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Abstract: Learning to recognize and respond to potential threats is crucial for survival. Pavlovian
threat conditioning represents a key paradigm for investigating the neurobiological mechanisms
of fear learning. In this review, we address the role of specific neuropharmacological adjuvants
that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated
in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic,
noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobi-
ological systems affects fear extinction learning in humans. We show that the administration of
N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty
acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and
regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynam-
ically modulate fear learning, hindering long-term extinction processes. These pharmacological
interventions could provide novel targeted treatments and prevention strategies for fear-based and
anxiety-related disorders.

Keywords: neuropharmacology; glutamatergic receptor N-methyl-D-aspartate (NMDA);
noradrenaline (NA); enzyme fatty acid amide hydrolase (FAAH); synaptic receptors; brain
plasticity; fear learning; fear extinction learning; threat learning

1. Introduction

Fear learning is a cross-species ability crucial for survival, as it can promote the avoid-
ance of potentially dangerous situations [1–3]. This form of learning allows individuals to
predict a dangerous outcome using contextual information or environmental cues and select
the safest and most appropriate reaction, expressing species-specific fear responses [4,5].
The neurobiological mechanisms of fear learning have been extensively investigated in
several species using Pavlovian conditioning procedures [3–5]. Fear conditioning occurs
when a neutral stimulus (NS) is paired with an aversive/threatening stimulus—the so-
called unconditioned stimulus (US). Following repeated presentations of the NS followed
by the US, the NS acquires the capacity to elicit a conditioned fear response, becoming a
conditioned stimulus (CS+), and the association between the CS and US is automatically
strengthened. In humans, the regulation of emotional responses to potential threats is
critical for mental health, and deficits in emotion regulation may lead to trauma-related
diseases, such as anxiety and mood disorders [5–14].
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Previously learned fear memories become labile when an event is recalled and may
go through two different processes: reconsolidation or fear extinction [5,15,16]. Reconsoli-
dation is the process through which previously consolidated fear memory traces become
more sensitive to alterations when reactivated [6,17,18]. This phenomenon implies that a
short CS-alone trial leads to the reactivation of a fear memory. This reactivation initiates a
temporary destabilization of the memory, which becomes labile. In these states, the memory
of the original CS–US association can be more easily modified, strengthened, attenuated,
or erased, before reconsolidating and becoming stable again [19]. Indeed, neurobiologi-
cal interventions during or immediately after the memory reactivation period may affect
reconsolidated memories [18].

Fear extinction occurs when a consolidated memory is recalled, but no longer reflects
significant aversive information. During extinction training, repeated presentations of the
CS in the absence of the US result in a reduction in the conditioned fear response [1,20,21].
It is widely accepted that extinction does not reflect memory erasure or unlearning, but
rather a new learning process of a CS–no-event contingency [22–24], which competes with
the original CS–US association in determining behavior during a retention test. This view
of extinction has been supported by the demonstration of recovered fear responses after
extinction, or by the spontaneous recovery of extinguished fear memories [25]. In this
vein, a new fear extinction memory inhibits the CS–US association by updating the original
CS–US fear memory, or suppressing the original memory trace, instead of deleting it during
the extinction process (i.e., re-learning) [8,9,26–28].

In humans, it has been proposed that fostering the extinction of fear memories can
be an effective therapeutic strategy to control emotional responses [5,13,29]. In a neu-
ropharmacological context, the facilitation of fear extinction is achieved using relevant
pharmacological adjuvants targeting N-methyl-D-aspartate (NMDA), noradrenaline, and
endocannabinoid receptors that act on neurochemical systems implicated in fear memory
processes [29,30]. Such interventions have been experimentally and clinically tested with
the ultimate goal of facilitating re-learning, thus reducing the expression of behavioral and
physiological fear responses [31–37]. Accordingly, these pharmacological enhancers pro-
mote the natural response of the organism by facilitating the release of neurotransmitters
within a specific regulatory system implicated in fear extinction [33,38,39].

It has been widely reported that these neuropharmacological adjuvants act on neu-
rochemical synaptic transmission and brain plasticity processes implicated specifically
in fear extinction learning. Because of their acknowledged role in synaptic transmis-
sion and plasticity, the ionotropic glutamate receptors have been a major focus of research
in human neuropharmacological studies of memory recall and extinction [40]. Indeed,
glutamate-mediated neurons are widely distributed in the amygdala, hippocampus, and
other brain regions critically involved in associative and fear learning [41–44]. Ionotropic
glutamate receptors are classified into three sub-families based on their affinity for syn-
thetic agonists: α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), NMDA, and
kainate [40,45,46]. AMPA receptors are known to mediate fast synaptic responses [47]
and NMDA receptors to mediate slow synaptic responses at most excitatory synapses
in the brain [48]. Kainate receptors are formed from a separate set of genes (GluR5–7,
KA-1, and KA-2) and are known to be implicated in epileptogenesis and cell death [49].
Research indicates that AMPA receptors contribute to conditioned fear in the amygdala,
as infusions of AMPA receptor antagonists into this region interfere with the expression
of conditioned fear [50,51]. Furthermore, hippocampal AMPA and kainate receptors have
been implicated in regulating spatial memory, fear acquisition, and other forms of learning
and memory [52,53]. Changes to the expression of AMPA and kainate subunits in the
hippocampus, prefrontal cortex, and amygdala may, therefore, partially explain deficits in
contextual fear learning [53].

NMDA receptor-dependent neuronal plasticity is a key component of the emotional
learning process [54,55]. Human studies involving the administration of NMDA receptor
antagonists, particularly GluN2B knockout, support the involvement of this subfamily of
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receptors in memory consolidation and in the extinction of fear memory [56], showing
a dose-dependent impairment of these processes. While NMDA receptor antagonists
impair extinction, the receptor partial agonist D-cycloserine (DCS) facilitates this process.
DCS acts at the glycine modulatory site on the NR1-NMDA receptor subunit to increase
calcium influx without causing neurotoxicity-induced damage. Therefore, it is considered
a promising cognitive enhancer in humans, as it reverses the influence of fear extinction
learning [57–59], with a positive therapeutic effect on most anxiety disorders, such as
simple phobia [60], social phobia [61,62], panic disorder [63], and obsessive-compulsive
disorder [64].

In addition to glutamate receptors, the noradrenergic receptors are one of the most
intensively studied classes of metabotropic receptors in behavioral responses to stressful
events, especially for their role in fear memory. Noradrenergic receptors are classified as
either alpha or beta receptors. Those two classes are further subdivided into alpha-1, alpha-
2, beta-1, beta-2, and beta-3. Alpha-1 and alpha-2 receptors each have three subtypes. More
specifically, α-adrenoceptors are presynaptic autoreceptors involved in the regulation of
noradrenaline (norepinephrine) release; β-receptors, along with beta-2, alpha-1, and alpha-
2 receptors, are adrenergic receptors primarily responsible for signaling in the sympathetic
nervous system and have long been associated with fear disorders, as well as learning and
memory [65,66]. In the central nervous system, α- and β-receptors can also be found at a
postsynaptic level, with evidence suggesting that α-adrenoceptors are affected by stress [67].
The two α-receptor subtypes, α1 and α2, have been implicated in fear learning. Typically,
the inhibition of the α1 receptor selectively reduces fear learning, improving the extinction
of fear memory. The antagonism of the α1 receptor leads to poor performance in fear
learning tasks. For instance, prazosin, an α1 antagonist, has been shown to reduce fear
responses in both olfactory fear paradigms and olfactory recall tasks [68]. The α1 and α2
receptors are implicated in different fear learning mechanisms, as the antagonism of α2
receptors significantly improves memory and cognition in a variety of contexts. Indeed,
the antagonist yohimbine, which works by decreasing the inhibitory influence of the α2
receptor on noradrenaline release, promotes fear-conditioned responses.

Furthermore, the endocannabinoid system has also been widely studied in fear extinction
processes, with endocannabinoids (eCBs) being released in response to specific physiologi-
cal needs and pharmacologically increased by blocking catabolic degradation [69,70]. The
most well-known eCBs are 2-arachidonoyl glycerol (2-AG) and anandamide (AEA), which
can be pharmacologically augmented by blocking their reuptake from the extracellular
space or by inhibiting endocannabinoid-degrading enzymes to avoid their catabolic degra-
dation. These neurotransmitters are predominantly degraded by the catabolic enzymes fatty
acid amide hydrolase (FAAH) and monoacylglycerol lipase, respectively, which produce
distinct behavioral effects [71,72]. In particular, evidence shows that the chronic inhibition of
monoacylglycerol lipase causes physical dependence, impaired endocannabinoid-mediated
synaptic plasticity, and cannabinoid receptor desensitization, while the chronic inhibition
of FAAH selectively boosts endogenously recruited anandamide in corticolimbic circuits,
promoting extinction recall after successful fear learning and extinction [69,73].

A significant amount of recent research has identified neurotransmitters and synaptic
receptors involved in the extinction of fear memory [74–77]. Namely, due to their estab-
lished role in synaptic transmission and plasticity, both glutamate and endocannabinoid
receptors have been widely investigated in mechanisms underlying the depotentiation
of original fear memory. However, there is still debate about the effects of noradrenaline
antagonists, as their actions in the presynaptic terminals can promote noradrenaline re-
lease [78–80]. In particular, β-adrenergic receptors have been reported to modulate fear
extinction by enhancing the acquisition rate of the inhibitory extinction memory [81,82].
Still, it is unclear whether increases in noradrenergic arousal could conceptually support
the enhanced acquisition of extinction learning or foster its consolidation [31,83,84].

Hence, our aim is to report and discuss pertinent mechanisms behind human models
of fear extinction, with a focus on studies that have developed pharmacological methods to
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facilitate fear extinction learning in humans by tracking synaptic transmission and plasticity.
This review discusses the advances of the last decade that have been made in this field by
presenting the mechanisms of action of pharmacological adjuvants in the modulation of
NMDA, noradrenaline, and endocannabinoid receptors. We will firstly present evidence
supporting the hypothesis that NMDA antagonists may have an excitatory role in human
fear extinction by inhibiting US memory. Then, the modulation of the noradrenaline and
endocannabinoid anandamide levels in extinction learning will be reviewed. In light of this,
we will discuss the relevance of aversive memory extinction for the study of fear inhibition
and for the screening of putative pharmacotherapies for psychiatric clinical settings.

2. The Effects of NMDA Agonist D-Cycloserine (DCS) and Valproic Acid (VPA)

Glutamatergic NMDA receptors have long been reported to be involved in the acqui-
sition [85–87], consolidation, and extinction of fear memories [88,89]. Indeed, the NMDA
receptor agonist D-cycloserine (DCS) is one of the most well-studied pharmacological
adjuvants [90,91]. DCS has been shown to act as a potential cognitive enhancer for the
treatment of anxiety disorder, phobias, obsessive-compulsive behavior, and schizophre-
nia [92–94]. The NMDA glutamate receptor’s function can be enhanced by stimulating one
of the high-affinity glycine binding sites, a feature of the NMDA–glutamate receptor com-
plex [95]. D-cycloserine (DCS) is a partial agonist of the glycine site and indirectly increases
glutamatergic activity in previously “silent” synapses [96]. When the surrounding glycine
levels are low, it facilitates NMDA receptor function with up to approximately 60% of the
efficacy of glycine, thereby increasing neuroplasticity and interfering with the consolidation
of fear memories. Both processes are thought to facilitate fear extinction [97,98]. Although
NMDA receptors are crucial for the initial acquisition of fear [21,22,37,41,44,99,100], their
role in extinction learning has only been investigated in recent years [62,100,101]. Growing
evidence suggests that fear extinction can be enhanced by adjuvant neuropharmacological
therapies [33,102], particularly treatment approaches targeting NMDA receptors. Those
approaches have been investigated as pharmacotherapies that increase fear extinction, thus
enhancing the efficacy of extinction-based psychotherapies [60,101,103]. Additionally, it has
been shown that NMDA antagonists enhance extinction through some form of inhibition of
the US memory, rather than by disrupting the consolidation of conditioned responses [99].
In particular, it has been reported that DCS administration is involved in the treatment
of fear-related disorders, as its modulation can enhance extinction learning in patients
with different types of anxiety disorders (i.e., post-traumatic stress disorder, phobias, panic
disorders, social anxiety, and obsessive-compulsive disorder) [60,102,104]. Accordingly,
animal studies suggest that DCS can facilitate the extinction of fear learning [90,105], reduce
the reinstatement of fear memories after the presentation of a single US [31,106,107], and
promote the generalization of extinction from one CS to another [108,109].

To evaluate the efficacy of DCS for enhancing the effects of fear learning extinc-
tion, Kuriyama et al. [110] examined the physiological and pharmacological effects of
administering DCS and valproic acid (VPA) on the extinction of fear learning using a
re-exposure paradigm. Previous studies have demonstrated that VPA—an anticonvulsant
that modulates GABA and glutamate-mediated neurotransmission by acting on multiple
mechanisms, including the inhibition of histone deacetylase (HDAC) [111], and increas-
ing the messenger RNA (mRNA) and protein levels of brain-derived neurotrophic factor
(BDNF) [112]—increases extracellular dopamine levels in the medial prefrontal cortex
and hippocampus [113], a mechanism that is believed to modulate the expression and
suppression of learned fear responses. Consequently, to examine the effects of these two
drugs on the extinction of fear learning, participants (n = 59) were randomly assigned
to four groups based on the pharmacological treatment they received: a DCS group, a
VPA group, a combined VPA–DCS group, and a placebo group. The experimental design
consisted of three consecutive days. On day 1, during the acquisition session, one CS+
(i.e., a geometric figure) was paired with an aversive stimulus (i.e., mild electrical stimula-
tion; US), while two CS- (i.e., geometric figures) were never presented with the US. On day
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2, during a new acquisition session, one previous CS- was paired with the US, along with
the other CS- and CS+ that were presented without the US (i.e., extinction). Crucially, on
the same day, 90 min before the acquisition session, distinct groups of participants were
administered a placebo, 100 mg of DCS, 400 mg of VPA, or a combination of 100 mg of DCS
and 400 mg of VPA, to examine the effects of DCS and VPA alone or in combination on
extinction learning. Finally, on day 3, there was a test session that included extinction recall
and reinstatement phases. During the extinction recall phase, all the CSs were delivered
without the US to test the effects of DCS and VPA, while the two CS+ were paired with
the US during the reinstatement phase. The skin conductance response (SCR) was used to
assess fear responses across groups. The results showed that either a single dose of DCS
or VPA, or a combination of DCS and VPA interfered with the acquisition of fear memory
on day 2, promoting memory extinction and reducing the reinstatement effect. These
results demonstrated that, even though DCS has been shown to enhance fear memory
consolidation [62,114] by enhancing subsequent conditioned fear responses, in combination
with VPA, it can also promote the extinction of fear learning and prevent the relearning of
previously conditioned fear responses.

In a subsequent study, Kuriyama et al. [115] administered DCS and VPA to determine
whether these neuropharmacological treatments mainly interfere with fear acquisition
or with the delayed consolidation of fear memory. Participants (n = 87) were randomly
assigned to six groups based on the pharmacological treatment received and on their wake–
sleep state. The study was conducted on two consecutive days: on day 1, participants
were fear conditioned with one of three geometric figures presented as a CS+ and paired
with a mild electric shock (US). On the same day, the DCS group received 100 mg of
DCS, the VPA group received 400 mg of VPA, and the placebo group received 1000 mg
of lactose 1 h before the second acquisition session, which occurred after a 2 h interval.
In the second fear acquisition session, a different CS+, randomly selected from the prior
CS- stimulus set, was presented with the US, along with other CSs that were not paired
with the US. On day 2, after a 12 h interval that included a waking period with or without
habitual sleep, the authors assessed the effects of the pharmacological treatment through
extinction recall: participants were reminded of all the CSs through nine presentations
without the US. Immediately afterward, during the reinstatement phase, the two CS+ were
delivered with the US. SCR was used to assess fear responses. The results showed that
VPA attenuated fear responses to the CS+ during the second fear-acquisition session and
blocked the reinstatement of fear learning. Additionally, VPA reduced fear expressions
following habitual sleep, while DCS blocked the effect following a waking period. These
data demonstrate that DCS enhanced ‘offline’ extinction learning during the waking state,
whereas VPA had a delayed effect on fear learning extinction, rather than an instant
regulation effect, probably because fear responses were reduced after the habitual sleep
period in the post-reinstatement session.

In a similar attempt, Ebrahimi et al. [116] investigated the effect of DCS augmentation
on extinction learning using functional magnetic resonance imaging (fMRI). Participants
(n = 37) were randomly assigned to the DCS group and placebo group. The experimental
design was divided into three consecutive days: on day 1, the participants were fear-
conditioned with two different CSs (i.e., two male faces), of which one was paired with a
loud noise (US). On day 2, an oral dose of 50 mg of DCS or placebo was administered once
before extinction learning, during which neither of the two CSs were paired with the US. Fi-
nally, on day 3, participants underwent the extinction recall phase, in which non-reinforced
CS+ cues were presented. Subjective ratings of valence and arousal were collected after the
fear acquisition session, and both SCR and fMRI were used as dependent variables to assess
fear responses. The results showed no group differences in fear acquisition, as indicated by
enhanced arousal ratings, as well as the activation of the insula, dorsal anterior cingulate
cortex (dACC), and thalamus in response to the CS+ presentation. However, only the
placebo group showed generalization of subjective and psychophysiological conditioned
responses to the CS+, suggesting that DCS enhanced extinction learning and prevented
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fear consolidation. These data were also supported by a decrease In amygdala activity in
the DCS group during extinction recall, while the placebo group had greater dACC, insula,
and posterior hippocampal activation in response to the CS+.

Taken together, these findings provide crucial evidence that enhancing NMDA receptor
function by administering DCS improves fear extinction (see Figure 1), as also demonstrated
by recent studies on post-traumatic stress disorder (PTSD) patients [117–119].
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Figure 1. Schematic representation of the amelioration of N-methyl-D-aspartate (NMDA) recep-
tor activity-related effects by the administration of agonist D-cycloserine (DCS) during fear ex-
tinction. During a fear-learning paradigm, a previously neutral stimulus (the conditioned stimulus)
acquires emotional significance through pairing with an aversive stimulus. The aversive stimulus
elicits a range of automatic, unconditioned fear responses, such as freezing and increased heart
rate or blood pressure. After a few pairings, the presentation of the conditioned stimulus alone
is capable of eliciting a conditioned fear response. The neural networks underlying fear learning
mainly include the amygdala, prefrontal cortex, and hippocampus. Connections between these
cortical and subcortical brain regions regulate the acquisition and extinction of fear. The activation
of NMDA receptors—ionotropic channels that allow calcium ions into the cell—is necessary for
long-term potentiation processes underlying fear learning. DCS, an NMDA partial antagonist, binds
to one of the subunits of the NMDA receptor complex and changes its shape. The result is that
glutamate opens up the channel and lets more calcium in, leading to boosted excitation by raising
the glutamate levels in the interneurons. The specific effects of DCS in humans include enhanced
fear extinction memory retention, expressed as attenuated conditioned responses during extinction
recall on subjective (i.e., valence and arousal ratings) and physiological (SCR, BOLD response) lev-
els. Notes. CS1 = Conditioned Stimulus 1; CS2 = Conditioned Stimulus 2; DCS = D-cycloserine;
NMDA = N-methyl-D-aspartate.

Indeed, such studies have highlighted the mechanisms of human fear extinction
promoted by DCS, considering the dosages and timing of administration, thus confirming
the potential beneficial effects of DCS in extinguishing conditioned fear by delaying fear
memory consolidation [90]. Moreover, the effects of VPA on the extinction of conditioned
fear are similar to those of DCS. VPA, as a competitive inhibitor of histone deacetylase
proteins, alters the formation of transcription factors, receptors, and other cellular substrates
that have a role in plasticity and learning [120]. VPA administration, therefore, results in
dendritic sprouting and increases in synaptic connectivity, which modulate learning and
promote fear-extinction mechanisms [121] (see Table 1).
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Table 1. Summary of findings in studies with the administration of NMDA agonist DCS.

Study Group (N) Pharmacological
Treatment

Mechanism of
Action

Experimental
Paradigm

Phase of Fear
Learning CSs US Psychophysiological

Measure Main Findings

Kuriyama et al.
[111]

DCS treatment (16)
VPA treatment (14)

Combined VPA–DCS
treatment (15)

Placebo treatment (15)

100 mg of
powdered DCS

400 mg of
granulated VPA

1200 mg of
lactose (placebo)

DCS is an agonist
of the NMDA

receptor
VPA is an

inhibitor of GABA
transaminase
and HDAC

3 days

Acquisition
Extinction

Recall
Reinstatement

Geometric
figures

Electric
shock SCR

DCS and VPA
enhanced extinction
learning of the fear

CRs in the
post-recall

reinstatement phase,
but not in the

extinction
recall phase

Kuriyama et al.
[116]

DCS × Sleep treatment (14)
DCS × Wake treatment (14)
VPA × Sleep treatment (15)
VPA × Wake treatment (15)

Placebo × Sleep treatment (15)
Placebo × Wake treatment (14)

100 mg of
powdered DCS

400 mg of
granulated VPA

1000 mg of
lactose (placebo)

DCS is an agonist
of the NMDA

receptor
VPA is an

inhibitor of GABA
transaminase
and HDAC

1 day

Acquisition
Extinction

Recall
Reinstatement

Geometric
figures

Electric
shock SCR

VPA treatment
reduced fear CRs in
the extinction and
acquisition phases
during the second
learning session
DCS treatment

blocked the effect of
the reinforced

CS–US pairing only
in the waking group;

VPA blocked the
effect of the

reinforced CS–US
pairing only in the

sleep group

Ebrahimi et al.
[116]

DCS treatment group (17)
Placebo treatment (20)

50 mg of
powdered DCS

Placebo

DCS is an agonist
of the NMDA

receptor
3 days

Habituation
Acquisition
Extinction

Recall

Ekman faces Auditory
tone SCR and fMRI

DCS administration
enhanced extinction
memory retention

by preventing
differential CRs
from extinction

learning to recall in
subjective arousal

ratings and
attenuating BOLD

responses in the
hippocampus
and amygdala

Notes. DCS = D-cycloserine; VPA = valproic acid; GABA = gamma-aminobutyric acid; HDAC = histone deacetylases; CS–US = conditioned stimulus–unconditioned stimulus;
CRs = conditioned responses; NMDA = N-methyl-D-aspartate; SCR = skin conductance response; fMRI = functional magnetic resonance imaging.
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3. Effects of Noradrenaline (NA) Modulation

It is widely recognized that negative and stressful experiences trigger the release of many
hormones, neurotransmitters, and peptides [122–124]. Among these, noradrenaline (NA)
controls neural excitability during the consolidation of fear learning, and plays a specific role
in the retrieval of contextual fear memory and reconsolidation processes [124–126]. In light of
this, recent studies have investigated the possibility of interfering with fear memories using
pharmacological manipulations of NA with antagonists and agonists [18,127]. Although NA
antagonists can either disrupt or enhance fear memory consolidation in animals [127,128],
evidence of the role of NA in fear consolidation and extinction in humans is still unclear
and controversial. Critically, according to Kindt et al. [18], blocking ß-adrenergic receptors
using propranolol disrupted the reconsolidation of conditioned fear; yet, in later studies, the
same authors reported that enhancing NA transmission using the a2-adrenergic antagonist
yohimbine could strengthen fear memories, as indicated by delayed extinction learning and
facilitated the return of fear [129,130].

The effect of NA stimulation on extinction learning and reinstatement of fear responses
was extensively investigated in a study by Soeter and Kindt [131]. The experimental design
was divided over three consecutive days. On day 1, participants (n = 30) were randomly
assigned to the test group and the placebo group. They were fear-conditioned with two
different CSs (i.e., images of a spider and a gun) paired with mild electrical stimulation
(US). The same day, fear memory consolidation was manipulated by administering 20 mg
of yohimbine, an adrenergic receptor antagonist that is meant to stimulate noradrenergic
activity by blocking α2 autoreceptors. On day 2, the participants received 40 mg of β-
adrenergic receptor antagonist propranolol before memory reactivation, in which a single
unreinforced CS+ was presented. Finally, on day 3, the participants were exposed to the CSs
without the US during extinction learning, and after the extinction session, an unsignaled
shock was presented to reinstate the expression of fear memory. SCR and US ratings were
collected to assess fear and extinction learning. The results showed that extinction learning
was attenuated after enhancing noradrenergic activity with the antagonist yohimbine,
which counteracted the inhibitory action mediated by α2 autoreceptors enhancing the
consolidation of fear memory. Additionally, the administration of α2-adrenergic antagonist
did not directly enhance the behavioral expression of fear learning, as the fear responses
collected during fear acquisition remained stable during memory reactivation on day 2,
and did not affect US expectancy ratings. These findings demonstrate how noradrenergic
stimulation critically influences fear generalization in humans.

In a similar attempt, Lonsdorf et al. [132] hypothesized that the administration of the
selective noradrenaline reuptake inhibitor reboxetine (RBX), which boosts the NA levels,
could enhance extinction and prevent the reinstatement of fear. Participants (n = 42) were
randomly assigned to the placebo group or the RBX group and underwent a fear-learning
paradigm. The experimental design was carried out over three non-consecutive days: on
day 1, the participants were fear-conditioned with two different CSs (i.e., discrete symbols)
displayed intermittently in three different rooms used as context (CXT) and paired with
mild electrotactile stimulation (US). On day 2, after the extinction learning phase, the
participants received either a pill containing 4 mg of reboxetine or a placebo pill. On day 8,
one week after fear acquisition, the participants performed a recall test in which the CSs
were always presented without the US and a reinstatement phase after three unsignaled
USs. The effects of fear acquisition and extinction were measured by means of SCR and
functional magnetic resonance imaging (fMRI) in every test session. The results showed
no group differences in SCR, but neuroimaging data from the recall test revealed greater
activation in the subgenual part of the vmPFC and the posterior hippocampus in response
to CS cues in the placebo group, in line with previous studies [22,37,44,101]. Instead, no
increased activation in brain areas previously involved in the recall of extinction memory
was observed in the RBX group. Moreover, after reinstatement, increased activation was
observed within the left amygdala to the CS+ cue in the RBX group, whereas decreased
activation in the vmPFC and the anterior hippocampus was seen in the placebo group.
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Thus, the authors suggested that extinction memory cannot be modulated by noradrenaline
manipulations, as the stimulation of NAergic transmission prior to fear learning with
reboxetine enhanced fear memories and ensured fear return (i.e., there were no effects on
the consolidation of extinction memory).

In a subsequent study that investigated the effect of enhanced NA signals during fear
extinction learning, Kausche et al. [133] administered α2-adrenergic receptor antagonist
yohimbine to healthy volunteers. The participants (n = 125) were pseudo-randomly as-
signed to four experimental groups based on the type of medication administered. The
authors decided to conduct a fear-learning paradigm on two consecutive days. On day 1,
the participants underwent a fear-generalization paradigm. During the baseline session,
eight neutral face stimuli were presented, and participants were asked to rate the intensity
of an electric shock (US). The faces were shown on a circular structure. Thus, the two
opposing faces, placed at 180◦, were used as the CS+ and CS-. During the acquisition
phase, both CSs were presented. Only one face was associated with the US (i.e., a mild
electric shock), while the other face was never followed by the US. On day 2, based on
group allocation, the participants received either a placebo, 20 mg of hydrocortisone, 20 mg
of yohimbine (which enhanced noradrenergic stimulation), or both drugs before a test
of fear generalization. Then, the complete set of stimuli was presented, but in random
positions, and the participants were asked to indicate which face was paired with the US.
SCR was used as an index of fear learning. The results showed that noradrenergic stimula-
tion strengthened fear memory expression, as evidenced by greater responses to the CS+,
while the responses to the CS- remained unaffected. These findings corroborated previous
findings demonstrating how noradrenergic stimulation improves memory accuracy and
contextual memory retrieval [125,126]. Moreover, as fear generalization is supposed to rely
on the individual’s capacity to perceptually discriminate the CS+ from similar versions
of the CS+ and CS-, these data showed that noradrenergic activation has the potential to
influence this process, which is responsible for ensuring fear memory expression.

These findings revealed the role of noradrenergic modulation in extinction learning.
Drugs stimulating adrenergic neurotransmission (i.e., reboxetine and yohimbine) actually
delayed extinction learning by strengthening fear memory consolidation and triggering
broader fear generalization (see Figure 2). Therefore, these studies indicate that nora-
drenaline modulation is an active process that may increase memory accuracy, affecting
fear generalization processes (i.e., perceptual similarity between the CS+ and CS−) and
thus increasing fear memory expression (see Table 2).
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Table 2. Summary of findings in studies with the administration of noradrenaline antagonists.

Study Group (N) Pharmacological
Treatment

Mechanism of
Action

Experimental
Paradigm

Phase of Fear
Learning CSs US Psychophysiological

Measure Main Findings

Lonsdorf et al.
[133]

RBX treatment (23)
Placebo treatment (19)

4 mg of RBX
Placebo

Reboxetine is an
inhibitor of

noradrenaline
reuptake

3 days Acquisition
Extinction

Symbols
shown in three

different
contexts

Electrotactile
shock SCR and fMRI

No SCR differences
between groups at the

behavioral level
Before reinstatement,

only the placebo group
showed higher

activation in vmPFC
for CS cues

After reinstatement,
the RBX group showed

higher amygdala
activation for CS cues

Kausche et al.
[134]

Placebo treatment (31)
CORT treatment (31)
YOH treatment (34)

CORT+YOH treatment (29)

20 mg of cortisol
20 mg of YOH

20 mg of cortisol
and YOH
Placebo

Cortisol is an agonist
of glucocorticoid

receptor and
annexin A1

Yohimbine is an
α2-adrenergic
blocking agent

2 days Habituation
Acquisition

Eight neutral
faces

Electric
shock SCR

The YOH group
showed higher SCR
across a similarity

continuum from CS+
to CS− (increased

responses to the CS+)

Cortisol did not
enhance fear memory

expression, but
increased fear
generalization

Soeter and Kindt
[132]

Yohimbine treatment (20)
Propranolol treatment (20)

40 mg of YOH
20 mg of propranolol

Placebo

Yohimbine is an
α2-adrenergic
blocking agent

3 days
Acquisition

Recall
Extinction

Three images Auditory
tone

SCR
Systolic and diastolic

blood pressure
Amylase level

The YOH group
showed higher startle
fear responses during

fear memory
reactivation on day 2

The propanolol group
showed a reduction in
startle fear responses

during reconsolidation
and extinction

Notes. RBX = reboxetine; CORT = cortisol; YOH = yohimbine; CS+ = conditioned stimulus; CS− = control stimulus; SCR = skin conductance response; fMRI = functional magnetic
resonance imaging; vmPFC = ventromedial prefrontal cortex.
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Figure 2. Schematic representation of noradrenergic modulation during fear learning by the ad-
ministration of adrenergic antagonists. In fear-learning paradigms, following the pairing of a
neutral stimulus with an innately aversive stimulus, conditioned fear responses develop after the
presentation of the conditioned stimulus alone. Exposure to aversive events leads to the release
of neurotransmitters, such as noradrenaline (NA). Specifically, NA is released from noradrenergic
nerve terminals, where it diffuses across the synaptic cleft and activates adrenergic receptors to
elicit a postsynaptic effect. Noradrenergic antagonists in presynaptic terminals act by decreasing the
inhibitory influence of the α2-adrenoceptor on noradrenaline release. This causes the enhancement of
fear memory and increased fear generalization, an active process that refers to an increased ability to
discriminate between CS1 and CS2, leading to increased retrieval of fear memory and fear expression.
Notes. CS1 = Conditioned stimulus 1; CS2 = Conditioned stimulus 2; NA = noradrenaline.

4. The Effects of Fatty Acid Amide Hydrolase (FAAH) Inhibition

Increasing evidence suggests that pharmacological inhibition of the anandamide-
degrading enzyme fatty acid amide hydrolase (FAAH) strengthens fear memory extinction
and protects against the anxiogenic effects of stress [134,135]. Preliminary findings from
animal studies have demonstrated that higher concentrations of the endogenous cannabi-
noid anandamide (AEA), caused by the inhibition of its main degradative enzyme FAAH,
facilitates the extinction of fear memories [136–138]. In humans, genetic studies revealed
that individuals with higher AEA showed enhanced extinction recall, and loss-of-function
mutations at the human gene encoding FAAH have provided preliminary evidence that
this reduced enzymatic activity may have beneficial effects on extinction learning and,
consequently, the modulation of stress responses [139–141].

In a recent study, Mayo et al. [142] investigated how FAAH inhibition and higher
baseline AEA influence fear learning in humans. In this study, participants (n = 45) were
randomly assigned to the FAAH inhibitor group or the placebo group, and were tested on
ten consecutive days. On day 1, participants were fear-conditioned with two colored lamps
in two different contexts (i.e., two different rooms) used as CSs, and only one lamp was
paired with an aversive auditory tone used as the US. Fear acquisition took place in one
of the two contexts, and on the same day, extinction occurred 10 min after the acquisition
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phase in the context not used for acquisition. On day 2, the CS+ and the CS- were presented
five times without the US in the same context being used during the extinction session, as a
reminder of the fear memory trace, and then in the same context used for fear acquisition.
Throughout the entire study, all participants received either 4 mg/day of a FAAH inhibitor
(FAAHi) originally developed for analgesia, PF-04457845, or a placebo pill. In each session,
fear responses were measured as changes in the eye-blink component of the startle response
in facial EMG recorded from the zygomatic and corrugator muscles, as well as changes in
physiological variables (i.e., SCR and heart rate). The results showed no effect of FAAH
inhibition on the extinction of fear responses, but the FAAH group had a significantly lower
startle response to the CS+ and SCR frequency on day 2, suggesting that FAAH inhibition
enhanced the recall of extinction memory. Interestingly, these findings are compatible with
rodent research, which has shown that the inhibition of FAAH does not affect within-session
extinction, but enhances extinction memory consolidation, thus leading to increased fear
suppression during extinction recall [143,144]. Moreover, participants who were treated
with the FAAHi had reduced corrugator muscle reactivity, indicating that they were less
stressed than the placebo group, which showed higher corrugator activation.

Recently, another study [145] investigated the effects of pharmacological inhibition of
the anandamide-degrading enzyme FAAH and the consequent accumulation of fatty acid
amides. They administered the aryl piperazinyl urea inhibitor JNJ-42165279 to determine
whether it altered neural activity in the amygdala during fear extinction. The authors
adopted a 4-day experimental design that used fMRI to examine the effects of FAAH
inhibition with the enzyme JNJ-42165279 on two behavioral tasks (i.e., an emotional face
processing task and an inspiratory breathing load task) and a fear learning task. The
participants (n = 43) were randomly assigned to the treatment group or the placebo group,
and on day 4 of the experiment, before fMRI scanning, they underwent a fear-learning
protocol. Firstly, the participants underwent a habituation phase, in which they were
exposed five times to two fractal stimuli. Then, during fear acquisition, the two fractal
stimuli were used as the CS+ and CS- and a loud noise was used as the US. Lastly, in the
extinction phase, all the CSs were presented without the US. A single dose of 100 mg/day of
JNJ-42165279 or a placebo was administered to participants, and their valence and arousal
ratings of the CS cues on a five-point Likert scale after each experimental phase were used
to assess fear responses. No differences between groups or between sessions were observed.
Both groups were successfully fear-conditioned. Immediately after the acquisition phase,
the valence and arousal ratings were higher for the CS+ than the CS-, while after extinction,
the ratings were similar for both the CS+ and CS-. FAAH inhibition increased activation
within the anterior cingulate and bilateral insula during fear acquisition, thus reflecting
differences in neural activation between presentations of the CS+ and the CS-; however,
it did not affect the within-session extinction learning, neither on a subjective level nor
at the neural level. According to these findings, which contrast with the previous study
by Mayo et al. [142], FAAH inhibition did not alter the extinction of fear responses. This
is probably because the experimental paradigm used in this study was developed to
enable the registration of the relevant neural circuitry, but did not allow the testing of fear
consolidation and, therefore, how increases in AEA can affect the process of extinction
learning. It still remains to be determined whether these effects will generalize to specific
disease populations, most importantly to patients with PTSD, which further studies have
been attempting to investigate [146,147].

Although promising, these data yield contrasting results regarding the effects of
AEA elevation via FAAH inhibition on the extinction of fear memories. In these studies,
treatment with FAAH inhibitors did not affect the acquisition of fear, and even though
Mayo et al. [142] showed the impact of reduced FAAH activity on extinction learning, that
effect was not sufficiently robust (see Figure 3). Indeed, the implications of FAAH inhibition
for stress-related behaviors remains an open question (see Table 3).
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Table 3. Summary of findings in studies with AEA elevation by FAAH inhibition.

Study Group (N) Pharmacological
Treatment

Mechanism of
Action

Experimental
Paradigm

Phase of fear
Learning CSs US Psychophysiological

Measure Main Findings

Mayo et al. [143] FAAH inhibitor treatment (16)
Placebo treatment (29)

4 mg/day of
PF-04457845

(FAAH inhibitor)

Placebo

PF-04457845 is an
inhibitor of FAAH 10 days

Habituation
Acquisition
Extinction

Recall
Renewal

Two lamps
shown in

two different
contexts

Auditory
tone SCR, ECG, and EMG

The FAAH inhibitor
group showed lower
responses to the CS+
on day 2, indicating
enhanced recall of
extinction memory

Paulus et al.
[146]

FAAH inhibitor treatment (22)
Placebo treatment (21)

100 mg/day of
JNJ-42165279

(FAAH inhibitor)

Placebo

JNJ-42165279 is an
inhibitor of FAAH 4 days

Habituation
Acquisition
Extinction

Fractal
stimuli

Auditory
tone fMRI

No differences
between groups

during the
acquisition and

extinction phases

Notes. FAAH = fatty acid amide hydrolase; SCR = skin conductance response; ECG = electrocardiogram; EMG = electromyography; fMRI = functional magnetic resonance imaging.
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Figure 3. Schematic representation of the effects of anandamide (AEA) elevation on fear extinc-
tion learning. The acquisition of conditioned fear is achieved by presenting a stimulus paired with
an aversive unconditioned event. As a result of this pairing, fear learning takes place, manifesting
as the development of conditioned responses to the conditioned stimulus. The modulation of fear
learning by the endocannabinoid (eCB) system occurs via cannabinoid receptor type 1 (CB1) signaling.
The endocannabinoid transporter (ECT) mediates eCB synaptic re-uptake. The most important eCB,
anandamide (AEA), acts as a low-efficacy agonist at CB1 receptors and is released after postsynaptic
synthesis to retroactively bind to endocannabinoid receptors CB1 and CB2 at the presynaptic site.
AEA is preferentially metabolized by fatty acid amide hydrolase (FAAH) into arachidonic acid and
ethanolamine. Indeed, the inhibition of FAAH activity maintains AEA signaling during fear learning,
favoring top-down cortical control of the amygdala and resulting in emotion regulation. Specific
effects of the local inhibition of AEA in humans are reflected by an increased firing rate in pre-
frontal brain regions that facilitates prefrontal–amygdala connectivity through alterations in synaptic
transmission. FAAH activity is expressed in enhanced fear extinction and selective attenuation of
autonomic stress responses (i.e., reduced physiological and behavioral responses to fear stimuli).
Notes. eCB = endocannabinoid system; FAAH = fatty acid amide hydrolase; CS1 = conditioned
stimulus 1; CS2 = conditioned stimulus 2.

5. Discussion

Humans show strong sensitivity to potential threats [148–152], and predicting upcom-
ing dangers is critical to an individual’s survival [3,153,154]. Indeed, from an evolutionary
perspective, learned fear is vital to activate defensive behaviors in expectation of danger,
increasing an organism’s likelihood of surviving [8,29,61]. In this context, extinction—in
which the fear response to a conditioned stimulus decreases when the reinforcement is
omitted—may be the simplest and most effective method of controlling emotional re-
sponses [101,132,155,156]. The regulation of emotional states and extinction of aversive
memories have generated much interest in the past twenty years due to the important
implications they may have in psychiatric settings.

However, it is still questionable whether the mechanisms underlying fear extinction
facilitation are based upon updating the original CS–US fear memory or inhibiting the
original excitatory fear memory trace [10,101]. Understanding the potential of extinction-
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enhancing agents, which specifically alter regulatory systems, could, therefore, help us to
understand how these agents (such as glutamate receptor agonists and endocannabinoid
and noradrenaline antagonists) can enhance the extinction process and avoid the retention
of aversive memories, which, in turn, have the potential to trigger trauma [157,158].

As discussed in previous sections, there is a large body of evidence suggesting that
various neuropharmacological agents can interact with extinction learning to facilitate (or,
in some cases, impair) the extinction of aversive memories. In particular, activating neuro-
transmitters and specific synaptic receptors is useful for promoting fear memory extinction,
and highlights effects on fear- and stress-related behavior, physiological responses, and
biochemistry in humans [143,144,159]. Crucially, after being activated, neurotransmitter
receptors in synapses are dynamically modulated and actively redistributed, strengthening
or weakening synaptic connections. Neurotransmitters and neuromodulators activate cellu-
lar kinase pathways that change synaptic strength, nerve conduction properties, and gene
transcription profiles [160,161]. Other signaling pathways mobilize intracellular calcium
ions and lipid mediators that have profound effects on neuronal functions, influencing the
mechanisms underlying the extinction of fear memory [160,161]. Therefore, the suppres-
sion of conditioned fear responses following extinction training may result from a loss of
synaptic modifications underlying the memory of the CS-US association formed during
fear learning through different potential mechanisms involving brain plasticity [162–168].
A widely accepted hypothesis suggests that extinction depends on the formation of new
associations competing with the original conditioned responses via plasticity at excitatory
inputs to inhibitory interneurons or increased inhibition of principal cells in the bilateral
amygdala [4]. Another possible explanation is a depotentiation of the thalamo-amygdala
or cortico-amygdala synapses after fear learning [169].

Accordingly to Singewald et al. [170,171], pharmacological interventions targeting
neurotransmitter systems, including serotonin, dopamine, noradrenaline, glutamate, and
cannabinoids, as well as their downstream signaling pathways, can modulate synaptic
plasticity, augment fear extinction, and strengthen extinction memory persistently in pre-
clinical models [172]. Additionally, over the last decade, a plethora of newly identified
molecular sites and receptors have been suggested to mediate the biological effects of
metabolite changes in the hippocampus, amygdala, and posterior parietal cortex during
extinction learning [173–180]. Thus, targeting specific neurobiological systems, such as
the glutamatergic, noradrenergic, and eCB systems, is critical for identifying important
neurochemical mediators in the extinction of aversive memories. Interestingly, we have
described how agonists of NMDA glutamate receptors may enhance synaptic plasticity in
such neural circuits by binding to glutaminergic sites, facilitating NMDA receptor activity
and enhancing the neural processes involved in the extinction learning of conditioned
fear [87,108]. Indeed, these excitatory neurotransmitters are specifically known to play a
crucial role in synaptic plasticity associated with the long-term potentiation of synaptic
transmission, and are involved in the neurobiological mechanisms of learning and mem-
ory, including hippocampus-dependent implicit learning and amygdala-dependent fear
learning and fear extinction [181–184]. Furthermore, it has been shown how combined ad-
ministration of DCS and VPA, used as adjunctive agents in cognitive–behavioral treatment
for fear disorders, including anxiety disorders and PTSD, may facilitate the consolidation
of fear memory extinction. Thus, when DCS and VPA are used as adjunctive agents, they
simultaneously prevent the new acquisition of fear conditioning and the reinstatement of
fear, decreasing the risk of relapse without enhancing anxiety or PTSD symptoms when
similar aversive events are encountered [185,186].

Importantly, it emerged that enhancing noradrenergic signaling during extinction strength-
ened fear memory expression, indicating increased conditioned responses and a crucial gen-
eralization of fear expression. Increases in fear expression after noradrenergic stimulation
could suggest that noradrenergic arousal may enhance fear memory expression and increase
perceptual discrimination of CSs, therefore making noradrenaline necessary for the retrieval
of contextual memory [128,187,188]. Moreover, noradrenergic arousal may increase the ac-
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tivity of areas implicated in enhanced responses to a conditioned stimulus, rather than areas
involved in the extinction process, such as the amygdala or insular cortex [22,181,189,190].
Thus, it is possible that noradrenergic manipulation generally affects the consolidation of fear
memory, as the key role of noradrenaline in increasing excitatory memory traces would be con-
sistent with its role in the arousal-dependent enhancement of emotional memories [125]. From
an evolutionary point of view, this would be an adaptive function enabling the preparation of
appropriate future coping-related behavior.

Furthermore, it is worth noting that the investigations into exogenous eCB system
activation have demonstrated that CB receptors modulate fear-learning processes, particu-
larly fear extinction [191,192]. Specifically, the pharmacological inhibition of FAAH enzyme
activity prolongs the regulatory effects of the eCB system and reverses the stress-induced
anxiety state in a cannabinoid receptor-dependent manner [192–194]. Available evidence
shows that the inhibition of FAAH and the resulting accumulation of fatty acid amides
may have anxiolytic effects in humans, which might be due to the accumulation of eCBs
acting on the CB1 cannabinoid receptor [195,196]. Indeed, FAAH inhibition maintains
higher endogenous cannabinoid anandamide (AEA) signaling during periods of stress,
probably due to strengthened top-down cortical control of the amygdala, which attenuates
emotional changes produced by stress and promotes the consolidation of fear extinction
memory [197].

Finally, we suggest that the development of new therapeutics aimed at understanding
the pathophysiology and potential treatment of anxiety disorders should be imperative:
anxiety disorders are some of the most common psychiatric disorders, affecting more
than 33% of the population during their lifetime [198] and, thus far, only psychotherapy
and pharmacotherapy are typically used to treat them, often with disappointing out-
comes [157,199]. This perspective, however, has been evolving in recent years. New and
alternative methods for treating anxiety disorders have been developed, thanks to advances
in our understanding of how pharmacological agents modulate extinction learning [170].
These new therapeutic approaches are built on the assumption that anxiety disorders, in-
cluding phobias and post-traumatic stress disorder (PTSD), can be interpreted as the result
of strong associative aversive learning, and clearly indicate that a broad range of drugs,
acting through a wide variety of neurophysiological mechanisms, can alter such learning,
sometimes in a lasting manner [200–202]. So far, it is acknowledged that a significant per-
centage of anxiety patients do not respond successfully to the current treatments, including
anxiolytic pharmacotherapy and cognitive–behavioral therapy [33,132], and show a high
probability of chronicity or experience a return of fear. Therefore, one common clinical
method is to combine psychotherapy with adjuvant pharmacological therapies. These
enhancers have been experimentally and clinically tested, with promising results; most
studies confirmed that using NMDA agonists and cannabinoids as pharmacotherapies
increased the efficacy of extinction-based psychotherapies [33]. Furthermore, new cutting-
edge avenues for clinical research would be to combine these treatments with non-invasive
brain stimulation techniques (NIBS) that could target specific brain areas involved in fear
acquisition and modulate the functional mechanisms behind aberrant fear learning (i.e.,
PTSD or anxiety) [6,13,29,61]. In particular, NIBS interventions with transcranial magnetic
stimulation (TMS) and transcranial direct current stimulation (tDCS) have achieved optimal
results in targeting brain nodes to selectively interfere with fear learning [13,26,29,203–206].
Currently, such techniques have been used to modulate cerebral activity during the con-
solidation and extinction of fear memories, with the ultimate goal of modulating these
processes, which are aberrant in different pathological fear states caused by trauma, stress,
and anxiety [6]. Thus, given this promising evidence of the use of neuropharmacological
adjuvants combined with the use of brain neurostimulation techniques, it is possible to
hypothesize better results regarding the speed of recovery from a psychiatric disorder, as
well as the long-term effect of these manipulations.

In conclusion, gaining a further understanding of how neuropharmacological agents
act on major neurotransmitter systems to promote long-term potentiation of fear extinc-
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tion may provide relatively safe and potentially effective means for treating individuals
with trauma-related diseases. This possibility further underlines the importance of us-
ing pharmacological enhancers to optimize therapies in those patients for whom classic
psychotherapy approaches alone fail to produce significant psychological improvements.
However, there is a crucial question still to be answered: what about the specificity of these
neuropharmacological agents for different brain functions? How do these enhancers exert
specific effects only on fear memories, on emotional memories in general, on other types
of memory, and/or on other related cognitive processes (i.e., attention, working memory,
and executive functions)? It is still difficult to answer these questions, so the protocols
described in this review, although using different conditions and manipulations, do not
directly investigate the involvement of other cognitive processes. Moving forward, it will be
important to investigate, in a combined way, the effects that the agents specifically have on
aversive memories related to cognitive functions. Additionally, as the studies included in
this review focused only on pharmacological methods to facilitate fear extinction learning
in healthy participants, it would be interesting to assess the effects and mechanisms of the
action of pharmacological adjuvants that foster the extinction of fear memories in clinical
populations, such as psychiatric or brain-damaged patients.

Finally, solid work will be needed to gain a deeper circuit-level understanding of how
enhancing specific neurobiological systems acts on distinct components of the neuronal cir-
cuitry underlying memory extinction. This would provide a first step toward the regulation
of maladaptive fear memories and improvement of extinction-dependent learning.
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Abbreviations

NS neutral stimulus
US unconditioned stimulus
CS+ conditioned stimulus
CS- conditioned stimulus never paired with the US
CXT conditioned context
CR conditioned response
SCR skin conductance response
EMG electromyography
fMRI functional magnetic resonance imaging
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BOLD blood-oxygen-level-dependent
PTSD post-traumatic stress disorder
NMDA N-methyl-D-aspartate
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazole propionate
DCS D-cycloserine
VPA valproic acid
NA noradrenaline
YOH yohimbine
RBX reboxetine
eCBs endocannabinoids
AEA anandamide
FAAH fatty acid amide hydrolase
FAAHi FAAH inhibitor
MAGL monoacylglycerol lipase
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