ ∈ Λ1

R
3 close enough to τ , the horizontal line

ℓτ ′ := {x̃ · (tτ ′, 0) : t ∈ R} intersects Nonchar(S) transversally at some point close to

x̃ · (τ, 0) and hence ℓτ ′ ∩Nonchar(S) 6= ∅. Since x̃ ∈ Nonchar(S̃), one can moreover choose

such a τ ′ so that ℓτ ′ ∩ S̃ = {x̃}. Since x̃ 6∈ S, for such a choice of τ ′, we then have

ℓτ ′ ∩ Nonchar(S) ∩ S̃ = ∅. All together it follows that for such a choice of τ ′, we have

∅ 6= ℓτ ′ ∩Nonchar(S) \ S̃ ⊂ Horx̃ which concludes the proof of the claim.

We thus have proved that there are x̃ ∈ Nonchar(S̃)\S and τ ∈ Λ1
R
3 such that x̃ ·(τ, 0) ∈

Nonchar(S) \ S̃. Then it follows from Lemma 5.7 that the horizontal line ℓτ := {x̃ · (tτ, 0) :

t ∈ R} intersects transversally the smooth 5-dimensional submanifolds Nonchar(S̃) and
Nonchar(S) at respectively x̃ and x̃ · (τ, 0). Therefore there is an open neighborhood Ox̃

of x̃ such that for every y ∈ S̃x̃ := Ox̃ ∩ Nonchar(S̃) the following hold true. First, the

horizontal line ℓy := {y · (tτ, 0) : t ∈ R} intersects Nonchar(S̃) transversally at y and hence

the set T := {y · (tτ, 0) : y ∈ S̃x̃, t ∈ R} has non empty interior. Second, the horizontal line

ℓy intersects Nonchar(S) transversally at some point close to x̃ · (τ, 0). Since S̃ ∪ S ⊂ ∂E,
it then follows from Lemma 2.4 that T ⊂ ∂E. This implies in turn that Int(∂E) 6= ∅ which
contradicts Proposition 2.8 and concludes the proof of the lemma. �
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Lemma 4.8. We have Int(E) = {y ∈ f2,3 : φ(y) < 0} and E = {y ∈ f2,3 : φ(y) ≤ 0}.

Proof. We know from (4.3), Lemma 4.5 and Lemma 4.7 that S = ∂E. By (4.1) we have
Int(E) ∩C− 6= ∅ and Int(Ec) ∩ C+ 6= ∅ where C− := {y ∈ f2,3 : φ(y) < 0} and C+ := {y ∈
f2,3 : φ(y) > 0} . We also know from Proposition 5.1 that C− and C+ are the connected
components of Sc = (∂E)c = Int(E)∪Int(Ec). Then the conclusion follows from elementary
topological considerations. �

5. Sublevel and level sets of h-affine functions on f2,3

We prove in this section properties of sublevel and level sets of h-affine functions on f2,3
that have been used in the Sections 3 and 4 and may have their own interest. Throughout
this section we identify f2,3 with Λ1

R
3 × Λ2

R
3, and Λ3

R
3 with R via s ∈ R 7→ sν ∈ Λ3

R
3

where ν ∈ Λ3
R
3 \ {0} is fixed. With these identifications, we recall that we are interested

in functions φ : f2,3 → R such that there is (η0, η1, η2, η3) ∈ Λ0
R
3 × Λ1

R
3 × Λ2

R
3 × Λ3

R
3

such that

(5.1) φ(θ, ω) = η3 + η2 ∧ θ + η1 ∧ ω + η0 θ ∧ ω

for all (θ, ω) ∈ f2,3. As already mentioned in Section 2, such functions can easily be seen
to be h-affine. Let us recall for the sake of completeness that it has been proved in [12,
Theorem 1.1] that all h-affine functions on f2,3 are of this form. We will not need this
nontrivial result here, except for the use of the terminology ”h-affine function” that will
denote a function φ : f2,3 → R of the form (5.1) throughout this section.

Proposition 5.1. Let φ : f2,3 → R be a non constant h-affine function. Then φ is surjective

and for every c ∈ R the sets {x ∈ f2,3 : φ(x) < c} and {x ∈ f2,3 : φ(x) > c} are the connected

components of {x ∈ f2,3 : φ(x) 6= c}.

Proof. Let (η0, η1, η2, η3) ∈ Λ0
R
3 ×Λ1

R
3 ×Λ2

R
3 ×Λ3

R
3 with (η0, η1, η2) 6= (0, 0, 0) be such

that φ is given by (5.1). If η0 = 0 then φ is a non constant affine function on f2,3 seen as a
vector space and the statement is obvious. We thus assume that η0 6= 0 in the rest of this
proof. For (θ, ω) ∈ f2,3, we have

(η0 θ + η1) ∧ (ω + η−1
0 η2) = η2 ∧ θ + η1 ∧ ω + η0 θ ∧ ω + η−1

0 η1 ∧ η2 .

Since the map (θ, ω) ∈ f2,3 7→ (η0 θ+η1, ω+η
−1
0 η2) ∈ f2,3 is a homeomorphism, we thus only

need to consider the case where φ(θ, ω) = θ ∧ ω. In such a case φ is a quadratic form with
signature (0, 3, 3) on f2,3 seen as a vector space and hence is in particular surjective. Let
c ∈ R be given. Since φ is surjective, the sets {x ∈ f2,3 : φ(x) < c} and {x ∈ f2,3 : φ(x) > c}
are non empty. Let us verify that {(θ, ω) ∈ f2,3 : φ(x) < c} is arcwise connected, the proof
for the set {x ∈ f2,3 : φ(x) > c} being similar. Since φ is a quadratic form with signature
(0, 3, 3), this is equivalent to proving that F := {(u, v) ∈ R

3 × R
3 : ‖v‖2 − ‖u‖2 < c} is

arcwise connected where ‖·‖ denotes a Euclidean norm on R
3. It can easily be seen that any

two points (u, v), (û, v̂) ∈ F can be connected by a concatenation of three continuous paths
contained in F , namely, the segment from (u, v) to (u, 0), any continuous path connecting
(u, 0) and (û, 0) inside the arcwise connected subset {(u, 0) ∈ R

3 × R
3 : −‖u‖2 < c} of F ,

and the segment from (û, 0) to (û, v̂). To conclude the proof of the proposition, note that
it follows from the surjectivity and continuity of φ that the set {x ∈ f2,3 : φ(x) 6= c} is not
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connected. Therefore the sets {x ∈ f2,3 : φ(x) < c} and {x ∈ f2,3 : φ(x) > c} are the two
connected components of {x ∈ f2,3 : φ(x) 6= c}, as claimed. �

Lemma 5.2. Let φ : f2,3 → R be a non constant h-affine function, x ∈ f2,3, and O be an

open neighborhhood of x. Then there is an open neighborhood O′ ⊂ O of x such that the

non empty sets {y ∈ O′ : φ(y) < φ(x)} and {y ∈ O′ : φ(y) > φ(x)} are connected.

Proof. Arguing as in the proof of Proposition 5.1 we only need to consider the case where
φ(θ, ω) = θ ∧ ω. If φ(x) 6= 0, the claim follows from the fact that the set {(θ, ω) ∈
f2,3 : θ ∧ ω = φ(x)} is a smooth 5-dimensional submanifold of f2,3. Similarly, the set
{(θ, ω) ∈ f2,3 : θ ∧ ω = 0} \ {(0, 0)} is a smooth 5-dimensional submanifold of f2,3 and we
thus only need to consider the case where x = 0. Arguing as in the proof of Proposition 5.1,
we are lead to show that the set {(u, v) ∈ B(0, ε)×B(0, ε) : ‖v‖ < ‖u‖} is arcwise connected
for all ε > 0 where B(0, ε) denotes a Euclidean open ball in R

3 centered at the origin with
radius ε. This can be done in the same way than in the proof of Proposition 5.1 taking care
that the intermediate path from (u, 0) to (û, 0) remains contained in (B(0, ε)\{0})×{0}. �

Proposition 5.3. Let φ,ψ : f2,3 → R be h-affine functions with ψ non constant. Assume

that there is x ∈ f2,3 such that φ(x) = ψ(x) and there is an open neighborhood O of x such

that

{y ∈ O : φ(y) ≤ φ(x)} ⊂ {y ∈ O : ψ(y) ≤ ψ(x)} .

Then there is λ > 0 such that ψ = λφ.

Proof. Considering the h-affine functions y 7→ φ(x · y)− φ(x) and y 7→ ψ(x · y)− ψ(x), we
can assume with no loss of generality that x = 0 and φ(0) = ψ(0) = 0. We set

Eφ := {y ∈ f2,3 : φ(y) ≤ 0} and Eψ := {y ∈ f2,3 : ψ(y) ≤ 0} .

By assumption there is an open neighborhood O of 0 such that

(5.2) Eφ ∩O ⊂ Eψ ∩O .

We first verify that φ 6= 0. To prove this claim, we argue by contradiction and assume
that φ = 0. Then Eφ ∩ O = O and (5.2) implies that ψ(y) ≤ 0 for all y ∈ O. Since ψ 6= 0,
there is (α0, α1, α2) ∈ (Λ0

R
3 × Λ1

R
3 × Λ2

R
3) \ {(0, 0, 0)} such that

ψ(θ, ω) = α2 ∧ θ + α1 ∧ ω + α0 θ ∧ ω.

The fact that ψ ≤ 0 in O∩ (Λ1
R
3×{0}) implies that α2 = 0. Similarly, the fact that ψ ≤ 0

in O ∩ ({0} × Λ2
R
3) implies that α1 = 0. Finally it can easily be seen that if α0 θ ∧ ω ≤ 0

for all (θ, ω) ∈ O then α0 = 0. Therefore (α0, α1, α2) = (0, 0, 0) which gives a contradiction.

Since φ 6= 0, there is (η0, η1, η2) ∈ (Λ0
R
3 × Λ1

R
3 × Λ2

R
3) \ {(0, 0, 0)} such that

φ(θ, ω) = η2 ∧ θ + η1 ∧ ω + η0 θ ∧ ω.

Before we prove the proposition, we begin with some preliminary facts.

(FACT 1) (α1, α2) 6= (0, 0) ⇒ (η1, η2) 6= (0, 0) .

By contradiction, assume that (α1, α2) 6= (0, 0) and (η1, η2) = (0, 0). Then (5.2) reads as

Eφ ∩O = {(θ, ω) ∈ O : η0 θ ∧ ω ≤ 0}

⊂ {(θ, ω) ∈ O : α2 ∧ θ + α1 ∧ ω + α0 θ ∧ ω ≤ 0} .
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In particular there is a neighborhood U of the origin in Λ1
R
3 so that (θ, θ ∧ ξ) ∈ Eφ ∩ O

for all θ, ξ ∈ U . Therefore the previous inclusion implies that α2 ∧ θ+α1 ∧ θ ∧ ξ ≤ 0 for all
θ, ξ ∈ U . Taking ξ = 0, it follows that α2 ∧ θ ≤ 0 for all θ ∈ U which implies that α2 = 0.
Then we get that α1∧θ∧ξ ≤ 0 for all θ, ξ ∈ U which implies in turn that α1 = 0. Therefore
(α1, α2) = (0, 0) which gives a contradiction and concludes the proof of FACT 1.

(FACT 2)
(α1, α2) 6= (0, 0) and (η1, η2) 6= (0, 0) ⇒ there is λ > 0 such that (α1, α2) = λ(η1, η2) .

Let (θ, ω) ∈ f2,3 be such that η2 ∧ θ + η1 ∧ ω < 0. For t > 0 small enough, (tθ, tω) ∈ O and
φ(tθ, tω) = t(η2 ∧ θ + η1 ∧ ω) + t2 η0 θ ∧ ω ≤ 0, i.e., (tθ, tω) ∈ Eφ ∩ O. Then (5.2) implies
that (tθ, tω) ∈ Eψ, i.e., t(α2 ∧ θ + α1 ∧ ω) + t2 α0 θ ∧ ω ≤ 0 for all t > 0 small enough. This
implies in turn that α2 ∧ θ + α1 ∧ ω ≤ 0. Therefore

{(θ, ω) ∈ f2,3 : η2 ∧ θ + η1 ∧ ω < 0} ⊂ {(θ, ω) ∈ f2,3 : α2 ∧ θ + α1 ∧ ω ≤ 0} .

Since (η1, η2) 6= (0, 0) and (α1, α2) 6= (0, 0), this is an inclusion between half-spaces in f2,3
seen as a vector space with the origin as a common point in their boundary. It implies in
turn that there is λ > 0 such that (α1, α2) = λ(η1, η2) and concludes the proof of FACT 2.

(FACT 3) α0 = 0 ⇒ η0 = 0 .

By contradiction, assume that α0 = 0, and hence (α1, α2) 6= (0, 0), and η0 6= 0. Since
(α1, α2) 6= (0, 0), we know from FACT 1 and FACT 2 that there is λ > 0 such that (α1, α2) =
λ(η1, η2). Then (5.2) reads as

{(θ, ω) ∈ O : η2 ∧ θ + η1 ∧ ω + η0θ ∧ ω ≤ 0} ⊂ {(θ, ω) ∈ O : η2 ∧ θ + η1 ∧ ω ≤ 0}.

By Lemma 5.4, to be proved below, there is (θ, ω) ∈ O such that η2∧θ+η1∧ω+η0θ∧ω = 0
and η0θ∧ω < 0. Thus η2∧θ+η1∧ω > 0 which contradicts the inclusion above and concludes
the proof of FACT 3.

(FACT 4) (α1, α2) 6= (0, 0) and η0 = 0 ⇒ α0 = 0 .

By contradiction, assume that (α1, α2) 6= (0, 0), η0 = 0, and α0 6= 0. On the one hand,
using FACT 1 and FACT 2, (5.2) reads as

{(θ, ω) ∈ O : α2 ∧ θ + α1 ∧ ω ≤ 0} ⊂ {(θ, ω) ∈ O : α2 ∧ θ + α1 ∧ ω + α0θ ∧ ω ≤ 0}.

On the other hand, by Lemma 5.4, there is (θ, ω) ∈ O such that α2 ∧ θ + α1 ∧ ω = 0 and
α0θ ∧ ω > 0 which contradicts the inclusion above and concludes the proof of FACT 4.

(FACT 5) (α1, α2) = (0, 0) ⇒ (η1, η2) = (0, 0) .

By contradiction, assume that (α1, α2) = (0, 0) and (η1, η2) 6= (0, 0). Then (5.2) reads as

{(θ, ω) ∈ O : η2 ∧ θ + η1 ∧ ω + η0θ ∧ ω ≤ 0} ⊂ {(θ, ω) ∈ O : α0θ ∧ ω ≤ 0},

where α0 6= 0. By Lemma 5.4, there is (θ, ω) ∈ O such that η2 ∧ θ + η1 ∧ ω + η0θ ∧ ω = 0
and α0θ ∧ω > 0 which contradicts the inclusion above and concludes the proof of FACT 5.
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We now turn to the proof of Proposition 5.3. We divide it into three cases.

Case 1. We first consider the case where (α1, α2) 6= (0, 0) and α0 = 0. Then we know
from FACT 1 and FACT 2 that there is λ > 0 such that (α1, α2) = λ(η1, η2). We also know
from FACT 3 that η0 = 0. Therefore (α0, α1, α2) = λ(η0, η1, η2) as wanted.

Case 2. We next consider the case where (α1, α2) 6= (0, 0) and α0 6= 0. Then we once again
know from FACT 1 and FACT 2 that there is λ > 0 such that (α1, α2) = λ(η1, η2). We
also know from FACT 4 that η0 6= 0. Therefore there is µ 6= 0 such that α0 = µη0. Setting
s := µ/λ, the assumption (5.2) reads as

(5.3) {(θ, ω) ∈ O : η2 ∧ θ + η1 ∧ ω + η0 θ ∧ ω ≤ 0}

⊂ {(θ, ω) ∈ O : η2 ∧ θ + η1 ∧ ω + sη0 θ ∧ ω ≤ 0}

with (η1, η2) 6= 0, sη0 6= 0, and, to conclude the proof of Proposition 5.3 in the present case,
we shall verify that s = 1. By Lemma 5.4, there is (θ, ω) ∈ O such that η2 ∧ θ + η1 ∧ ω +
η0θ ∧ ω = 0 and θ ∧ ω > 0. Then (5.3) implies that (s − 1)η0 ≤ 0. Similarly, once again
by Lemma 5.4, there is (θ′, ω′) such that η2 ∧ θ

′ + η1 ∧ ω
′ + η0θ

′ ∧ ω′ = 0 and θ′ ∧ ω′ < 0,
and (5.3) implies now the opposite inequality (s− 1)η0 ≥ 0. Therefore s = 1 as wanted.

Case 3. We finally consider the case where (α1, α2) = (0, 0). Then we know from FACT 5
that (η1, η2) = (0, 0) and (5.2) reads as

(5.4) {(θ, ω) ∈ O : η0 θ ∧ ω ≤ 0} ⊂ {(θ, ω) ∈ O : α0 θ ∧ ω ≤ 0}

with α0 6= 0 and η0 6= 0. Considering (θ, ω) ∈ O such that η0θ∧ω < 0 we get that η0α0 > 0,
i.e., there is λ > 0 such that α0 = λη0. Therefore (α0, α1, α2) = λ(η0, η1, η2) and this
concludes the proof of the proposition. �

Lemma 5.4. Set Σ+ := {(θ, ω) ∈ f2,3 : θ ∧ ω > 0} and Σ− := {(θ, ω) ∈ f2,3 : θ ∧ ω < 0}.
Let O ⊂ f2,3 be an open neighborhood of the origin. Let (η0, η1, η2) ∈ Λ0

R
3 × Λ1

R
3 × Λ2

R
3

with (η1, η2) 6= (0, 0). Then

Σ+ ∩ {(θ, ω) ∈ O : η2 ∧ θ + η1 ∧ ω + η0θ ∧ ω = 0} 6= ∅ ,(5.5)

Σ− ∩ {(θ, ω) ∈ O : η2 ∧ θ + η1 ∧ ω + η0θ ∧ ω = 0} 6= ∅ .(5.6)

Proof. We first prove the lemma when η0 = 0. Set V := {(θ, ω) ∈ f2,3 : η2 ∧ θ+ η1 ∧ω = 0}.
Then V is a 5-dimensional linear subspace of f2,3. The quadratic form (θ, ω) 7→ θ ∧ ω on
f2,3 seen as a vector space has signature (0, 3, 3). Therefore there are 3-dimensional linear
subspaces W+ and W− of f2,3 such that θ ∧ ω > 0 for all (θ, ω) ∈W+ and θ ∧ ω < 0 for all
(θ, ω) ∈ W−. Since dimV = 5, we have W+ ∩ V 6= ∅ and W− ∩ V 6= ∅ which proves (5.5)
and (5.6) when η0 = 0.

Assume that η0 6= 0 and let us prove (5.5), the proof of (5.6) being similar. Set φ(θ, ω) :=
η2∧θ+η1∧ω+η0θ∧ω. By the previous argument, there is (θ, ω) ∈ O such that η2∧θ+η1∧ω =

0 and θ ∧ ω > 0. Assume that η0 > 0. Then choose (θ̂, ω̂) ∈ O close enough to (θ, ω) such

that −η0θ̂ ∧ ω̂ < η2 ∧ θ̂ + η1 ∧ ω̂ < 0. On the one hand, we have φ(θ̂, ω̂) > 0. On the

other hand, for t > 0 small enough, we have φ(tθ̂, tω̂) = t(η2 ∧ θ̂ + η1 ∧ ω̂) + t2η0θ̂ ∧ ω̂ < 0.

Therefore there is t̂ ∈ (0, 1) such that φ(t̂θ̂, t̂ω̂) = 0. Since (t̂θ̂, t̂ω̂) ∈ Σ+ this concludes the
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proof of (5.5) when η0 > 0. If η0 < 0, we choose (θ∗, ω∗) ∈ O close enough to (θ, ω) such
that 0 < η2 ∧ θ

∗ + η1 ∧ ω
∗ < −η0θ

∗ ∧ ω∗ and we argue in a similar way. �

Combining Proposition 5.3 with topological arguments, we get the following corollary
where sublevel sets are replaced by level sets.

Corollary 5.5. Let φ,ψ : f2,3 → R be h-affine functions with ψ non constant. Assume that

there is x ∈ f2,3 such that φ(x) = ψ(x) and there is an open neighborhood O of x such that

(5.7) {y ∈ O : φ(y) = φ(x)} ⊂ {y ∈ O : ψ(y) = ψ(x)} .

Then there is λ ∈ R \ {0} such that ψ = λφ.

Proof. Arguing as in the beginning of the proof of Proposition 5.3, we can assume with no
loss of generality that x = 0 and φ(x) = ψ(x) = 0. Since ψ : f2,3 → R is a non constant
h-affine function, shrinking O if necessary, one can assume that {y ∈ O : ψ(y) < 0}
is connected, see Lemma 5.2. One can also easily verify that {y ∈ O : ψ(y) = 0} ⊂

{y ∈ O : ψ(y) < 0}. Then it follows from Lemma 5.6, to be proved below, that either
{y ∈ O : ψ(y) ≤ 0} ⊂ {y ∈ O : φ(y) ≤ 0} or {y ∈ O : ψ(y) ≤ 0} ⊂ {y ∈ O : φ(y) ≥ 0}.
Arguing as in the beginning of the proof of Proposition 5.3, one can also verify that the
fact that ψ is non constant together with (5.7) implies that φ is non constant as well.
Then, changing φ into −φ if necessary, one can apply Proposition 5.3 to get the required
conclusion. �

Given a space X, a subset O of X, and φ : X → R, we set

O0
φ := {y ∈ O : φ(y) = 0} ,

O−
φ := {y ∈ O : φ(y) < 0} and O+

φ := {y ∈ O : φ(y) > 0} .

Lemma 5.6. Let X be a topological space, O ⊂ X be open, and φ,ψ : X → R. Assume

that φ is continuous. Assume also that O0
φ ⊂ O0

ψ ⊂ O−
ψ and O−

ψ is connected. Then either

O−
ψ ∪ O0

ψ ⊂ O−
φ ∪ O0

φ or O−
ψ ∪O0

ψ ⊂ O+
φ ∪ O0

φ.

Proof. Since O−
ψ ∩O0

φ = ∅, we have O−
ψ = (O−

ψ ∩O−
φ )⊔ (O−

ψ ∩O+
φ ). Since O−

ψ is connected

and φ is continuous, it follows that either

O−
ψ = O−

ψ ∩ O−
φ ⊂ O−

φ or O−
ψ = O−

ψ ∩ O+
φ ⊂ O+

φ .

Since O0
ψ ⊂ O−

ψ ∩ O, we also get that either

O0
ψ ⊂ O−

φ ∩ O ⊂ O−
φ ∪ O0

φ or O0
ψ ⊂ O+

φ ∩ O ⊂ O+
φ ∪ O0

φ

which concludes the proof of the lemma. �

We conclude this section with the proof of rather easy properties of the set of non-
characterictic points of level sets of h-affine functions that has been used in the proof of
Lemma 4.7.
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Lemma 5.7. Let φ : f2,3 → R be a non constant h-affine function, c ∈ R, and set S := {x ∈
f2,3 : φ(x) = c}. Then Nonchar(S) is a smooth 5-dimensional submanifold of f2,3 and for

all x ∈ Nonchar(S) we have TxS ∩ Horx = S ∩ Horx where TxS denotes the tangent space

to S at x seen as an affine subspace of f2,3 through x.

Proof. Assume with no loss of generality that c = 0. Let (η0, η1, η2, η3) ∈ Λ0
R
3 × Λ1

R
3 ×

Λ2
R
3 ×Λ3

R
3 with (η0, η1, η2) 6= (0, 0, 0) be such that φ is given by (5.1). The function φ is

smooth and for all (θ, ω) ∈ f2,3 we have

(5.8) d(θ,ω)φ(θ
′, ω′) = (η2 + η0ω) ∧ θ

′ + (η1 + η0θ) ∧ ω
′ .

If η0 = 0, we have (η1, η2) 6= (0, 0), therefore d(θ,ω)φ 6= 0 for all (θ, ω) ∈ f2,3. It follows that S
is a smooth 5-dimensional submanifold of f2,3 (it is actually a codimension-1 affine subspace
of f2,3) and so is the relatively open subset Nonchar(S) of S. If η0 6= 0 then d(θ,ω)φ 6= 0

for all (θ, ω) ∈ f2,3 \ {(−η−1
0 η1,−η

−1
0 η2)}. Therefore S \ {(−η−1

0 η1,−η
−1
0 η2)} is a smooth

5-dimensional submanifold of f2,3. Note incidentally that (−η−1
0 η1,−η

−1
0 η2) ∈ S if and only

if η3 = η−1
0 η1 ∧ η2. Let us now verify the inclusion Nonchar(S) ⊂ S \ {(−η−1

0 η1,−η
−1
0 η2)}.

Let (θ, ω) ∈ Nonchar(S). Then there is τ ∈ Λ1
R
3 such that φ((θ, ω) · (τ, 0)) = (η2+ η1∧ θ+

η0ω)∧ τ 6= 0. Therefore η2+η1∧θ+η0ω 6= 0 which implies that (θ, ω) 6= (−η−1
0 η1,−η

−1
0 η2),

as wanted. It follows that Nonchar(S) is a relatively open subset of S \{(−η−1
0 η1,−η

−1
0 η2)}

and hence is a smooth 5-dimensional submanifold of f2,3. To conclude the proof of the
lemma, let x = (θ, ω) ∈ Nonchar(S). It follows from (5.8) that for τ ∈ Λ1

R
3, one has

φ(x · (τ, 0)) = φ(x + (τ, θ ∧ τ)) = dxφ(τ, θ ∧ τ). Therefore x · (τ, 0) ∈ S if and only if
x · (τ, 0) = x+ (τ, θ ∧ τ) ∈ TxS, i.e., TxS ∩Horx = S ∩Horx. �

6. Classification in nonfree step-2 rank-3 Carnot algebras

This section is devoted to the proof of Theorem 1.2. We recall that a Carnot morphism
π : f → g between step-2 Carnot algebras f = f1 ⊕ f2 and g = g1 ⊕ g2 is a homomorphism of
graded Lie algebras, which means that π is a linear map such that π([x, y]) = [π(x), π(y)] for
all x, y ∈ f and π(fi) ⊂ gi for i = 1, 2. Note that a Carnot morphism is both a homomorphism
of graded Lie algebras and a group homomorphism. It can easily be seen that the preimage
of a precisely monotone set under a Carnot morphism is precisely monotone. We give in
the next lemma the rather elementary proof of this property, for the reader’s convenience.

Lemma 6.1. Let f and g be step-2 Carnot algebras and π : f → g be a Carnot morphism.

Let E ⊂ g be precisely monotone. Then π−1(E) ⊂ f is precisely monotone.

Proof. Let E ⊂ g be precisely monotone and ℓ ⊂ f be a horizontal line. Then π(ℓ) is either
a singleton or a horizontal line in g. If π(ℓ) is a singleton then either ℓ ∩ π−1(E) = ∅ or
ℓ∩π−1(E) = ℓ and in both cases ℓ intersects both π−1(E) and its complement in a connected
set. If π(ℓ) is a horizontal line in g then the restriction of π to ℓ is a homeomorphism from ℓ
to π(ℓ). Since π(ℓ) intersects both E and Ec in a connected set, it follows that ℓ intersects
both π−1(E) and its complement in a connected set, which concludes the proof of the
lemma. �
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To prove Theorem 1.2 let g be a step-2 rank-3 Carnot algebra that is not isomorphic to
f2,3 and let E ⊂ g be precisely monotone and measurable with E 6∈ {∅, g}. Let π : f2,3 → g

be a surjective Carnot morphism. Recall that the universal property of the free step-2
rank-3 Carnot algebra ensures the existence of such a surjective Carnot morphism, see
for instance [22, p.45], and Kerπ is a non trivial linear subspace of Λ2

R
3 since g is not

isomorphic to f2,3. By Lemma 6.1 and since π is continuous, π−1(E) is a precisely monotone
and measurable subset of f2,3 with π−1(E) 6∈ {∅, f2,3}. By Theorem 1.1, there is a non
constant h-affine function φ : f2,3 → R such that Int(π−1(E)) = {x ∈ f2,3 : φ(x) < 0},

π−1(E) = {x ∈ f2,3 : φ(x) ≤ 0}, and ∂π−1(E) = {x ∈ f2,3 : φ(x) = 0}. Since π is
linear and surjective, π is continuous and open. Therefore Int(π−1(E)) = π−1(IntE),

π−1(E) = π−1(E), ∂π−1(E) = π−1(∂E), and it follows that

(6.1)





Int(E) = π({x ∈ f2,3 : φ(x) < 0})

E = π({x ∈ f2,3 : φ(x) ≤ 0})

∂E = π({x ∈ f2,3 : φ(x) = 0}).

In particular, we have π({x ∈ f2,3 : φ(x) < 0}) ∩ π({x ∈ f2,3 : φ(x) = 0}) = ∅. We shall
now verify that this implies that φ factors through f2,3/Kerπ, i.e., φ(θ+ ω+ ζ) = φ(θ+ ω)
for all θ ∈ Λ1

R
3, ω ∈ Λ2

R
3, ζ ∈ Kerπ. Indeed otherwise there are θ ∈ Λ1

R
3, ω ∈ Λ2

R
3,

ζ ∈ Kerπ ⊂ Λ2
R
3 such that φ(θ + ω + ζ) 6= φ(θ + ω). Then it follows from (1.2) that

the function t ∈ R 7→ φ(θ, ω + tζ) is a degree-1 polynomial and therefore is surjective. In
particular, one can find s, t ∈ R such that φ(θ + ω + sζ) < 0 and φ(θ + ω + tζ) = 0, which
implies that π(θ + ω) ∈ π({x ∈ f2,3 : φ(x) < 0}) ∩ π({x ∈ f2,3 : φ(x) = 0}) and gives a
contradiction.

Since φ factors through f2,3/Ker π, there is ψ : g → R such that φ = ψ ◦ π and it follows
from (6.1) that

Int(E) = {x ∈ g : ψ(x) < 0} ⊂ E ⊂ E = {x ∈ g : ψ(x) ≤ 0}.

Furthermore, since φ = ψ ◦ π and φ is h-affine, then ψ : g → R is h-affine (see [12,
Lemma 2.3]). By Theorem 2.11 we get that ψ is affine, and ψ is non constant since φ is,
which concludes the proof of Theorem 1.2.
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