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Abstract— An approach based on machine learning is proposed
for the global linearization of microwave active beamform-
ing arrays. The method allows for the low-complexity real-
time update of the digital predistortion (DPD) coefficients by
exploiting order-reduced model features, hence avoiding the need
for repeated local DPD identification steps across the various
operating conditions of the beamformer (e.g., different beam
angles or RF power levels). The validation is performed by over-
the-air (OTA) measurements of a 1 × 4 array operating at 28 GHz
across 100-MHz modulation bandwidth (BW).

Index Terms— Beamforming array, linearization, machine
learning, over-the-air (OTA) measurements.

I. INTRODUCTION

ACTIVE beamforming arrays, nowadays being adopted in
telecom systems, pose several challenges with respect

to linearity specifications and design of digital predistortion
(DPD). Classical single-input–single-output (SISO) DPD is
affected by the intrinsic differences among the power ampli-
fiers (PAs) composing the array, and by the dynamic loading
conditions involved as the beam direction changes [1]. These
effects can cause nonoptimal performance of the SISO DPD
trained along one single beam direction as the beam is oriented
to other steering angles [2], [3].

One possible solution to address the nonlinear distortion due
to beam dependency could consist of a real-time identification
of the DPD coefficients across the varying operating condi-
tions [4]. However, this generally requires high-performance
feedback loops as well as high-complexity HW and SW, and
might finally result unfeasible in actual deployments. The DPD
architecture in [5] realizes the real-time linearization of a
beamforming device without a feedback loop, but it requires
to sense the output of each PA within the array during the
DPD training phase. Moreover, a complex nonlinear predictive
function needs to be calculated in real time for every DPD
coefficient, increasing the burden on signal processing.

In this work, we realize a real-time beam-dependent DPD
(BD-DPD) without any feedback or need to collect any infor-
mation about the single PAs. A global DPD beam adapter (BA)

Manuscript received 28 February 2023; revised 13 April 2023;
accepted 15 April 2023. Date of publication 8 May 2023; date of current
version 7 June 2023. (Corresponding author: Mattia Mengozzi.)

The authors are with the Department of Electrical, Electronic, and Infor-
mation Engineering “Guglielmo Marconi,” University of Bologna, 40136
Bologna, Italy (e-mail: mattia.mengozzi3@unibo.it).

This article was presented at the IEEE MTT-S International Microwave
Symposium (IMS 2023), San Diego, CA, USA, June 11–16, 2023.

Color versions of one or more figures in this letter are available at
https://doi.org/10.1109/LMWT.2023.3269140.

Digital Object Identifier 10.1109/LMWT.2023.3269140

Fig. 1. Block diagram of the adopted DPD configuration for active
beamforming arrays.

is preliminarily identified from a reduced set of measurements
at the air interface, obtaining all the information needed for
adjusting the DPD coefficients with a minimum number of
predictive functions.

II. BEAM-DEPENDENT LINEARIZATION

A. DPD Architecture
The proposed BD-DPD architecture (see block diagram in

Fig. 1) aims at identifying an open-loop BA. The purpose
of the BA is to adjust the DPD coefficients along with the
operating conditions in a predictive way, i.e., without any
feedback from the output of the array. Given a DPD model
that is linear-in-the-parameters, an open-loop BD-DPD could
be represented as y = Xc(θ, ρ), where y is the output of
the predistorter, X is the model regression matrix based on
the predistorter input x, and c are the varying predistorter
coefficients, which are a function of the beam angle (θ ) and
input signal peak-to-average power ratio (PAPR) (ρ).

The approach is deployed in two distinct phases. First,
an offline pre-training aims at identifying the parameters of
the open-loop BD-DPD generator model. In this phase, the PA
array is linearized for a subset 0 of operating conditions, and
the data obtained from this linearization procedure are used to
extract the BA model c(θ, ρ). Then, the online linearization
is performed, where the DPD coefficients are adjusted by the
BA in a predictive way, based on the given beam angle and
input signal PAPR. This DPD update is applied in open loop
without any real-time feedback.

B. Feature-Based Model Reduction
Considering the many possible states involved in the oper-

ation of a beamformer array, extracting a global DPD model
could in principle require a very large number of different
sets of DPD parameters, potentially one for each state (θ, ρ).
This option is prone to over-fitting issues, and its practical
handling would be too complex for real-time BA. Therefore,
the initial pre-training procedure targets the reduction of these
coefficients by identifying a reduced set of so-called model
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features. Indeed, it has been recently reported in [6] that
the behavior of a PA can effectively be approximated across
different operating conditions by a reduced set of features
exploiting a transformation matrix A

y = Xc(θ, ρ) ≃ X Aω(θ, ρ) (1)

where ω(θ, ρ) is a vector of coefficients acting as a BA and
displaying a lower dimensionality with respect to c(θ, ρ).
The beamformer array is first linearized through the iterative
learning control (ILC) approach [7] across the pre-training
subset, obtaining one DPD set ck composed of 0 coefficients
for each of the K different operating conditions

ck =
(
X H

k Xk
)−1 X H

k yk (2)

where yk and Xk are the N × 1 (where N is the number of
time-domain complex samples) vectors representing, respec-
tively, the optimal predistorted signal by ILC and the DPD
regression matrix, both corresponding to the kth operating
condition. Then, A can be identified by the following min-
imization problem:

min
(A)

∑
k

∥Xk Aωk − yk∥
2 (3)

where ωk is the S × 1 reduced set of coefficients for the kth
operating condition. As reported in Algorithm 1, a generalized
QR-SVD algorithm [6] is here used to solve (3) and obtain
A by taking as inputs all DPD coefficients and regression
matrices structured as

C = [c1, . . . , cK ]; X̂ =
[
X⊤

1 , . . . , X⊤

K̂

]⊤
(4)

where X̂ is the vertical concatenation of the nonrepeated K̂
Xk matrices in the pre-training set.

The reduced set ωk of DPD coefficients corresponding to
the kth operating condition can be finally identified as

ωk = ((Xk A)H Xk A)−1(Xk A)H yk . (5)

Eventually, a global BA model ω(θ, ρ) can be obtained by
interpolating ωk across the values of beam angle (θk) and
input power level (ρk). In this work, the interpolation has been
performed either using a 2-D cubic spline model or a poly-
nomial model. In order to linearize the array, the actual DPD
coefficients can be easily updated by c = Aω(θ, ρ), using
the value of ω(θ, ρ) at the given beam angle and input signal
PAPR. Overall, the proposed SVD-based procedure allows to
automatically select a number S ≪ K of significant features
for the global BA behavior, allowing to greatly reduce the
number of coefficients required in order to provide effective

Algorithm 1 Generalized QR-SVD Algorithm

Data: X̂ ∈ C(N K̂ )×0 , C ∈ C0×K

Result: A ∈ C0×S

1: Perform QR decomposition on X̂ : X̂ = Q̂ R̂
2: D = R̂C
3: Perform QR decomposition on D: D = U6V
4: Select an arbitrary number S of singular values of 6
5: Form U ′: Compress U selecting the S columns that correspond

to the selected singular values of 6

6: A = R̂−1U ′

Fig. 2. (a) Block diagram and (b) photograph of the OTA measurement
setup.

beam-adaptation. Indeed, instead of storing and interpolating
across a total of 0 × K DPD coefficients arising from pre-
training at the K different operating conditions, it is sufficient
to store a much smaller A matrix (0 × S) and the S × 1
interpolated functions ω(θ, ρ).

III. OTA MEASUREMENT SETUP

The implemented over-the-air (OTA) setup (see Fig. 2)
operates at 28 GHz. Up/down conversion from an intermediate
frequency (IF) of 1.55 GHz is performed by a two-way mixer
(TMYTEK UDBox) with a shared local oscillator. A Keysight
M8190 arbitrary waveform generator is used to generate
modulated signals at IF. The IF receiver is composed of a
Mini-Circuits ZRL-2150+ low-noise amplifier and a wideband
oscilloscope (Keysight DSO9254A) allowing for 500-MHz
acquisition bandwidth (BW).

The device-under-test (DUT) is a 1 × 4 active beamformer
array (TMYTEK BBoard), which includes signal splitting and
a separate power amplification/attenuation/phase control in
each signal path. The beamformer is driven by an Analog
Devices HMC943 preamplifier, pushing the four integrated
PAs into their nonlinear region at up to 5-dB compression,
resulting in 10 dBm of maximum available output power for
each way. The signal is OTA-transmitted by a four-way patch
antenna array and received in the far-field by a horn antenna.
The excitation signals are random-phase multitone signals with
BW = 100 MHz, whose statistics have been matched to a
Gaussian OFDM-like signal. The linearization performance is
measured in terms of adjacent channel power ratio (ACPR)
and error vector magnitude (EVM).

IV. EXPERIMENTAL RESULTS

A. DPD Identification
The adopted pre-training set is a rectangular sampling of

K = 50 different operating points, selected across the θ, ρ

variables’ space as depicted in Fig. 3 (blue circles). The
beam angle is swept in 5◦ steps, whereas the input power
accounts for signals with five different PAPR from 7 to 11 dB
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Fig. 3. Array operating conditions used as a pre-training set (blue circles)
and as a validation set (red crosses).

Fig. 4. (a) Singular values of matrix D as from Algorithm 1. (b) Model
fitting error (NMSE) of the GMP-based predistorter.

Fig. 5. Cubic polynomial and spline interpolation of the first reduced feature
across all tested conditions. (a) Real and (b) imaginary part.

and the same peak power. Beyond this particular choice,
the pre-training set could be freely defined by adopting any
other sampling or design-of-experiment strategy, e.g., latin
hypercube, etc., [8].

By applying Algorithm 1 and according to the singular
values extracted for D [see Fig. 4(a)], a dimensionality of
S = 5 for ω(θ, ρ) has been found suitable for the array-
under-test, as the residual error is less than the −45 dB
of normalized mean square error (NMSE) targeted in this
work. As an example, Fig. 5 reports the interpolation results
across the beam angle and PAPR value for the first complex
component of ω(θ, ρ), showing good fitting properties both for
the adopted third order polynomial model and the 2-D cubic
spline. The parametric structure adopted for the predistorter
is the generalized memory polynomial (GMP) model [9]. The
GMP nonlinear, memory, and cross memory orders have been,
respectively, selected as 7, 9, and 1 to ensure −49 dB for the
NMSE between the nonparametric predistorted signal (found
with ILC) and the one modeled by the GMP-based predistorter
[see Fig. 4(b)].

B. DPD Validation
The BD-DPD is validated in 25 independent operat-

ing regimes with different beam angles and PAPR values,

Fig. 6. DPD performance comparison. (a) ACPR and (c) EVM in the
validation points plotted across beam angle. (b) ACPR and (d) EVM in
the validation points plotted across PAPR. The continuous line indicates
the average value in a given DPD configuration across all tested operating
conditions.

Fig. 7. (a) Gain and (b) phase characteristics of the predistorted and
nonpredistorted array in the test condition P as from Fig. 3 (θ = 27◦ and
PAPR = 8.2 dB).

as depicted in Fig. 3 (red crosses). Fig. 6 depicts the per-
formance of the proposed BD-DPD compared against a fixed
DPD approach, i.e., DPD using a fixed set of coefficients
extracted from a single operating regime (θ = 0◦, PAPR =

11 dB) and kept constant across beam direction and input
signal PAPR. For reference purposes, Fig. 6 also reports the
case without DPD as well as the case for best achievable DPD
performance, obtained by means of a dedicated nonparametric
ILC-DPD extracted at every single operating condition.

Fig. 6 clearly shows a general reduction of the distortion
induced by the dependency on beam directions and PAPR
for both implemented BA interpolations. As from Fig. 6(a)
and (b), the BD-DPD leads to an improvement of ∼5 and
∼10 dB in terms of ACPR for the cubic and the spline BA,
respectively. The improvement in terms of EVM is ∼5 dB
for both implemented methods, as shown in Fig. 6(c) and (d).
Fig. 7(a) and (b) report the gain and AM/PM characteristics
of the nonpredistorted and predistorted array in a particular
operating condition of the validation set (θ = 27◦, PAPR =

8.2 dB), whereas the corresponding output spectra is shown
in Fig. 8.
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Fig. 8. Spectrum of the predistorted and nonpredistorted array in the
condition P as from Fig. 3 (θ = 27◦ and PAPR = 8.2 dB).

V. CONCLUSION

A BD-DPD architecture exploiting feature-based model
reduction for beamformer arrays has been proposed. The
feature-based reduction applied at the array level does not
depend on the number of PAs within the array, and it allows
for a low-complexity update of the DPD of the array according
to the beam direction and RF power level, without the need
to extract a separate DPD coefficient set for every different
operating regime. The proposed BD-DPD is effective in sig-
nificantly reducing DUT in-band distortion and residual out-
of-band regrowth across all tested beam directions and PAPR
levels.
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