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Abstract: In Structural Health Monitoring (SHM) applications, the Direction of Arrival (DoA) es-
timation of Guided Waves (GW) on sensor arrays is often used as a fundamental means to locate
Acoustic Sources (AS) generated by damages growth or undesired impacts in thin-wall structures
(e.g., plates or shells). In this paper, we consider the problem of designing the arrangement and
shape of piezo-sensors in planar clusters in order to optimize the DoA estimation performance in
noise-affected measurements. We assume that: (i) the wave propagation velocity is unknown, (ii) the
DoA is estimated via the time delays of wavefronts between sensors, and (iii) the maximum value of
the time delays is limited. The optimality criterion is derived basing on the Theory of Measurements.
The sensor array design is so that the DoA variance is minimized in an average sense by exploiting
the Calculus of Variations. In this way, considering a three-sensor cluster and a monitored angles
sector of 90°, the optimal time delays–DoA relations are derived. A suitable re-shaping procedure
is used to impose such relations and, at the same time, to induce the same spatial filtering effect
between sensors so that the sensor acquired signals are equal except for a time-shift. In order to
achieve the last aim, the sensors shape is realized by exploiting a technique called Error Diffusion,
which is able to emulate piezo-load functions with continuously modulated values. In this way, the
Shaped Sensors Optimal Cluster (SS-OC) is derived. A numerical assessment via Green’s functions
simulations shows improved performance in DoA estimation by means of the SS-OC when compared
to clusters realized with conventional piezo-disk transducers.

Keywords: optimal shaped sensors; Direction of Arrival; DoA; Guided Waves; Lamb Waves; piezoelec-
tric sensors; sensor array; sensors cluster; Shaped Sensors Optimal Cluster; Calculus of Variations

1. Introduction

In the Structural Health Monitoring (SHM) field [1–4], passive piezoelectric sensors,
permanently bonded on the structure, are able to detect and localize an Acoustic Source
(AS) due to damages growth or undesired impacts with foreing objects. Therefore, they
allow monitoring in real time. An increasing demand of such passive SHM systems comes
from several application contexts, e.g., industrial, civil, automotive, etc., thanks to their
high potential to improve the safety, predict incipient failures, estimate the remaining
useful life and reduce the maintenance costs. Novel monitoring approaches are particularly
requested by the aeronautical and aerospace fields for weight saving of the monitoring
systems together to the associated cabling. As a consequence, wireless and battery powered-
embedded devices for data acquisition, pre-processing and transfer to a Central Unit (CU)
are to be used. In turn, a low-power consumption for the in-site data processing and
data transferring is needed. A further complication is given by the ultrasonic propagation
within thin-wall structures, such as shells of an aircraft wing or fuselage. In these thin-
wall plates, AS generate Guided stress Waves (GW), such as Lamb Waves [5] or Shear
Horizontal (SH) waves [1]. They are characterized to be dispersive, i.e., with a non-linear
relation between the wave-number and the frequency, and multi-modal, i.e., different
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wave modes can propagate, each one with a different wave number–frequency relation
(dispersion curve). Although different AS location methods were proposed and validated
at the laboratory scale, such as inverse methods [6–8] and hyperbolic positioning [9,10],
they rarely satisfy the previous constraints imposed for the field deployment. Indeed,
the inverse methods require a very accurate modeling of ultrasonic propagation and a high
computational cost to simulate the inverse propagation. Therefore, they are not suitable for
embedded applications or to transfer a small amount of data to the CU. On the other hand,
the hyperbolic positioning requires a large number of sensors in order to reduce the AS
estimation uncertainty. Furthermore, an accurate synchronization barely is achievable via
wireless systems.

As result, multiple clusters of closely located sensors, able to estimate the AS location
via the wavefront Direction of Arrival (DoA) estimation on each one, are often the only
feasible solution. Indeed, these methods have a computational cost compatible with
embedded systems and do not require synchronization between distant sensors.

Different strategies which use one or more clusters for the AS estimation have been
studied and tested [11–14]. Among these, the first one, known as Multiple Signal Clas-
sification (MUSIC) [11], allows estimating up to N-1 DoAs due to different sources with
N-sensor arrays. Modified MUSIC algorithms allow detecting and estimating the DoAs of
Lamb Waves [15]. However, MUSIC algorithms are heavily limited by the assumption of
accurate knowledge or estimation of wave velocity. Therefore, an additional iterative wave
velocity estimation procedure is needed (as shown in [16]), which increases consistently
the computational cost. Therefore, for the unknown velocity assumption considered in this
work, the MUSIC algorithms are unsuitable.

In the works [12,13], a single cluster is used to locate not only the AS angle but also
its distance. Nevertheless, in order to estimate the AS distance, they require detecting two
modes (typically the A0 and S0 Lamb modes) and computing their time difference on the
sensors by knowing their different wave velocities. Therefore, they are inadequate for
monitoring systems which are to be applied on any material with unknown properties.
Conversely, the technique proposed by Kundu [14] is suitable even when one only wave
mode is detected. This is the case of an AS generated by an impact, when, typically,
the Lamb Waves A0 fundamental mode has a much higher amplitude with respect to
other guided modes. Such a technique uses—at least—two closely spaced sensors clusters
placed apart to estimate multiple DoAs and to locate sources both in isotropic and slightly
anisotropic plates.

The DoA estimation performance of a simple cluster of three circular sensors placed
on the vertices of an isosceles right triangle, with unknown wave velocity, was investigated
in [17,18]. The DoA estimation is performed by means of the Differences in Time of Arrival
(DToAs) estimations via simple Cross-Correlation (CC) procedures. In this work, this cluster
will be referred to as Standard Cluster (SC). In [19–21], it was shown that it is possible to
use multiple clusters to estimate the AS localization even in the case of heavily anisotropic
structures (i.e., characterized by elliptical or rhomboidal wavefronts).

Although using the SC for AS location was well-validated at laboratory scale, it is
well-known that in realistic field deployment, undesired signal components, i.e., noise,
can be generated by different physical phenomena [22]: structural vibration (e.g., due
to turbulence on an aircraft), scattered wave-field, noisy acquisition channels, or noisy
electronic devices.

Research efforts have been already aimed to address the noise issue in DoA estimation.
In [23], Oktel and Moses proposed a disk-sensors cluster design procedure to increase the
DoA estimation performance in presence of noise. It was based on the Bayesian approach
(or global) of the Cramér–Rao bound (CRB), which depends on the sensor positioning and
defines the lower bound of any unbiased estimator. However, in that work, the wave
velocity is supposed to be known. Therefore, in a previous work [24], a modification of the
approach presented in [23] was proposed, which avoids the previous assumption, in order



Micromachines 2023, 14, 1154 3 of 24

to find the disk sensor positioning for the optimal DoA estimation, when, at the same time,
the accuracy loss due to the unknown wave velocity is minimized.

In other previous works [25,26], the design paradigm of the sensor clusters was
radically changed by considering sensors with different shapes with the ultimate aim
to increase the DoA estimation performance. More specifically, in [25], a novel design
strategy was proposed to control the wave-number filtering effect induced by sensors
differently shaped, considering a cluster of just two sensors for guided wave mode detection.
The proposed procedure allows using again CC procedures for time delays estimation,
ensuring same frequency responses except for phase shifts, i.e., delays in time.

In [26], a three-shaped-sensor cluster was proposed to estimate the DoA without
knowing the wave velocity. Such a strategy is capable of reducing the estimation uncertainty,
but the shaped sensors optimization was not addressed. Conversely, in the present work,
an optimality criterion and a further improvement in shaped sensor synthesis are proposed
and numerically validated.

In greater detail, the innovations proposed in this work are illustrated as follows. In
Section 2, the optimality criterion based on the Theory of Measurements is exploited to
find the optimal shapes of three-sensors cluster. It is assumed that the wave velocity is
unknown, the DoA is estimated via the time delays of wavefronts between sensors, and
the maximum value of the DToAs is limited. The sensor array design is so that the DoA
variance is minimized in an average sense by exploiting the Calculus of Variations for
functionals [27]. In this way, considering a monitored angles sector of 90° as a representative
case of different realistic scenarios, the optimal time delays–DoA relations are derived
together to the variance improvement with respect to the disk sensors SC one. In Section 3,
the re-shaping procedure based on the Radon Transform (RT) tool, already employed
in [25,26] to address the different wave-number filtering among differently shaped sensors,
is in more detail reviewed, providing the physical meaning of the sensors RT, i.e., an
equivalent 1D piezo-load distribution able to provide the same effect of the in plane 2D
piezo-load. A novel quantization technique is illustrated and applied to generate a dithered
shaped piezo-sensor able to emulate shape functions continuously modulated in values. It
is called Error Diffusion [28] and it is derived by the image processing techniques. Via the
previous techniques, three piezo-loads are derived by defining the, so-called, Shaped Sensors
Optimal Cluster (SS-OC). In Section 4, different DoA estimators based on four different
DToAs estimator are illustrated and discussed. They are employed in Section 5 on synthetic
noisy signals in order to assess the expected 50% reduction of the Standard Deviation
(SD) in DoA estimations via the SS-OC with respect to the SC of piezo-disks when the
acquired signals are affected by noise. The numeric results are examined according to
the employed estimator, the sensor quantization non-idealities, the signal bandwidth and
the wave velocity. In Section 6, the numeric results are discussed in terms of comparison
between the SC and the Disk Sensors Optimal Cluster (DS-OC), which was proposed in [24].
The conclusions are given in Section 7.

2. Optimal Time Delays–DoA Functions Derivation

Let us assume that a sensor array consists of three arbitrarily shaped sensors: P1, P2,
and P3. Moreover, let us suppose that a single co-planar far-field source generates the
wave-field impinging the three-sensors array from DoA θ. The output signal of the ith
sensor can be expressed as:

xi(t) = s(t− di1(θ)) + ni(t) (1)

where s(t) is the wave signal at a reference point near the array, assumed, without loss of
generality, to be coincident with the location of the first element in the array, P1. ni(t) is the
additive sensor noise at the ith sensor. di1(θ) is the time delay at the ith sensor with respect
to the reference point P1. Therefore, d11(θ) is equal to 0.

In order to estimate the DoA, one can first estimate the vector of DToAs d = [d21, d31]
T .

The following assumptions are also considered:
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1. The sensors are closely spaced so that the wave amplitude gradient across the array is
negligible.

2. The bandwidth of the acquired signals is narrow and the sensors spacing is small
so that the effect of the wave dispersion is negligible. In case of wide-band sig-
nals, the previous assumption can still be satisfied by decomposing the signals with
narrowband filter banks.

3. The wave number filtering effect (induced by the sensor shaping) will be imposed to
be equal on the different sensors by using an appropriate re-shaping procedure which
will be illustrated in the following section. In this way, the well-known (Generalized)
Cross-Correlation (GCC) procedures can be used to estimate the DToAs.

Observe that in case of disk-shaped sensors, the time delay–DoA relations, di1(θ),
are prescribed only by the sensor positioning. Conversely, the proposed strategy allows
designing arbitrary di1(θ) relationships by varying the sensors shape.

In this sense, let us consider two arbitrary relationships between the DToAs (d21 and
d31) and the wave direction of propagation θ in the following form:

d21(θ) =
ρ21(θ)

v
, d31(θ) =

ρ31(θ)

v
(2)

where ρ21(θ) and ρ31(θ) are arbitrary functions and v is the wave velocity. The last one
is regarded as a constant parameter under the assumption of low dispersion, as better
specified in Section 3. Observe that the physical dimensions of the two functions ρ21(θ)
and ρ31(θ) correspond to spatial shifts. Indeed, they represent the Differences in Distance
of Arrival (DDoAs), which are defined by sensor arrangement and shape. The aim is thus
to find the optimal estimator in the form:

θ̂ = f

(
d̂21

d̂31

)
(3)

which is necessary to estimate the DoA θ without knowing the wave velocity v. The
quantities d̂21, d̂31 indicate the estimators (i.e., random variables (r.v.)) used for the DToAs.

The optimal estimator, for estimation functions such as (3), is the one that minimizes
its variance, σ2

θ̂
, provided by the Theory of Uncertainty Propagation for measurements [29].

According to this theory, if we assume an unbiased estimation function f (so that the
Mean Square Error, ems, is equal to σ2

θ̂
) then, by using the first-order Taylor’s expansion of

estimation function f and neglecting the correlation between d̂21, d̂31, the variance σ2
θ̂

can
be written as:

σ2
θ̂
= ems = E[θ̂2]− θ2 =

=
(

∂ f
∂d̂21

)2
∣∣∣∣
E[d̂21],E[d̂31]

σ2
d̂21

+
(

∂ f
∂d̂31

)2
∣∣∣∣
E[d̂21],E[d̂31]

σ2
d̂31

(4)

where the terms σ2
d̂21

, σ2
d̂31

are the DToA variances. Such quantities are related to the DToAs
estimator performance and, considering a small perturbation analysis, to the signal and
noise spectra. If an efficient DToAs estimator is used, they equal the diagonal terms of the
time delays CR Matrix-Bound (CRMB) [30].

The worst-case variance value is given by:

σ2
θ̂−WorstCase =

((
∂ f

∂d̂21

)2
+

(
∂ f

∂d̂31

)2
)

σ2
d−Max (5)
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where σ2
d−Max = max[σ2

d̂21
, σ2

d̂31
]. The aim is then to minimize (5) on average over all

the expansion points E[d̂21] = d21, E[d̂31] = d31. Therefore, the aim is to minimize the
following integral:

J[ f ] =
σ2

d−Max
Ω

∫ ∫
Ω

(
f 2
d21

+ f 2
d31

)
dd21dd31 (6)

where, to simplify the notation, fd21 = ∂ f
∂d21

, fd31 = ∂ f
∂d31

. The integral is computed over Ω,

i.e., the variation range of E[d̂21], E[d̂31]. It can be observed that Equation (6) is configured
as a functional, J[ f ] which can be minimized with the tools developed within the Calculus
of Variations (CoV) theory, which is widely used in multiple Physics fields [31]: from
classical Mechanics, with the Principle of Least Action, to Optics, with the Maupertuis’s
principle; from Quantum Mechanics, with the Feynman integrals, to the advanced physics
of elementary particles interaction.

The CoV theory allows deriving compact expressions, via the integrand function,
namely the Lagrangian function. In our case, the Lagrangian function is simply expressed
by σ2

θ̂−WorstCase
.

The CoV provides the means to find extremal functions, which are the candidate func-
tions to be extremant, i.e., to minimize or maximize the generic functional J[ f ], by exploiting
the Euler–Lagrange differential equation for functionals [27].

It is worth noting that the functional (6) depends on a function f of two variables.
Observe that the CoV requires that a functional J depends on functions of independent
variables. Therefore, we will start by considering d21, d31 as two independent variables, as
if they can describe a surface on the d21 − d31 2D-plane. Then, the function f within the
Euler–Lagrange equation will be written as a function of a single (independent) variable,
i.e., the time-delays ratio. The time delays d21,d31 dependence will be resumed a posteriori
by selecting two appropriate functions providing the found extremal function f (namely,
describing a curve on the 2D-plane d21 − d31 via a two-equation parameterization of the
independent variable θ).

It is possible to formally prove that the minimization of the functional (6) (considering
mobile boundary conditions) is equivalent to the minimization of a functional in the form
J[d21(θ), d31(θ)], namely depending by two functions of a single (independent) variable θ.
To this aim, the Lagrangian function, neglecting the constant terms, can be written as:

(
∂ f

∂d21

)2
+
(

∂ f
∂d31

)2
=
(

∂ f
∂η

1
d31

)2
+

(
− ∂ f

∂η
d21
d2

31

)2

=
(

∂ f
∂η

)2
(

d2
31(θ)+d2

21(θ)

d4
31(θ)

) (7)

where η = d21
/

d31 was posed. By using the theorem of the inverse function derivative, the
term ∂ f

/
∂η can be rewritten as:

∂ f
∂η

=
1

d
(

d21(θ)
d31(θ)

)
dθ

=
d2

31(θ)

d′21(θ)d31(θ)− d21(θ)d′31(θ)
(8)

Therefore:

J[d21, d31] =
2σ2

d−Max
θ0

θ0∫
−θ0

d2
31(θ) + d2

21(θ)

(d′21(θ)d31(θ)− d21(θ)d′31(θ))
2 dθ (9)

Observe that the last functional proved the equivalence with Equation (6) and, at the
same time, allows selecting a prior probability function f (θ) which differs by a uniform
density function (implicit in (9)). However, the functional in Equation (9) involves a Euler–
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Lagrange equation more complicated with respect to the functional (6) one. Therefore,
to proceed, we consider the functional in the previous form (6).

Given an integrand function for a functional of form F(x, y, f (x, y), fx, fy), Euler’s
equation is given by:

Ff =
∂Ffx

∂x
+

∂Ffy

∂y
(10)

where Ff =
∂F
∂ f , Ffx = ∂F

∂ fx
and Ffy = ∂F

∂ fy
. It follows that the following system must be solved:{

fd21d21 + fd31d31 = 0
+boundary conditions : f = g(d21, d31)|∂Ω

(11)

The first of (11) is the Laplace equation which is solved with harmonic functions.
More specifically, we seek solutions in the form f (d21/d31) which limit the possible set
of admissible domains for Ω. Such a limitation allows to associate the ratio between the
DToAs to the ratio between the DDoAs among the sensors along the different directions
and neglect the propagation velocity.

By posing again η = d21/d31, the two terms of Equation (11) can be written as:

fd21d21 = ∂2 f
∂η2

1
d2

31

fd31d31 = 1
d2

31

(
∂2 f
∂η2 η2 + ∂ f

∂η 2η
) (12)

Then, the first equation of (11) becomes:

f ′′(1+η2)+ f ′2η

d̂2
31

= 0 (13)

where f ′ = ∂ f
∂η and f ′′ = ∂2 f

∂η2 . We can assume that d31 6= 0. Observe that Equation (13)
requires just 1D-boundary conditions. Then, by integrating Equation (13), we obtain:

θ = f
(

d21

d31

)
= c1atan

(
d21

d31

)
+ c2 (14)

where c1 and c2 are constants to be determined by taking into account the boundary
conditions, namely the range of θ. Equation (14) is the extremal function, i.e., the candidate
function to minimize the functional (6). This results in the selection of the Mean Square
Error (MSE) estimator in the form:

θ̂ = f

(
d̂21

d̂31

)
= c1atan

(
d̂21

d̂31

)
+ c2 (15)

Observe that the CoV, when applied to a realistic physics problem, typically provides
an extremant function. In our context, the aim is related to the physics of waves and to find
their DoA with minimum uncertainty; for this reason, the function (14) is an extremant
function for the functional (6). Furthermore, it can be observed that (15) is the optimal
estimation function in terms of minimum variance of worst case. Then, our goal is to find
the two functions d21(θ) and d31(θ) which minimize the functional (9). By computing the
σ2

θ̂
and σ2

θ̂−WorstCase
, considering the estimator (15), the followings results are obtained:

σ2
θ̂
= 1

c2
1

d̂2
21σ2

d̂31
+d̂2

31σ2
d̂21

(d̂2
21+d̂2

31)
2

∣∣∣∣∣
E[d21],E[d31]

σ2
θ̂−WorstCase

= 1
c2

1

σ2
d−Max

(d2
21+d2

31)
2

∣∣∣∣
E[d21],E[d31]

(16)

It must be noticed that considering two functions E[d̂21(θ)] = d21(θ), E[d̂31(θ)] =
d31(θ) which are limited in absolute value to a maximum value dmax (namely that the
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DDoAs, ρ21(θ) and ρ31(θ), are limited in absolute value to a maximum distance r), the two
functions which minimize the σ2

θ̂−WorstCase
are a sine and cosine function with the same

upper and lower bounds, i.e., r/v.
A Standard Cluster (SC) of three disk sensors is shown in Figure 1, corresponding

to the MSE estimator in (15), with the values of the constants c1 = 1, c2 = 0. This cluster
configuration was validated by Kundu et al. [14]. In this case, we have that:

d21(θ) =
r sin θ

v
d31(θ) =

r cos θ

v
(17)

where r is the distance between the sensors. Using (4) and (15), we can calculate the
variance (and its value of worst case) of the SC corresponding estimator as:

σ2
θ̂
=

d̂2
21σ2

d̂31
+d̂2

31σ2
d̂21

(d̂2
21+d̂2

31)
2

∣∣∣∣∣
E[d21],E[d31]

=
( v

r
)2
(

sin2(θ)σ2
d̂31

+ cos2(θ)σ2
d̂21

)
σ2

θ̂−WorstCase
=
( v

r
)2

σ2
d−Max

(18)

60 

50 

40 

30 

20 

10 r 

-10

-20

-30

-40 -30 -20 -10

e: sensors
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DoA 

Wa efront 

' 

0 

1 X 

O 10 

[mm] 

20 30 40 50 

Figure 1. Standard Cluster (SC) of circular sensors.

The SC provides an optimal solution when the full (360°) angular range is monitored.
However, in many realistic scenarios, just a DoAs sector has to be monitored, e.g., a
quadrant of 90°. In this case, the two constants can be set to c1 = 1/2 and c2 = 0, and the
optimal functions d21(θ), d31(θ) are given by:

d21(θ) =
r sin 2θ

v
d31(θ) =

r cos 2θ

v
(19)
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The functions (19) define our Optimal Cluster of Shaped Sensors (SS-OC). Again, by
applying (4) to (15), the σ2

θ̂
and σ2

θ̂−WorstCase
can be computed:

σ2
θ̂
= 1

4

d̂2
21σ2

d̂31
+d̂2

31σ2
d̂21

(d̂2
21+d̂2

31)
2

∣∣∣∣∣
E[d21],E[d31]

= 1
4
( v

r
)2
(

sin2(2θ)σ2
d̂31

+ cos2(2θ)σ2
d̂21

)
σ2

θ̂−WorstCase
= 1

4
( v

r
)2

σ2
d−Max

(20)

Observe that the worst-case variance in Equation (20) was reduced four times with
respect to the worst-case variance of Equation (18) achievable by a SC. Under a realistic
hypothesis, such as signal and noises mutually independent, zero mean stationary Gaussian
random processes and equal noise spectra, the time delay variances are equal, when an
efficient estimator is used for the DToAs estimation (see [24]). Therefore, σ2

θ̂−WorstCase
= σ2

θ̂
.

This involves that the DoA estimation performance, expressed in terms of DoA estimator
variance, which was computed neglecting the time delay covariance terms, is constant
with respect to the DoA for the SC case (see (18)). This last property is true also for the
SS-OC (see (20)). The reason is due to the boundary conditions, which were implicitly
selected by fixing the constant values c1 and c2, i.e., η(−π/4) = −∞ and η(π/4) = ∞.
As result, it is possible to reduce the variance of the estimation by acting on the trade-off
uncertainty–work range of DoA. Then, the reduction factor of the variance in the worst
case is equal to the reduction factor of the work-range (for the SS-OC, it is possible to work
within (−π/4, π/4)).

It is noteworthy that the DoA variance is constant also when the time delay covariance
terms are not neglected both for the case of wave velocity known and unknown, and the
optimal disks cluster is given by an equilateral triangle (see [23,32]).

In the following section, we will exploit a sensor re-shaping procedure able to im-
pose the same frequency response (i.e., the same wave-number tuning effect) among all
sensors, when an incoming Guided Wave mode impinges from a given DoA θ, except for
phase shifts linearly dependent on DToAs (19). In this way, it is still possible to use GCC
procedures to estimate the DToAs between pairs of sensors in order to extract the desired
DoA information.

3. A Radon Transform-Error Diffusion Re-Shaping Procedure for GWs
DoA Estimation

Following the previous works [25,26], a technique based on the math-tool called Radon
Transform will be employed to impose the desired time delays and the same wave-number
filtering among differently shaped sensors. However, unlike the previous works, a more
refined quantization technique, called Error Diffusion, will be exploited. It consists of using
dithered piezo-load sensors so that functions continuously modulated in values can be
emulated, allowing us to better achieve the desired frequency responses.

In order to proceed, given the frequency response of a disk sensor VP1(ω, θ), we need
to impose that the frequency responses of sensors P2 and P3 (VP2(ω, θ) and VP3(ω, θ))
are linked to the previous one in the following form:

VP2(ω, θ) = VP1(ω) exp(−jk0(ω)ρ21(θ))
VP3(ω, θ) = VP1(ω) exp(−jk0(ω)ρ31(θ))

(21)

where ρ21(θ) and ρ31(θ), namely the DDoAs, related to the DToAs via Equation (2), are
given by the numerators of Equation (19). With no lack of generality, the term k0(ω) is
used to indicate the wave-number–frequency relationship of a 0 order Lamb Wave mode.
Indeed, according to the derivation of the frequency response model considered in this work
(see Section 3.1), the term k0(ω) can be replaced by any other wave-number–frequency
relationship, k(ω), related to higher Lamb Wave mode orders or also to different GWs
which can propagate in thin-wall plates, such as Lamb–Rayleigh waves or Shear Horizontal
waves [1].
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It is important to observe that the phase-shifts in (21) are in k0(ω), instead of ω.
Therefore, in Equation (21), we must consider that the P2 and P3 responses may differ from
the P1 response not only because of the time-shifts but also for the detrimental effect of wave
dispersion. However, if the acquired signal is narrow-band, k0(ω) can be approximated
via a first-order Taylor expansion around the central frequency ωc:

k0(ω) ' k0(ωc) + (ω−ωc)k0
′(ωc)

= vp(ωc)ωc −ωck0
′(ωc) + ωk0

′(ωc)
= vp(ωc)ωc −ωck0

′(ωc) +
ω

vg(ωc)

(22)

Therefore, for a narrow-band signal, the expansion (22) well approximates the curve
k0(ω) around the central (angular) frequency ωc, and a phase shift in the frequency ω,
equal to d21(θ) = ρ21(θ)/vg(ωc), is achieved, and the wave velocity can be considered
approximately constant. It is noteworthy that the closer the sensors are, the smaller the
phase shift differences of the spectral components are among all sensors.

The assumption of a narrow-band signal is realistic for impact signals. Conversely,
Acoustic Emissions (AEs) due to defects growth can be wide-band. Although efficient
dispersion compensation procedures can be applied [33], they require the knowledge of
the dispersion curves. Alternatively, the acquired signal can be decomposed, via filter
banks, in multiple narrow-band signals. For these signals, the propagation wave velocity
vg can be considered nearly constant, and cross-correlation procedures can be computed
multiple times to estimate the time delays in each band. Therefore, for wide-band signals,
the DoA can be estimated many times to have a more robust estimation to the noise and
no-dispersion affected (see [34]).

In conclusion, the dispersion effect can be assumed to be negligible both for narrow-
band and wide-band signals and the derived time delays (19) are optimal for any structure
without assuming an a priori knowledge of the material properties (dispersion curve).

In order to impose the relationships (21), the following four key elements will be
exploited:

(a) The model of the frequency response of a sensor in the presence of a Lamb Wave
mode.

(b) The Radon Transform and its inverse.
(c) The Projection Slice Theorem.
(d) The error diffusion quantization technique.

In the following subsections, they will be briefly summarized and finally exploited to
achieve our aim, which is expressed by Equation (21).

3.1. Sensor Frequency Response Model in Presence of a Lamb Wave Mode

For the piezo-load frequency response, the model proposed by Senesi and Ruzzene
in [35] is adopted:

VP(ω) = jU(ω)k0(ω)HP(θ)DP(ω, θ) (23)

where U(ω) denotes the amplitude and the polarization of the wave component relevant
to the piezo properties of the patch at the considered frequency, k0(ω) is the wave vector
of the propagating 0 order Lamb Waves mode, HP(θ) is a quantity related to the material
properties, and finally, DP(ω, θ) is the sensor Directivity function, which is the only function
which is dependent on the shape of the sensor. It can be computed by the following integral:

DP(ω, θ) =
∫

ΩP

e−jk0(ω)(x cos θ+y sin θ)φP(x, y)dxdy (24)

where φP(x, y) is referred to as a shape function and describes the shape of the sensor as a
step function of form:

φP(x, y) =
{

1 (x, y) ∈ ΩP
0 (x, y) /∈ ΩP

(25)
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where ΩP is the area of the piezoelectric path. Without lack of generality, here, we consider
the case of sensors with constant piezoelectric properties.

Therefore, according to the model (23), assuming the same AS signal spectrum U(ω)
the sensors frequency responses are determined only by their Directivity functions. From
Equation (24), the Directivity function can be computed as the bi-dimensional Fourier Trans-
form (2D-FT) at the angle θ of the shape function φP(x, y). Furthermore, the output variable
is evaluated in k0(ω): the wave vector of a 0-order Lamb Wave mode impinging on the
sensors (e.g., A0 or S0).

3.2. The Radon Transform and Its Inverse

The Radon Transform (RT) [36], in its so-called “normal definition”, is used in many
scientific fields, e.g., tomography, astronomy and microscopy [37], where the transformed
function, in our case φP(x, y), has no preferred orientation defined. Let us consider a line
on its normal form:

ρ = x cos θ + y sin θ (26)

where θ is the angle between the normal segment to the line, going through the reference
system origin, whereas ρ is the length of the normal segment. By using the line equation in
the form (26), the RT of a considered function φP(x, y) is given by:

RTθ(ρ)[g(x, y)] =
∫ ∫

φP(x, y)δ(ρ− x cos θ − y sin θ)dxdy (27)

From the definition (27), it can be observed that the RT consists of multiple integrals
along lines shifted by ρ and normal to the direction θ. A graphic illustration is given in
Figure 2. It can be observed that the line integrals are computed in the normal direction
with respect to to the angle θ. This aspect will be useful for the following section.

y 

X 

RTe(e) 

Figure 2. Representation of the Radon Transform of the function φP(x, y) over the domain ΩP.
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As final note, observe that the RT can be inverted. The Inverse RT will be referred to
as IRT.

3.3. The Projection Slice Theorem

The Projection Slice Theorem [38] states that the bidimensional FT at the angle θ of a
given function is equal to the monodimensional FT of the Radon Transform of that function.
A graphical illustration of the projection slice theorem is given in Figure 3.

Figure 3. A graphical illustration of the Projection Slice Theorem. Φ(kx, ky) is the 2D-FT of φ(x, y).
The projection given by the RT, pθ(ρ), is given by multiple line integrals along lines normal to θ

direction. The slice Φ(kθ) on the 2D-Fourier plain is along the θ direction. The Projection Slice
Theorem states that the slice Φ(kθ) is the 1D-FT of the projection pθ(ρ).

Note that as an immediate consequence, the Directivity function, and, in turn, the
frequency response, can simply be calculated as the monodimensional FT of the RT at angle
θ of the shape function and by evaluating into k0(ω).

It is interesting to observe that only the 1D-function of the RT at angle θ (i.e., the
“projection”) determines the wave-number filtering effect, i.e., what wavelengths are inte-
grated by producing charge via a piezoelectric effect. In other words, the RT at angle θ acts
as an equivalent 1D piezo-load distribution able to provide the effect of a 2D piezo-load
distribution on the wave-number/frequency response. It is worth noting that all the infor-
mation provided by the RT function at θ is computed via line integrals which are normal to
the DoA.

3.4. The Error Diffusion Quantization Technique

The DToAs relations between the two pairs of sensors (19), or the DDoAs, ρ21(θ), ρ31(θ),
given by the numerators of Equation (19), can be realized through shaped sensors charac-
terized by shape functions which are ideally continuously modulated in values, as it will
be shown in the next section. If a simple binary quantization procedure is applied on the
ideal shape functions, step sensor–shape functions on compact space areas are obtained.
Unfortunately, this strategy is incapable of achieveing the desired non-linear trends in
terms of DDoAs due to quantization non-idealities.

In order to address this problem, techniques developed in image processing to quantize
gray-scale images with a bit per pixel can be fruitfully adopted. In particular, the so-called
dithering or half-toning techniques can be used (see the works [39,40]). Among these,
the Error Diffusion technique is able to work on image sub-areas. Therefore, what the
algorithm does at one location influences what happens at other locations. Other simpler
techniques do not have these complications but have worse performance in terms of
“similarity” parameters with respect to the starting image. In more detail, in the error
diffusion approach, the image is scanned, the pixel is quantized and the quantization error
is subtracted from the adjacent pixels on the basis of the coefficients of a predetermined
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filter (error filter). A graphical illustration of the previous procedure is given in Figure 4.
In the following, the optimal error filter H1 (see [41]) will be used. It is given by

H1 =
1

16

[
− # 7
3 5 1

]
(28)

where “−” denotes a point in the current row which has already been processed (hence
diffusing error to it would be pointless), and “#” denotes the pixel currently being processed.

Q

H1

Error filter

( [ ], [ ])x n y nφ '( [ ], [ ])x n y nφ ( [ ], [ ])q x n y nφ

( [ ], [ ])e x n y n

Figure 4. An illustrative scheme of the Halftoning-Error Diffusion quantization technique. The ideal
piezo-shape function normalized on its maximum value is discretized and considered as input.
Each discrete current value is set to 1 or 0 (binary quantized). The quantization error is algebraically
summed to the current value and is brought in feedback, filtered via the Error filter H1, and subtracted
to the new current value.

3.5. Piezo-Loads Synthesis Procedure

On the basis of the Projection Slice Theorem, Equation (21) in the frequency domain,
with the desired DDoAs ρ21(θ) and ρ31(θ), is obtained by imposing the following two
relations between the RT of a reference disk sensor P1 and the RT of the shaped sensors P2
and P3:

RTθ(ρ)[ϕ2] = RTθ(ρ− ρ21(θ))[ϕ1]
RTθ(ρ)[ϕ3] = RTθ(ρ− ρ31(θ))[ϕ1]

(29)

In this way, the desired time delays d21(θ) = ρ21(θ)/v, d31(θ) = ρ31(θ)/v are achieved
thanks to the FT and RT relation and the FT translation/time shifting property.

In conclusion, the synthesis procedure of the shape functions for P2 and P3, which
realize the desired DToAs relation (19), can be summarized as follows: consider an isotropic
circular reference sensor P1; then, calculate its RT (constant over θ) and impose the RT
of sensors P2 and P3 by using (29) with the desired shifts: ρ21(θ) = r sin 2θ and ρ31(θ) =
r cos 2θ (see Figure 5a,b). By inverting the imposed RTs, two shape functions are obtained,
which are continuously modulated (Figure 5c,d).

In order to emulate the ideal piezo-loads, the Error Diffusion quantization technique
can be applied on the P2 and P3 sensors shape functions.

Although the experimental validation is beyond the scope of this paper, it is worth
mentioning that the proposed cluster of shaped sensors can be realized by relying on
different piezoelectric materials and manufacturing techniques, e.g., metallized PVDF
(polyvinylidene fluoride) sheets can be used by shaping the electrodes on the upper surface
with a laser cut as in [42]. Alternatively, the shaping strategy can be based on printing
metallic electrodes on PVDF films to obtain the desired shape sensors as proposed in [43] or
by using litographic procedures as in [44]. Screen printing was used also to realize shaped
PZT transducers [45].
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(a) (b)

(c) (d)

Figure 5. A graphical illustration of the re-shaping design procedure. P2 and P3 are related to the
first and second column respectively: (a,b) Imposed RTs, equal to disk one in [−45°, 45°], unless there
are shifts in θ (according to the numerators of Equation (19)); (c,d) IRTs: ideal shape functions.

In the practical adoption of these devices, a fundamental step is the definition of a
well-controlled bonding procedure, because it may heavily affect the sensor response [46].

Among the last techniques, the PZT/PVDF screen printing was considered for its
relative good resolution, near 200/250 µm, and, at the same time, to limit the manufactur-
ing cost.

Therefore, the design procedure was computed to achieve “dots-shape” functions
with a resolution of 250 µm to satisfy the limitations that are associated with the patch
manufacturing.

The half-toning technique was applied according to the following steps:

1. The sensor shape functions are divided in two parts: positive and negative values.
2. In order to limit the physical sensors size, for each part, the absolute values lower

than 25% of the maximum absolute value are discarded.
3. The Error Diffusion (Section 3.4) technique is applied on each part. As a result,

each sensor is composed of two parts. However, just a single differential acquisition
channel is required; namely, no additional hardware complexity is required.

The resulting SS-OC is illustrated in Figure 6. It is worth noting that the increased
performance is not due to higher distances between sensors. Indeed, the maximum distance
between sensors, which defines the maximum time-window duration and how much the
dispersive effect influences the acquired signals, can be defined in the RT domain via the
maximum DDoA. Because in the RT domain the same maximum distance of disks sensors
is imposed, the comparison of two clusters is provided with the same computational cost
(i.e., the same maximum duration of time-windows to be stored and processed) and with
the same detrimental dispersion effect.
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Figure 6. The piezo-sensors P1, P2 and P3 of the Shaped Sensors Optimal Cluster, after applying the
Error Diffusion quantization technique (in black color, the positive sensors shape function parts, in
yellow color, the negative sensors shape function parts).

Figure 7a,b shows the actual RTs (i.e., the RTs computed by the post-quantization shape
functions). It is worth noting that they slightly differ from the imposed ones (Figure 5c,d)
due to the quantization procedure.

(a) (b)

Figure 7. The Radon Transform of the sensors after applying the error diffusion quantization
technique: (a) Actual RT of P2; (b) Actual RT of P3.

4. Doa Estimators

Given the “true” relation between the DoA and the time-delays ratio for the considered
clusters of Figures 1 and 6, the Mean Square Error (MSE) estimators of θ are given by the
estimation functions:

θ̂SC = f

(
d̂21

d̂31

)
= atan

(
d̂21

d̂31

)
; θ̂SS−OC = f

(
d̂21

d̂31

)
=

1
2

atan

(
d̂21

d̂31

)
(30)

Considering a small perturbation analysis, when an efficient time-delays estimator is
used, their variances attain the CRBs of the DoA, considering the wave velocity unknown.
It is important to note that the variances σ2

θ̂
, according to a perturbative approach as
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in (18) and (20), depend on the time delays–DoA relations, i.e., by the array design, and
on the time-delays variances, which, in turn, depend by signal and noise spectra and the
employed DToAs estimator.

In the previous work [26], three different estimation modalities were considered for the
two DToAs (d21, d31) estimation. In this work, the last ones will be re-considered together
with a new fourth modality, as follows:

1. Locating the peaks of two cross-correlation (CC) products;
2. By using the Gauss–Markov (GM) estimator consisting in three cross-correlation

procedures;
3. Locating the peaks of two Generalized Cross-Correlation (GCC) products (filtering

first the signals with an optimal filter);
4. By combining the Gauss–Markov estimator with three GCC procedures;

Although a simple cross-correlation procedure implements a Maximum Likelihood
(ML) estimator approximation (see [47]) whose variance tends to the CRLB of the time
delay between two sensors (for measurements affected by Additive Uncorrelated Gaussian
Noise (AUGN)), in the general case of the M sensors array, M CC products do not attain
the time delays CR Matrix-Bound. This happens mainly because the last method does not
exploit the additional information which can be provided by the CC products between
all sensors pairs. Furthermore, an ML estimator between just two sensors requires firstly
filtering the signals (see [30]). For these reasons, the first modality based simply on two
cross-correlations, discarding the additional information of the d32 time-shift estimation
and not filtering the acquired signals, results in a sub-optimal method.

Despite this, observe that the employed design procedure discards the covariance
terms. Indeed, the mean of σ2

θ̂
on the [−π/4, π/4] angle sector, i.e., the functional (6) or (9),

is minimized by considering firstly σ2
d̂32

, σ2
d̂23

= 0, in Equation (4). This implies that d21(θ)

and d31(θ), functions of the SS-OC, are optimal when each time delay is estimated via a
single CC product (i.e., independently by the other ones) or the sensor noises are mutually
correlated (so that σ2

d̂32
, σ2

d̂23
= 0). In other words, in the last two cases, the defined sensor

shapes and positioning of the SS-OC allow providing the maximum information on θ
(defined as the inverse of the integrand function in Equation (9)) when the wave velocity
is unknown.

As result, the adopted design procedure allowed achieving the shaped sensor array
for the DoA estimation with a minimum variance, with respect to any other sensor config-
urations, when the sensors are affected by mutually correlated noises, such as jamming
noise, or when only two time delays are estimated, relying just on two cross-correlation
products. This property can be advantageously exploited to adopt an estimator with a
reduced computational cost.

Differently, the second modality consists of measuring the DToAs for all possible
sensors pairs by cross-correlations and then calculating the Gauss–Markov (GM) (weighted)
estimate of the DToAs with respect to the first sensor (see [30]). Assuming signal and noises
to be mutually independent, zero mean Stationary Gaussian Random Processes (SGRPs),
and noises having the same spectrum for each sensor (which is fully satisfied when the
signals are acquired by the same device and the main noise contribution is due to the
electronic noise), the Gauss–Markov estimator coefficients, for the case of three sensors
array, are given by:

[
d2GM
d3GM

]
=

2
3

[
1 1/2 − 1/2
1/2 1 1/2

] d12CC
d13CC
d23CC

 (31)

where dijCC represents the DToAs between sensor i and j estimated by using the CC
procedures, whereas diGM represents the time delays with respect to the reference sensor
estimated with the GM estimator.
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The weights of the Gauss–Markov estimator have a more complex form (expressed
by a ratio of time-delays variances) when the noise spectra for each sensor, Ni, are not all
equal or when the signals are pre-filtered via different filters. On the basis of the previous
considerations, just a slight improvement in terms of performance is expected. In fact,
the SS-OC, discarding the time-delays covariance terms, maximizes the DoA information
provided by computing only two CC products at the expense of that one achievable via
three CCs. Observe that if three CCs are computed and the measurements are affected by
mutually independent noises, the employed design criterion is sub-optimal since it is based
on a sub-optimal time-delays covariance matrix Q2CC (i.e., (Q3(G)CC)ii < (Q2(G)CC)ii, with
i = 1, 2).

The third modality relies on two generalized cross-correlation procedures. For the
considered case that the ratio S/Ni is the same at each sensor (i.e., the noise spectra are
equal), and under the previous hypothesis of signal and noises being mutually independent,
zero mean SGRP, the optimal filter [30] to be applied to the acquired signals is given by:∣∣∣FOPT(ω)

∣∣∣2 =
S(ω)/N2(ω)

1 + 2(S(ω)/N(ω))
(32)

where S(ω) and N(ω) are the power spectra of, respectively, no noisy signal and noise.
In practice, the optimal filter requires knowledge or estimation of the signal and noise spec-
tra. A simple estimation method consists of measuring the noise spectrum and computing
S(ω) by subtracting the noise spectrum from the noisy signal spectrum. However, due
to random variations of noise, spectral subtraction can result in negative estimates of the
short-time magnitude or power spectrum. Different methods for reducing and removing
the distortions due to the rectification process are proposed in [48].

In this paper, for testing the DoA estimation performance with the two clusters of
Figures 1 and 6, we assumed equal White Gaussian (zero-mean) Noise (WGN) spectra
and a flat signal spectrum within a band Bs to emulate the narrow-band impulsive signals
due to an impact. In this case, the Optimum Filter (32) is equal to an arbitrary constant
within the signal band Bs (the system performance is unaffected by filter gain constant)
and 0 elsewhere: ∣∣FOPTFlat(ω)

∣∣2 =

{
1 ω ∈ Bs
0 elsewhere

(33)

The band Bs, is estimated by using the spectral subtraction technique just on the
reference sensor acquired signal, assuming estimating the white noise level with a standard
deviation σ equal to half of the mean value. The distortions induced by the rectification
of negative values of the estimated power spectrum S are neglected. This assumption is
justified when the Signal-to-Noise Ratio (SNR) values are sufficiently high, while the non-
linear distortions are not negligible when the Signal-to-Noise Ratio decreases. However,
observe that for the aim of estimating just the useful signal band Bs, instead of denoising
the signal within the band, the negative values rectification to null values turns out to be
irrelevant even for medium–low SNR values.

For equal noise spectra, the Covariance Matrix Q2GCC, achieved by using a time-delays
estimator based of two GCC products, is given by:

Q2GCC = σ2
di1

[
1 0
0 1

]
(34)

with (see [30]):

σ2
di1

=
2π

Ts

Bs∫
0

2ω2 S2/N2

1+2(S/N)
dω

(35)

where S and N are, again, the power spectra of signal and noise, Bs is the processed signal
band, and Ts is the signal time window length. According to the discussion related to the
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estimator based on two CC products, good DoA estimation performance is expected by
using just two GCC procedures.

Finally, the last estimator, i.e., the GM one based on Generalized CC (GCC) procedures,
is an ML efficient estimator; namely, its covariance matrix attains asymptotically the DToAs
CRMB [30]. For the considered case of equal noise spectra, the last one is given by:

Q3GCC = σ2
di1

[
1 1/2
1/2 1

]
(36)

with:
σ2

di1
=

2
3

2π

Ts

Bs∫
0

2ω2 S2/N2

1+3(S/N)
dω

(37)

where S, N, Bs and Ts have the same meaning specified for the case of the two GCC-based
estimator. The GM-3GCC estimator is given by the set of Equation (31), where in place of
CC products, GCC ones are used.

For a generic number of sensors M, the optimal filter to be applied to the acquired
signals is given by:

|FOPT(ω)|2 =
S(ω)/N2(ω)

1 + M(S(ω)/N(ω))
(38)

Considering the signal and noise modeling previously said for the numerical testing,
the optimal filter is simply led back to (33).

As a final note, observe that the last ML estimator addresses only the noise issue.
In a realistic scenario, another well-known problem may rise: edge reflections. They could
cause the “correct” DoA estimation failure. A Phase Transform applied to the GCCs can
be adopted to address the reverberation [49,50]. However, its performance can only be
considered optimal for a medium–high SNR (as shown in [51]). In a more recent work,
ref. [52], a time-delay estimator based on a low-rank approximation of the sub-bands GCC-
Matrix has proposed to address efficiently both the noise and reverberation. However, it
has been developed for non-dispersive contexts. Improved performance for a lower SNR
in the presence of boundaries reflections can be achieved by using GCC procedures with
the Hilbert Transform, as proposed in [53].

5. Numerical Validation: DoA Estimation Performance

In order to validate the design procedure of the shaped sensors and the improved
performance expected in DoA estimation, a numerical analysis was performed.

In particular, impact waves propagating in an aluminum plate 1 mm thick (Young’s
modulus 70 GPa, Poisson’s coefficient 0.3 and material density 2700 Kg/m3) were simulated
with the Green’s functions formalism adopted in [54]. The impulse response of a band-pass
Butterworth filter (10-th order) with different bandwidths and center frequencies was used
in order to simulate the impact signal.

Simulations were performed for multiple impact locations obtained by varying the
true DoA with 5◦ steps (θ = −45◦,−40◦,−35◦, . . . , 45◦), the distance from the reference
sensor P1 being 0.8 m. The results achieved by the clusters of Figures 1 and 6 are given
in Tables 1–3 for different center frequencies and bandwidths of the impact signal and
different Peak Signal-to-Noise Ratios (PSNR). To assess the Standard Deviation (SD) of DoA
estimations, 200 simulations were performed on the entire 90◦ sector. Furthermore, the
Maximum Error (ME) over all simulations was considered. The simulations were run
simulating the propagation of the A0 Lamb mode and considering: (i) circular piezo-
sensors with a radius equal to 2.5 mm, (ii) maximum DDoA between sensors d equal to
2 cm, (iii) sampling frequency (Fs) equal to 2 MHz.

As shown in Tables 1–3, the SD and ME values obtained with the shaped sensors
and the time-delays estimators based on two CC procedures or given by the GM-CC are,
as expected, smaller with respect to the SC, particularly when the PSNR value decreases.
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This behavior can be interpreted in the following way. Due to the non-ideal calibration
curve (i.e., which differs by ideal 1/2 arctan(·) obtained via Equation (19)) achieved by the
quantized-shaped sensors, there is an error (bias), which changes depending on the consid-
ered band, in the estimation function. However, the last disadvantage is overcompensated
when the noise increases thanks to the achieved curve, which is more robust with respect
to the uncertainties on the estimated time delays (i.e., thanks to the reduced variance (20)).
When the time-delays estimators based on two GCCs or on the GM-GCC procedure are
employed, the advantage of the shaped sensors is provided on the SD values and more
clearly on the ME, particularly for low PSNR values. This trend can be explained according
to the following reason. When the noise level arises, its estimation “error” arises together
with the signal band BS estimation “error”. When the band is overestimated, more noise,
summed to the useful signal, is processed. In all these cases, for low PSNR values, the
previous behavior applies. As a result, the DoA estimation maximum error achieved via
the SS-OC is smaller than the SC one.

It is very interesting to observe that the DoA estimation performance provided by
using just two GCC procedures is quite similar to the one provided by the GM estimator
which relies on three GCC products. This behavior allows us to consider the former esti-
mator to limit the computational cost, by excluding a third GCC product, to the benefit of
the embedded electronic devices power consumption. It derives from the design proce-
dure which neglected the time-delays covariance terms, and it is in accordance with the
considerations previously explained in Section 4.

Due to the wave dispersion of the A0 mode, the higher the considered center frequency,
the higher the wave (group) velocity v. Therefore, according to the variances (18) and (20),
which increase as v2 increases, worse performances are achieved by both clusters when the
center frequency increases. This behavior appears in the SS-OC when the noise increases
for the above-mentioned reason.

Conversely, when the signal bandwidth increases, a more impulsive signal is detected
and the time-delay uncertainties are smaller. For the considered case of a quasi-flat signal
spectrum in a given band BS, the DToA variance terms σ2

d̂i1
of the covariance matrix, for

an optimal time-delays estimator based on a GCC procedure, decrease as B2
S decreases

(see (35)). Therefore, the two terms, wave velocity and central frequency, have an opposite
influence on the DoA estimation performance (compare Tables 1 and 2, and Table 3, which
are characterized by a 10 and 30 kHz bandwidth, respectively).

Table 1. Comparison of Standard Deviation (SD) and Maximum Error (ME) values (in degrees)
between the arrays of Figures 1 and 6 for noise-affected measurements (AWGN) at different PSNR
values. Actuated pulse band: [20–30] kHz.

Standard Cluster Shaped Sensors Optimal Cluster

CC GM-CC GCC GM-GCC CC GM-CC GCC GM-GCC

PSNR SD ME SD ME SD ME SD ME SD ME SD ME SD ME SD ME
60 dB 1.1 1.79 1.08 1.79 1.07 1.79 1.06 1.79 2.7 4.53 2.71 4.53 2.69 4.53 2.68 4.53
40 dB 1.54 4.93 1.39 4.04 1.12 2.62 1.09 2.62 2.74 6.24 2.73 6.38 2.68 5 2.68 5
35 dB 2.2 7.41 1.91 6.84 1.18 3.3 1.16 3.3 2.83 7.04 2.79 6.91 2.69 5.48 2.69 5.48
30 dB 3.46 10.3 2.88 10 1.47 10.6 1.41 8.03 3.07 9.64 2.96 9.64 2.71 6.66 2.7 6.31
28 dB 4.21 14.2 3.47 12.7 1.78 13.4 1.64 9.18 3.24 10.4 3.05 10.5 2.75 9.12 2.72 8.96
27 dB 4.64 17.4 3.85 17.4 1.9 13.4 1.77 13.8 3.4 11 3.23 11 2.79 8.87 2.77 9.15
26 dB 5.14 18 4.21 18.4 2.17 14.9 2.01 14.9 3.47 10.2 3.25 11.3 2.88 11.3 2.83 9.99
24 dB 6.3 24.7 5.15 20.9 3.24 24.7 2.81 20.8 3.88 13.2 3.57 13 2.98 15.5 2.91 15.7
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Table 2. Comparison of Standard Deviation (SD) and Maximum Error (ME) values (in degrees)
between the arrays of Figures 1 and 6 for noise-affected measurements (AWGN) at different PSNR
values. Actuated pulse band: [30–40] kHz.

Standard Cluster Shaped Sensors Optimal Cluster

CC GM-CC GCC GM-GCC CC GM-CC GCC GM-GCC

PSNR SD ME SD ME SD ME SD ME SD ME SD ME SD ME SD ME
60 dB 1.27 2.12 1.21 2.12 1.28 2.12 1.2 2.12 2.7 4.53 2.71 4.53 2.69 4.53 2.68 4.53
40 dB 1.8 6.39 1.6 5.56 1.21 2.65 1.17 2.65 2.74 6.24 2.73 6.38 2.68 5 2.68 5
35 dB 2.68 8.83 2.26 8.83 1.25 3.66 1.23 3.66 2.83 7.04 2.79 6.91 2.69 5.48 2.69 5.48
30 dB 4.24 13.2 3.54 12 1.66 10.9 1.57 10.2 3.07 9.64 2.96 9.64 2.71 6.66 2.7 6.31
28 dB 5.18 17.2 4.31 15.5 1.99 13.7 1.86 12.6 3.24 10.4 3.05 10.5 2.75 9.12 2.72 8.96
27 dB 5.78 21.9 4.72 17 2.49 19.5 2.2 18.1 3.4 11 3.23 11 2.79 8.87 2.77 9.15
26 dB 6.48 22.8 5.28 19.8 2.81 20.6 2.46 15.2 3.47 10.2 3.25 11.3 2.88 11.3 2.83 9.99
24 dB 8 27.8 6.67 27.3 3.65 25 3.21 25 3.88 13.2 3.57 13 2.98 15.5 2.91 15.7

Table 3. Comparison of Standard Deviation (SD) and Maximum Error (ME) values (in degrees)
between the arrays of Figures 1 and 6 for noise-affected measurements (AWGN) at different PSNR
values. Actuated pulse band: [30–60] kHz.

Standard Cluster Shaped Sensors Optimal Cluster

CC GM-CC GCC GM-GCC CC GM-CC GCC GM-GCC

PSNR SD ME SD ME SD ME SD ME SD ME SD ME SD ME SD ME
60 dB 1.2 2.13 1.23 2.13 1.23 2.28 1.2 2.28 1.25 2.47 1.22 2.47 1.24 2.71 1.19 2.71
40 dB 1.23 3.21 1.19 3.2 1.21 2.28 1.19 2.28 1.3 3.62 1.27 3.41 1.27 2.86 1.22 2.71
35 dB 1.52 4.86 1.38 4.51 1.19 2.87 1.18 2.87 1.39 4.83 1.34 4.63 1.28 2.86 1.24 2.93
30 dB 2.08 6.8 1.81 5.96 1.24 4.29 1.22 4.29 1.56 5.84 1.47 5.33 1.31 4.01 1.28 4.35
28 dB 2.52 8.84 2.15 8.84 1.4 8.2 1.34 8.2 1.73 5.84 1.59 5.84 1.33 4.99 1.3 5.52
27 dB 2.75 10 2.32 8.37 1.5 7.77 1.42 7.43 1.81 7.27 1.64 7.51 1.35 6.79 1.31 4.53
26 dB 2.98 10.1 2.5 9.79 1.75 9.54 1.58 8.96 1.92 7.27 1.73 6.94 1.42 6.98 1.36 6.81
24 dB 3.63 12.1 3.05 10.8 1.99 11.3 1.79 10.2 2.21 7.98 1.98 8.2 1.6 6.09 1.5 7.07
22 dB 4.44 15.2 3.75 13.5 2.96 17.5 2.57 16.3 2.61 9.53 2.29 9.28 1.9 9.55 1.73 8.63
20 dB 5.54 18.3 4.53 17.2 3.92 20 3.33 20 3.07 10.3 2.64 9.84 2.49 13.2 2.19 13.2

6. Discussion

The numeric results showed improved performance in impacts/defects GWs DoA
estimation when a Shaped Sensors Optimal Cluster is employed instead of a Standard
Cluster of disks sensors. The theoretical variance reduction factor equal to 4, i.e., 2 in terms
of DoA “error” in numerical testing, appears to lower PSNR values when the bias term of
the shaped sensors estimator (the second of Equation (30)), induced by the quantization
procedure non-idealities, is negligible with respect to the estimator variance σ2

θ̂
(20). It

is worth noting that the increased performance is not due to a higher maximum DDoA
between sensors pairs, but it is achieved thanks to the implemented optimal time delays–
DoA relations. This means that the DoA performance achieved by the SC and the SS-OC is
provided with the same computational cost (i.e., the same maximum duration of signals to
be stored and processed via GCC products). Furthermore, neglecting the quantization non-
idealities, the clusters comparison takes into account the detrimental effect of dispersion
which influences the acquired signals. Indeed, the dispersion effect for each angle θ of the
monitored angles sector is defined only by the spatial shifts ρij(θ) in the Radon Transform
domain, which have the equal maximum value in both clusters.

It is interesting to compare the cluster optimization of this work with the one in [24],
where just disk sensors were considered. In [24], the optimal disks positioning, for an
unknown wave velocity, is defined with the constraint to lie in a circle domain of a fixed
radius. In order to compare the numeric results in DoA estimation obtained via the
Disk Sensors Optimal Cluster (DS-OC), defined in [24], considering a circle radius equal to
r = 2 cm, it is important to highlight that in that case, the maximum DDoAs between two
disks is about 1.7r and 1.4r, whose average value is 1.55r. If such a maximum DDoA was
used in the SS-OC design, it has produced SD values reduced by a factor of 1.55 for low
PSNR values. Although, due to the optimization procedure differences, mainly related
to considering or not the time-delays covariance terms, an impartial comparison can not
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be made yet, it is possible to analyze and explain the performance achieved by the two
different optimized clusters.

Let us consider, as an example, the same bandwidths, 30–40 kHz and 30–60 kHz, and
the DoA estimators based on two CC procedures and on the GM-CC one. Generalized CC
procedures-based DoA estimators are not taken into account due the fact that in [24], the
noise level is considered to be known. When the CCs-based estimator is considered, fixing
a certain maximum DDoA value, i.e., fixing the computational cost, the proposed SS-OC
shows clearly its advantages in terms of DoA estimation performance when compared
to the DS-OC. The DoA estimation improvement is due to the variance σ2

θ̂
related to the

SS-OC (20), which is minimized considering the time-delays covariance terms equal to
0. This means that a higher information content on the DoA is provided by the two time
delays d21, d31 estimated by two simple CC products.

When the GM-CC estimator is considered, i.e., also the time delay d32 is taken into
account, the SS-OC shows again better performance with respect to the DS-OC of [24] in the
narrow-band 30–40 kHz to low PSNR (when the bias error induced by the shaped sensors
is negligible with respect to the estimator variance). Vice versa, a worse DoA estimation
performance is shown in the wider band: 30–60 kHz. This behavior can be explained by
the shaped sensors RT non-idealities, i.e., to higher wave-number filtering differences in
wider bands (namely, sensors “transfer function” differences), among the quantized sensors.
Indeed, also when the SS-OC is compared to the SC, by observing the Tables 2 and 3, for
the same “DoA error region” of the SS-OC (e.g., the SD values are within the range 3°–5°),
better results are achieved in the case of a narrow-band: 30–40 kHz. Furthermore, observe
that the DS-OC was designed differently, considering also the time-delays covariance terms,
selected as non-zero and equal to non-diagonal terms of the CRMB, i.e., 1/2 of its diagonal
terms (37), under the assumption of noises with same spectrum, which is the considered
case for the numeric results to emulate the electronic noise. Therefore, the GM-CC estimator
exploits better the information provided by the three estimated time delays.

Disk clusters, on the other hand, defined in a restricted circular area, such as the
DS-OC, have the advantage of considering a reduced physical sensor size and optimizing
the physical distances among the disks, ensuring better the assumption that the wavefronts
impinging on the cluster can be considered locally planar for a considered AS location.

Future developments are aimed to define an optimal cluster of shaped sensors without
neglecting the covariance terms to improve even more the DoA estimation performance in
the case of electronic noise and when the computational cost can be increased by a third
supplementary GCC product.

7. Conclusions

In this work, an optimal three-shaped-sensors array design procedure for Guided
Waves DoA estimation is proposed. The optimality criterion is based on the minimization
of the DoA estimation variance provided by the Propagation of Uncertainty, in an average
sense, via the Calculus of Variations. It allows defining the optimal time delays–DoA
relations between a reference disk sensor and the other two shaped ones, considering the
wave velocity unknown.

Following the re-shaping procedure defined in previous works, based on the Radon
Transform tool, the ideal sensor shape functions, able to impose the same wave-number
tuning effect among all sensors and the desired time delays–DoA relations, are found. The
last procedure allows using cross-correlation products to estimate the time delays between
pairs of sensors with the ultimate aim of estimating the DoA.

Unlike previous works, a more refined procedure, derived by the image processing
techniques, is applied. It is called Error Diffusion. Able to emulate sensor shape functions
continuously modulated in values, it allows reducing the non-idealities of the quantized
sensors in the Radon Transform domain.

The theoretical improved performance via the designed Shaped Sensors Optimal
Cluster (SS-OC), equal to a 50% reduction of the DoA estimation “error” with respect to
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a Standard Cluster of disk sensors, is assessed via a numerical validation based on the
Green’s functions formalism, particularly to low PSNR values.

A numerical comparison of different DoA estimators, based on two or three (G)CC
products, was provided to show how the DoA estimation performance is quite similar
when there are either two or three (G)CC procedures and when the measurements are
affected by electronic noise. This result was expected for the employed design procedure,
which discards the time-delays covariance terms. In other words, the DoA estimation
variance was minimized relying on just two no-correlated time delays. This criterion is
optimal for measurements affected by environment-correlated noises or when the DoA is
estimated through only two (G)CC products for computational cost saving.

A discussion of the numeric results achieved by the SS-OC and by the Disk Sensors
Optimal Cluster (DS-OC), proposed in the previous work [24], has highlighted the ability
of the SS-OC to provide improved DoA estimation performance with respect to the DS-OC
when just two CC products are computed.

To conclude, the SS-OC was designed to overcome the performance in the DoA
estimation in a 90° angles sector, with respect to any array configuration of disk or shaped
sensors, when the DoA estimation procedure relies on just two (G)CC products, i.e., when
low-power consumption electronic devices are used and/or environment-correlated noises
are addressed, and when the measurements are characterized by a low PSNR value, i.e.,
when the estimation bias (induced by quantization effects) is overcome by the estimation
variance due to noise.

Future developments are aimed to design shaped sensors considering also the time de-
lays covariance terms for the three time-delays-based DoA estimation and mobile boundary
conditions in the Calculus of Variations problem statement.
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Abbreviations

The following abbreviations are used in this manuscript:

AS Acoustic Source
AUGN Additive Uncorrelated Gaussian Noise
AWGN Additive White Gaussian Noise
CC Cross-Correlation
CoV Calculus of Variations
CU Central Unit
CRB Cramér–Rao Bound
CRMB Cramér–Rao Matrix Bound
DDoA Difference in Distance of Arrival
DoA Direction of Arrival
DS-OC Disk Sensors Optimal Cluster
DToA Difference in Time of Arrival
Fs Sampling Frequency
FT Fourier Transform



Micromachines 2023, 14, 1154 22 of 24

GCC Generalized Cross-Correlation
GM Gauss Markov
GW Guided Waves
IFT Inverse Fourier Transform
ME Maximum Error
ML Maximum Likelihood
MSE Mean Square Error
MUSIC Multiple Signal Classification
PSNR Peak Signal-to-Noise Ratio
RT Radon Transform
IRT Inverse Radon Transform
r.v. random variable(s)
SC Standard Cluster
SD Standard Deviation
SGRP Stationary Gaussian Random Processes
SHM Structural Health Monitoring
SNR Signal-to-Noise Ratio
SS-OC Shaped Sensors Optimal Cluster
WGN White Gaussian (zero-mean) Noise
2D-FT Bi-dimensional Fourier Transform
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