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Abstract: Recent advancements in smart, wearable technologies have allowed the detection of various
medical conditions. In particular, continuous collection and real-time analysis of electrocardiogram
data have enabled the early identification of pathologic cardiac rhythms. Various algorithms to
assess cardiac rhythms have been developed, but these utilize excessive computational power.
Therefore, adoption to mobile platforms requires more computationally efficient algorithms that do
not sacrifice correctness. This study presents a modified QRS detection algorithm, the AccYouRate
Modified Pan–Tompkins (AMPT), which is a simplified version of the well-established Pan–Tompkins
algorithm. Using archived ECG data from a variety of publicly available datasets, relative to the
Pan–Tompkins, the AMPT algorithm demonstrated improved computational efficiency by 5–20×,
while also universally enhancing correctness, both of which favor translation to a mobile platform for
continuous, real-time QRS detection.

Keywords: wearables; algorithm; electrocardiogram; heart rate; QRS complex; mobile platform

1. Introduction

Continuous collection and real-time analysis of physiologic data are increasingly
common due to advances in wearable technologies [1,2]. The electrocardiogram (ECG)
is a signal acquisition technology that monitors the electrical activity of the heart and is
common for routine cardiac evaluation because it is inexpensive, noninvasive, and provides
continuous real-time data. The ECG is particularly valuable for detecting cardiac anomalies
such as arrythmias [3–5].

Many algorithms have been developed to recognize characteristics of the ECG, and
the detection of the QRS complex is fundamental for analysis [6–17] because it is the
major landmark that allows the waveform to be segmented into heartbeats for determining
the heart rate and its variability [18]. The accurate detection of the QRS signal is also
fundamental to more detailed ECG processing [19].

One common method for QRS detection is the Pan–Tompkins algorithm, which was
developed prior to the advent of wearable technologies [20]. In our experience, the Pan–
Tompkins algorithm caused real-time processing delays and was suboptimally correct
when evaluating publicly available data that simulated signals that would be acquired
from mobile platforms and wearable technologies.

Therefore, to better enable real-time QRS detection via mobile platform-based ECG
devices, such as wearable technologies with smartphone interfaces, more computation-
ally efficient algorithms are necessary that do not sacrifice (and may even improve) cor-
rectness [21–24]. We hypothesized that our modified QRS detection algorithm is more
computationally efficient and at least as correct as the established method on which it is
based.
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2. Methods

The Pan–Tompkins algorithm was modified (known here as the AccYouRate Modified
Pan–Tompkins (AMPT)) to be more computationally efficient and, thus, more amenable
to application on a mobile platform. Using archived ECG data from a variety of publicly
available ECG datasets, both algorithms were evaluated for computational efficiency and
correctness as compared to manually and independently annotated QRS complexes.

2.1. Algorithms

The AMPT algorithm differs from the original Pan–Tompkins method in two major
ways:

(1) The Pan–Tompkins algorithm performs an analysis on two simultaneous signals: the
bandpassed signal and the resulting filtered signal. The peaks from each signal are
compared on a time basis for correspondence. However, with the AMPT algorithm,
the signal peaks and the noise peaks from the bandpassed signal are not calculated
and only the final filtered signal is analyzed.

(2) The Pan–Tompkins algorithm uses two average RR intervals for search back (one for
sinus rhythm and one for arrhythmias), which entails defining the signal and noise
peaks, thresholds, and a series of RR limits. The AMPT does not differentiate based
on regular or irregular rhythms, and therefore requires fewer computational steps
because search back is calculated from a single averaged RR interval.

The AMPT algorithm utilizes the same low- and high-pass filters, derivative, squaring
function, and moving window integration as the original Pan–Tompkins method. However,
only the filtered signal is used for the AMPT. Thus, for the AMPT algorithm, the set of
filtered ECG thresholds is redefined as (corresponding to Equations (17)–(20) of the original
Pan-Tompkins manuscript [20]):

SPKF = 0.125 PEAKF + 0.875 SPKF (1)

NPKF = 0.125 PEAKF + 0.875 NPKF (2)

THRESHOLD F1 = NPKF + 0.25 (SPKF − NPKF) (3)

THRESHOLD F2 = 0.25 THRESHOLD F1 (4)

where PEAKF is the overall peak, SPKF is the running estimate of the signal peak, NPKF
is the running estimate of the noise peak, THRESHOLD F1 is the first threshold, and
THRESHOLD F2 is the second threshold, consistent with nomenclature from the original
Pan–Tompkins paper.

Next, when the QRS complex is identified using THRSHOLD F2, the signal peak is
redefined as (corresponding to Equation (21) of the original Pan-Tompkins manuscript [20]):

SPKF = 0.125 PEAKF + 0.875 SPKF (5)

Further, the average of the eight most recent sequential RR intervals is redefined as
(corresponding to Equation (24) of the original Pan-Tompkins manuscript [20]):

RR AVERAGE1 = 0.125 (RRn − 7 + RRn − 6 + . . . + RRn) (6)

where RRn is the most recent RR interval. Then, an RR limit is redefined as (corresponding
to Equation (28) of the original Pan-Tompkins manuscript [20]):

RR MISSED LIMIT = 1.66 RR AVERAGE1 (7)

The AMPT algorithm also uses the same T-wave identification as the original Pan–
Tompkins method.
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In summary, from the original Pan–Tompkins manuscript [20], the fiducial mark
and Equations (12)–(16), (22), (23), (25)–(27) and (29) were not used, the coefficients of
Equations (20) and (21) were modified, and RR Average 1 (rather than RR Average 2) was
used in Equation (28) for the AMPT algorithm.

The Pan–Tompkins algorithm was obtained as an intact Python code by Pickus from
a public software repository and forum [25]. Via line-by-line inspection, this code was
confirmed to exactly implement all steps reported in the original Pan–Tompkins manuscript.
The first steps of the algorithm, which include the application of a set of filters, are suitable
for the specific, previously used sampling rate of 200 Hz.

The AMPT algorithm was custom written in Python, independent of publicly available
Pan–Tompkins codes. The AMPT code is available at https://github.com/Accyourate-
Group-S-p-A/acy_ampt (accessed on 25 January 2023).

Both the Pan–Tompkins and AMPT codes were executed in Python 3.7 using IDE
PyCharm 2019.2.6 Professional Edition and public Python libraries (NumPy, SciPy, Pandas,
WFDB, and time). For comparison purposes, all processing took place on the same desktop
computer (HP Z840 Workstation (Hewlett Packard, Palo Alto, CA, USA), Processor: Intel
Xeon CPU E5-2620 v3–2.40 GHz, 64 GB RAM (Intel, Santa Clara, CA, USA)) which was only
running those background programs (in addition to Python and PyCharm) that loaded
upon booting into 64-bit Windows 10 Pro (Microsoft, Redmond, WA, USA).

2.2. ECG Datasets

To compare algorithms, multiple datasets were downloaded from the PhysioBank
ATM [26] and Harvard Dataverse [27] repositories. Records included annotations of QRS
complexes that were manually identified throughout all data and adjudicated indepen-
dently of this project. The datasets were those curated to specifically feature high and low
signal qualities [28], normal sinus rhythms [29], arrhythmias [30], paced rhythms (subset of
arrhythmias dataset), and telehealth-acquired signals [27]. The sampling attributes of these
datasets are shown in Table 1.

Table 1. Number of beats, number of records, record length, total time, and sampling frequency by
dataset.

Dataset Description Number of
Beats

Number of
Records

Record
Length (min)

Total Time
(min)

Sample Frequency
(Hz)

A1 High Quality 72,415 100 10 1000 250

A2 Low Quality 78,618 100 10 1000 360

B1 Normal Sinus Rhythm 48,494 18 30 540 128

B2 Arrhythmias 103,724 44 30 1320 360

C Paced Rhythm 8923 4 30 120 360

D TeleHealth 6708 134 0.5 125 500

All the data from the High and Low Quality, Arrhythmias, and Paced Rhythm datasets
were utilized. However, only the first thirty minutes of each Normal Sinus Rhythm sample
were used because when longer periods were considered, hardware resources became a
limiting factor and, thus, computational time did not exclusively reflect algorithm efficiency.
In addition, from the TeleHealth dataset, 116 samples were excluded because there was a
prohibitively small number of reliable ECG waveforms.

Additionally, across datasets and across patients within datasets, there was not a
consistent lead configuration. Therefore, in cases where multiple ECG recordings were
present, those listed first were utilized.

https://github.com/Accyourate-Group-S-p-A/acy_ampt
https://github.com/Accyourate-Group-S-p-A/acy_ampt
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2.3. Analysis

Both algorithms were executed with all samples (except the Normal Sinus Rhythm
dataset, from which only the first thirty minutes of each tracing were used), and their
outputs were compared to the annotations for each dataset. Accurate detection was
indicated if the annotated R peak fell within 150 milliseconds of the algorithm-detected
R peak, which is consistent with the ANSI/AAMI guidelines [31]. Other classification
possibilities were false positive, false negative, and failed detection. These findings were
summarized by calculations for correctness including total error rate, sensitivity, positive
predictive value, accuracy, and F1, which were mathematically defined as:

Total Error Rate =
FN + FP

TB
(8)

Sensitivity =
TP

TP + FN
(9)

Positive Predictive Value =
TP

TP + FP
(10)

Accuracy =
TP

TP + FP + FN
(11)

F1 =
(2 ∗ TP)

2 ∗ TP + FP + FN
(12)

where FN is False Negatives (annotated beats that are not detected); FP is False Positives
(beats detected not corresponding to an annotated beat); TB is Total Beats (sum of annotated
beats); and TP is True Positives (annotated beats that are correctly detected). True negatives
are not typically used to calculate the accuracy of QRS detection [7,32]. The processing time
of each ECG sample was measured and expressed on the basis of ten seconds of ECG data.
A computational efficiency factor was defined as the ratio of times to execute each sample
(Pan–Tompkins to AMPT).

For a fair comparison across datasets, the analysis was repeated by resampling all data
to 200 Hz. In this way, all ECGs were filtered using the same cut-off frequencies.

3. Results

As compared to the Pan–Tompkins algorithm, the AMPT algorithm was computa-
tionally more efficient across all datasets (Figure 1). For the Pan–Tompkins algorithm,
processing times varied from a low of 12.38 milliseconds per ten seconds of ECG data
for the TeleHealth dataset to a high of 50.24 milliseconds for the Paced Rhythms dataset,
whereas for the AMPT algorithm, the shortest processing time was 1.09 milliseconds per
ten seconds of ECG data for the Normal Sinus Rhythm dataset and the longest was 4.56 mil-
liseconds for the Low Quality dataset. As indicated by the efficiency factor and relative to
the Pan–Tompkins, the AMPT algorithm improved computational efficiency by a minimum
factor of 4.0 for the Low Quality dataset and a maximum of 21.2 for the Paced Rhythms
dataset. Intermediate efficiency factors were 8.3, 4.7, 16.4, and 15.8 for the High Quality,
TeleHealth, Normal Sinus Rhythms, and Arrhythmias’ datasets, respectively.

The AMPT algorithm was also more correct than the Pan–Tompkins algorithm ac-
cording to F1 (Figure 2). For the Pan–Tompkins algorithm, the F1 had a low of 75.45 for
the Paced Rhythms dataset and a high of 99.63 for the High Quality dataset, whereas for
the AMPT algorithm, the F1 low was 83.28 for the TeleHealth dataset and the high was
99.81 for the High Quality dataset. From the Pan–Tompkins to the AMPT algorithms, the
F1 improvement was highest for the Paced Rhythm dataset with a difference of 20.52%.
F1 improvements of 3–5% were also demonstrated with the Low Quality and TeleHealth
datasets. Across all other measures including error rate, sensitivity, positive predictive
value, and accuracy, and for all datasets, the AMPT algorithm was correct more often than
the Pan–Tompkins (Table 2).
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Figure 1. Processing times per ten seconds of ECG data for the Pan–Tompkins (red) and AMPT (blue)
algorithms with their efficiency factors (green) by dataset. A1 = High Quality, A2 = Low Quality,
B1 = Normal Sinus Rhythm, B2 = Arrhythmias, C = Paced Rhythm, and D = TeleHealth datasets.
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Table 2. Correctness of the Pan–Tompkins and AMPT algorithms by dataset. A1 = High Qual-
ity, A2 = Low Quality, B1 = Normal Sinus Rhythm, B2 = Arrhythmias, C = Paced Rhythm, and
D = TeleHealth datasets.

Dataset Annotated
Peaks Algorithm

True
Positives
(Beats)

False
Positives
(Beats)

False
Negatives

(Beats)

Failed
Detection

(Beats)

Error Rate
(%)

Sensitivity
(%)

Positive
Predictive
Value (%)

Accuracy
(%)

A1 72,415 Pan–Tompkins 72,073 191 348 539 0.74 99.51 99.75 99.26

AMPT 72,267 135 148 283 0.39 99.80 99.82 99.62

A2 78,618 Pan–Tompkins 64,653 11137 14,065 25,202 32.06 80.75 85.12 74.09

AMPT 64,993 8671 13,639 22,310 28.38 82.06 86.37 78.54

B1 48,494 Pan–Tompkins 45,231 134 2988 3122 6.44 95.08 99.74 94.85

AMPT 45,301 8 3083 3091 6.37 94.97 99.98 94.96

B2 103,724 Pan–Tompkins 99,783 349 3720 4069 3.92 96.36 99.66 96.09

AMPT 100,135 144 3380 3524 3.40 96.80 99.83 96.66

C 8923
Pan–Tompkins 6684 2132 2238 4370 48.97 74.93 75.97 64.26

AMPT 8468 276 454 730 8.18 96.90 95.07 92.81

D 6708
Pan–Tompkins 3218 972 522 1494 40.10 84.92 77.56 68.91

AMPT 3394 707 334 1041 27.94 90.00 81.04 76.29

Within the Arrhythmia dataset, processing times per ten seconds of ECG data and all
measures of correctness varied by sample for the Pan–Tompkins and AMPT algorithms
(Tables S1 and S2, respectively (Supplementary Materials)). The efficiency gain was less for
samples with high amplitude variability or a large number of arrhythmias, and this was
determined qualitatively (Figure S1).

After resampling and reprocessing all data at 200 Hz, the relative performance of
each algorithm did not change across datasets. The AMPT algorithm was still compu-
tationally more efficient and more correct than the original Pan–Tompkins algorithm
(Figures S2 and S3). However, the processing times of the resampled data were less than
those prior to resampling because there were fewer data points to process.

4. Discussion

In evaluating archived and independently annotated ECG data, the AMPT algorithm
was both computationally more efficient and more correct than the Pan–Tompkins method.
These differences are attributed to the removal of unnecessary, parallel computations,
including the double signal analysis for peak detection and one of the two average RR
intervals.

Efficiency improvements are dramatic enough to potentially enable the translation of
the AMPT algorithm to a mobile platform. However, the AMPT algorithm is relatively less
advantageous for processing samples with high amplitude variability or a large number of
arrhythmias, as observed by comparing samples with extreme values.

The AMPT algorithm improved F1 correctness by 3–5% for the Low Quality and
TeleHealth datasets compared to the Pan–Tompkins, which is significant because these
data are most similar to those signals that would be recorded and processed from mobile
platforms and wearable technologies. Additionally, with the exception of the sensitivities
determined from the Normal Sinus Rhythm dataset, across all dimensions of correctness
including total error rate, sensitivity, positive predictive value, accuracy, and F1, the
AMPT algorithm outperformed the Pan–Tompkins algorithm for all datasets. Some of the
correctness improvements are modest, but they demonstrate that algorithm changes to
enhance computational efficiency did not sacrifice accuracy.

AMPT performance was compared to that of Pan–Tompkins; however, it is not possi-
ble to directly compare the performance of the AMPT algorithm to other QRS detection
algorithms reported in the literature. Inconsistencies in hardware prevent comparison of
computational efficiency [7,12–17,23], while non-uniform, and unexplained or selective ex-
clusion of data, variations in the temporal width of the detection window, and discrepancies



Sensors 2023, 23, 1625 7 of 9

among sampling rates make the direct comparison of accuracies not practical [7–11,17,20,23].
Nonetheless, other studies compare their results to those of Pan–Tompkins [7–17,20,23],
and most are faster and more accurate across publicly available datasets, which is con-
sistent with our findings. Therefore, the AMPT would likely be competitive with the
computational efficiency and accuracy of other algorithms.

In this analysis, all samples and beats from the High Quality, Low Quality, Arrhyth-
mias, and Paced Rhythms datasets were included because complete sets are most represen-
tative of patient or consumer data that would be evaluated in real-time (i.e., continuous
analysis of data on a beat-to-beat basis without accumulating a backlog of unanalyzed
beats). However, only the first thirty minutes of data from the Normal Sinus Rhythm
dataset were studied here because longer periods had excessive computational demands,
while thirty minutes per sample was still deemed long enough to determine the relative
performance of each algorithm. The exclusion of the TeleHealth samples also does not
affect the findings of this study because in most cases, neither algorithm was able to detect
the few annotated beats available for analysis in the excluded samples.

The AMPT algorithm was motivated by development of a smart t-shirt that monitors
and analyzes a single-lead ECG recording in real-time [33,34]. Initially, the Pan–Tompkins
method was utilized with a prototype device; however, there were substantial computa-
tional delays and consequent data loss. Therefore, the AMPT algorithm was written to be
more computationally efficient, while having improved QRS detection capabilities. In con-
junction with the smart t-shirt and on a mobile platform, the AMPT algorithm eliminated
the prior delays and data loss and processed the data in real-time without lagging (data
not presented).

While demand for computationally efficient ECG analysis algorithms will remain
strong due to the need to conserve the energy of battery-powered devices [23], continued
advances in mobile device processing speed will diminish the dependency on efficient
algorithms to deliver a single ECG analysis outcome. Instead, an efficient QRS detection
algorithm will allow for greater complexity of other aspects of parallel ECG analysis such
as P- and T-wave analyses [21,22].

This study is limited in that it is a retrospective analysis, and the corresponding patients
and pathologies may not represent those of the general population. A more comprehensive
future study is necessary to assess the AMPT algorithm’s performance in real-time and
with a larger, more diverse patient population. Another limitation is that this study was
performed via a desktop computer (rather than on a mobile device) because a consistent
platform was necessary to standardize conditions and enable direct comparison of the
algorithms’ computational efficiency. Nonetheless, real world application and evaluation
will need to feature mobile devices running different operating systems and a variety of
other simultaneous applications.

5. Conclusions

As compared to the Pan–Tompkins algorithm, the AMPT algorithm demonstrated
improved computational efficiency of QRS detection while also enhancing correctness.
When applied on a mobile platform, the AMPT algorithm was observed to eliminate
processing delays and data loss, which may enable continuous, real-time, single-lead QRS
detection on a variety of mobile devices. However, these data were not representative of a
clinical trial or field test. Additional studies are necessary to move this technology towards
continuous, real-time monitoring of patients and recreational users.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23031625/s1, Figure S1. Representative raw ECG signals for
samples 101 (top) and 232 (bottom) of the Arrythmias dataset (B2) visually demonstrating differences
in amplitude variability and the number of arrythmias; Figure S2. Processing time per ten seconds
of ECG data for the Pan-Tompkins (red) and AMPT (blue) algorithms with their efficiency factors
(green) by dataset. A1 = High-Quality, A2 = Low-Quality, B2 = Arrhythmias, C = Paced Rhythm, and
D = Telehealth datasets after resampling to 200 Hz; Figure S3. F1 correctness for the Pan-Tompkins

https://www.mdpi.com/article/10.3390/s23031625/s1
https://www.mdpi.com/article/10.3390/s23031625/s1
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(red) and AMPT (blue) algorithms by dataset. A1 = High-Quality, A2 = Low-Quality, B2 = Arrhyth-
mias, C = Paced Rhythm, and D = Telehealth datasets after resampling to 200 Hz; Table S1. Processing
time per ten seconds of ECG data and correctness of the Pan-Tompkins algorithm for the Arrhythmias
dataset (B2) by sample; Table S2. Processing time per ten seconds of ECG data and correctness of the
AMPT algorithm for the Arrhythmias dataset (B2) by sample.
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